JPH0274072A - Organic thin film manufacturing device - Google Patents

Organic thin film manufacturing device

Info

Publication number
JPH0274072A
JPH0274072A JP63225913A JP22591388A JPH0274072A JP H0274072 A JPH0274072 A JP H0274072A JP 63225913 A JP63225913 A JP 63225913A JP 22591388 A JP22591388 A JP 22591388A JP H0274072 A JPH0274072 A JP H0274072A
Authority
JP
Japan
Prior art keywords
surface pressure
substrate
barrier
film
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63225913A
Other languages
Japanese (ja)
Other versions
JP2666975B2 (en
Inventor
Toshio Nakayama
中山 俊夫
Takashi Ekusa
俊 江草
Nobuhiro Motoma
信弘 源間
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63225913A priority Critical patent/JP2666975B2/en
Publication of JPH0274072A publication Critical patent/JPH0274072A/en
Application granted granted Critical
Publication of JP2666975B2 publication Critical patent/JP2666975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)

Abstract

PURPOSE:To enable the manufacture of an organic thin film which is uniform and has no defect in structure by a method wherein at least a detecting probe of a surface pressure gauge is arranged at the position of a movable barrier and a substrate so as to enable the deviation of its detected surface pressure from a set surface pressure to be within 10% after a compressing operation or in an accumulating operation. CONSTITUTION:At least, a detecting probe 14 of a surface pressure gauge is arranged at the position of a movable barrier 12 and a substrate 13 so as to enable the deviation of its surface pressure detected value from a set surface pressure to be within 10% after a compressing operation or in an accumulating operation. And, the surface pressure change due to the barrier 12 at a compressing operation of a molecular film by the barrier 12 can be accurately detected, and the surface pressure decrease of the molecular film near the substrate 13 can be accurately detected at an accumulating operation. Therefore, the surface pressure detected value of the detecting probe 14 of the surface pressure gauge can be used as an index that a moving rate of the movable barrier at the compression of the molecular film and an up-down speed at the accumulation of the molecular film on the substrate are controlled, whereby a molecular film which is uniform and has no defect in structure can be accumulated on a substrate.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) 本発明は、ラングミュア・プロジェット法により有機薄
膜を製造するのに使用する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an apparatus used for producing organic thin films by the Langmuir-Prodgett method.

(従来の技術) 近年、ラングミュア・ブロジェット膜(以下LB膜と略
す)に代表される有機薄膜の研究が各種の新機能電子デ
バイスへの応用を目的として盛んに行われている。かか
るデバイスにおいては、均一で極めて薄い膜の中で、色
素等を含有する機能性分子の膜内での配向、積層構造、
分子間距離等を制御することによって始めて所定の機能
を実現することが可能となる。
(Prior Art) In recent years, research on organic thin films typified by Langmuir-Blodgett films (hereinafter abbreviated as LB films) has been actively conducted with the aim of applying them to various electronic devices with new functions. In such devices, the alignment of functional molecules containing dyes, etc., the layered structure,
It becomes possible to realize a predetermined function only by controlling the intermolecular distance and the like.

通常のLB製膜方法においては、分子内に親水性のより
高い部分と疎水性のより高い部分を備えた両親媒性有機
分子を水面上に展開し、所定の表面張力を示すように展
開された面積を圧縮することによって分子同志を最密に
バッキングさせた水面上単分子膜を形成した後、所定の
基板を該単分子膜に対して垂直又は水平に移動すること
によって基板上に単分子膜を移し取り、累積膜を形成す
る。
In the normal LB film forming method, amphiphilic organic molecules, which have a highly hydrophilic part and a highly hydrophobic part within the molecule, are spread on the water surface so that they exhibit a predetermined surface tension. After forming a monomolecular film on the water surface in which molecules are backed closely together by compressing the area, the monomolecular film is deposited on the substrate by moving a given substrate perpendicularly or horizontally to the monomolecular film. The film is transferred to form a cumulative film.

上述した製膜操作を行なうための製膜装置は、基本的に
は単分子膜を展開するための水面を得るための水槽と、
分子の展開面積を変えるための可動バリアと、水面上の
表面圧を検出するための表面圧計と、基板上に前記単分
子膜を移し取るために該基板を上下動作させる累積機構
とから構成されている。しかしながら、従来の製膜装置
では単にlli分子膜の圧縮時間を短縮するために水槽
面積を小さくしたり、a効累積面積を稼ぐために基板や
表面圧計を水槽の端に設置するだけで、本来良質な累積
膜を形成するための装置としての最適化がなされていな
かった。このため、本発明者らの研究において市販の製
膜装置を用いて標準的なステアリン酸(カドミウム塩)
分子を製膜して得られた累積膜は多数の欠陥を冑するこ
とが明らかとなり(シンセティックメタルズ、第18巻
11103−807頁及び809−814頁、1987
年)、その後の学界においてもLB膜に欠陥があること
が共通の認識となった。
The film forming apparatus for performing the above-mentioned film forming operation basically consists of a water tank for obtaining a water surface for developing a monomolecular film, and
It is composed of a movable barrier for changing the spread area of molecules, a surface pressure gauge for detecting the surface pressure on the water surface, and an accumulation mechanism for moving the substrate up and down in order to transfer the monomolecular film onto the substrate. ing. However, with conventional film forming equipment, the area of the water tank is simply reduced in order to shorten the compression time of the lli molecular film, and the substrate and surface pressure gauge are simply installed at the edge of the water tank in order to increase the cumulative area of the a effect. The device has not been optimized to form a high-quality cumulative film. For this reason, in our research, we used a commercially available film-forming equipment to produce standard stearic acid (cadmium salt).
It has become clear that the cumulative film obtained by forming molecules has many defects (Synthetic Metals, Vol. 18, pp. 11103-807 and 809-814, 1987
After that, it became common knowledge in the academic world that LB films were defective.

上述したLB膜の欠陥発生は、製膜時に基板近傍の水面
上単分子膜に所定の表面圧が加わっていないことに起因
するものである。これは、従来の製造装置において以下
に挙げる問題点があるためである。
The occurrence of defects in the LB film described above is due to the fact that a predetermined surface pressure is not applied to the monomolecular film on the water surface near the substrate during film formation. This is because the conventional manufacturing apparatus has the following problems.

即ち、第1に一部の例外を除いて殆どの分子は、水面上
単分子膜を形成した時に粘弾性を持つ流体として振舞い
、バリアで面積を圧縮した時に均一に圧縮されず、表面
圧分布を示す。このため、表面圧計(特にその検出子)
を設置する場所によって水面中央部の表面圧が所定値に
達していなかったり、或いはバリア近傍の表面圧が異常
に高くなり過ぎて単分子膜が安定化しない等の問題を招
いていた。しかも、基板の単分子膜に対する昇降位置が
表面圧計の検出子による設定値と異なるという問題もあ
った。第2に、基板を昇降して水面上単分子膜を移し取
る際に、基板を動かすことによって基板近傍の単分子膜
が示す表面圧が低下し、持に粘弾性の高い単分子膜では
この傾向が著しく、前記表面圧が殆どOdyn /CN
(水面と同じ表面張力)になるまで低下する。これは、
累積操作において表面圧が全く制御されていないことを
示している。かかる状態では、基板に移し取られる直前
の水面上単分子膜は最密にバッキングされた単分子膜と
いえず、しかも累積した膜にも構造の乱れ又は欠陥を誘
発する原因となる。これは、前記基板近傍の表面圧低下
が本来観測されるべき表面圧計の検出子によって正しく
検出されておらず、その結果、圧縮制御系が全く機能し
ていないためである。第3に、既に述べた状況下で単分
子膜が基板に移し取られると、水面上単分子膜の面積減
少分だけバリアを圧縮させて表面圧を維持しなければな
らない。しかし、単分子膜の粘弾性が高くなる程、バリ
アの圧縮による基板近傍の表面圧の回復の応答性が悪化
する。
Firstly, with some exceptions, most molecules behave as a viscoelastic fluid when they form a monomolecular film on the water surface, and when the area is compressed by a barrier, it is not compressed uniformly, and the surface pressure distribution shows. For this reason, surface pressure gauges (especially their detectors)
Depending on where the barrier is installed, the surface pressure at the center of the water surface may not reach a predetermined value, or the surface pressure near the barrier may become abnormally high, leading to problems such as the monomolecular film not being stabilized. Furthermore, there was a problem in that the vertical position of the substrate with respect to the monomolecular film was different from the value set by the detector of the surface pressure meter. Second, when moving the substrate to transfer the monolayer on the water surface, the surface pressure exerted by the monolayer near the substrate decreases, especially for monolayers with high viscoelasticity. The tendency is remarkable, and the surface pressure is almost Odyn/CN
(the same surface tension as the water surface). this is,
It shows that the surface pressure is not controlled at all in the cumulative operation. In such a state, the monomolecular film on the water surface immediately before being transferred to the substrate cannot be said to be a monomolecular film with a close-packed backing, and furthermore, the accumulated film may also have structural disturbances or defects. This is because the surface pressure drop in the vicinity of the substrate is not correctly detected by the detector of the surface pressure meter, which is supposed to be observed, and as a result, the compression control system is not functioning at all. Third, when the monolayer is transferred to the substrate under the conditions already described, the barrier must be compressed by the area reduction of the monolayer above the water surface to maintain the surface pressure. However, the higher the viscoelasticity of the monomolecular film, the worse the responsiveness of recovery of the surface pressure near the substrate due to compression of the barrier.

従って、従来の有機薄膜製造装置では水面上単分子膜の
表面圧分布の均一性、累積時における基板近傍の表面圧
が良好にコントロールされておらず、優れた有機薄膜を
製造することができない問語があった。
Therefore, in conventional organic thin film production equipment, the uniformity of the surface pressure distribution of the monomolecular film on the water surface and the surface pressure near the substrate during accumulation are not well controlled, making it difficult to produce excellent organic thin films. There was a word.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、構造が均一で欠陥のない有機薄膜を製造し得る有
機薄膜の製造装置を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and aims to provide an organic thin film manufacturing apparatus capable of manufacturing an organic thin film with a uniform structure and no defects. It is something.

[発明の構成] (課題を解決するための手段) 本発明は、両親媒性有機分子の91分子膜を展開するた
めの水槽と、前記単分子膜を展開した水槽表面の展開面
積を変化させるための水槽を区画する可動バリアと、前
記単分子膜の表面圧を検出するための少なくとも1つの
表面圧計と、前記単分子膜を所定の基板上に累積させる
ために該基板を駆動する累積機構とを具備した有機薄膜
の製造装置において、前記少なくとも1つの表面圧計の
検出子を前記可動バリア及び基板の位置に圧縮後又は累
積操作中での設定表面圧からのずれが10%以内となる
ように配置したことを特徴とする宵機薄膜の製造装置で
ある。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a water tank for developing a 91-molecular film of amphipathic organic molecules, and changing the developed area of the surface of the tank on which the monomolecular film is developed. at least one surface pressure meter for detecting the surface pressure of the monomolecular film; and an accumulation mechanism for driving the substrate in order to accumulate the monomolecular film on the substrate. In the organic thin film manufacturing apparatus, the detector of the at least one surface pressure meter is positioned at the movable barrier and the substrate so that the deviation from the set surface pressure after compression or during cumulative operation is within 10%. This is a thin film manufacturing apparatus characterized by being arranged in a.

上記少なくとも1つの表面運針の検出子の配置にあたり
、圧縮後又は累積操作中での設定表面圧からのずれが1
0%以内とした理由は、1096を越えると水面上単分
子膜中の分子バッキング状態が均一でなくなり、均質な
膜を累積することが不可能となるからである。
When arranging the at least one surface hand movement detector, the deviation from the set surface pressure after compression or during cumulative operation is 1
The reason why it is set within 0% is that if it exceeds 1096, the molecular backing state in the monomolecular film on the water surface will not be uniform, making it impossible to accumulate a homogeneous film.

上記少なくとも1つの表面運針の検出子を前記可動バリ
ア及び基板の位置に圧縮後又は累積操作中での設定表面
圧からのずれが1096以内となるように配置するには
、例えば少なくとも1つの表面運針の検出子を可動バリ
ア及び基板のうちの少なくとも一方の水面と境界を形づ
くる場所から5 cm以内を配置することを挙げること
ができる。こうした配置状態において、特に基板を可動
バリアから5α以内の場所に配置させることによって、
より一層構造が均一で欠陥のないLB膜を製造できるだ
めに有効である。
In order to arrange the at least one surface hand movement detector at the position of the movable barrier and the substrate such that the deviation from the set surface pressure after compression or during cumulative operation is within 1096, The detector may be placed within 5 cm of a location bordering the water surface of at least one of the movable barrier and the substrate. In this arrangement, especially by placing the substrate within 5α from the movable barrier,
This method is effective in producing an LB film with a more uniform structure and no defects.

(作用) 本発明者らは、次のような知見により発明を完成するに
至った。即ち、本発明者らは粘弾性的性質の高い分子の
水面上単分子膜について鋭意研究した結果、圧縮・累積
操作において第9図に示すようにバリア及び水槽側壁と
水面とで形づくられる境界1や基板と水面とで形づくら
れる境界2から5c11Mれた境界3a、 3bまでの
領域(斜線部)で大きな表面圧分布を生じるという重要
な知見を究明した。これは、水槽形状、分子種類、基板
の周囲長によらず、はぼ一般的に観測された。前記表面
圧分布に関し、圧縮・累積の夫々の場合を以下に簡単に
説明する。
(Function) The present inventors have completed the invention based on the following findings. That is, as a result of intensive research by the present inventors on the monomolecular film of molecules with high viscoelastic properties on the water surface, we found that the boundary 1 formed by the barrier, the tank side wall, and the water surface as shown in FIG. 9 during compression and accumulation operations. We have discovered the important finding that a large surface pressure distribution occurs in the area between boundaries 3a and 3b (shaded area), which is 5c11M away from boundary 2, which is formed by the substrate and the water surface. This was generally observed regardless of the tank shape, molecule type, or substrate circumference. Regarding the surface pressure distribution, each case of compression and accumulation will be briefly explained below.

まず、圧縮操作に関して単分子膜が展開された水槽上の
表面圧分布を調べるために表面運針の検出子を多数設置
した状態で圧縮を行ない、各検出子で検出した圧力分布
を観察した。その結果、粘弾性の高い分子では単分子膜
が均一に圧縮されず、バリアの近傍で表面圧が顕著に増
加すること、水槽周囲部がより強く圧縮されることが明
らかとなった。このようなバリアと水面とで形づくられ
る境界近傍で顕著に現われる表面圧の不均一さは、使用
する分子においても僅かに異なるが、前記境界からおよ
そ5cM以内の場所であれば殆どの分子について検出す
ることが可能であった。
First, in order to investigate the surface pressure distribution on the water tank in which the monomolecular film was developed during the compression operation, compression was performed with a number of surface needle movement detectors installed, and the pressure distribution detected by each detector was observed. The results revealed that molecules with high viscoelasticity do not compress the monolayer uniformly, and that the surface pressure increases significantly near the barrier, and that the area around the aquarium is compressed more strongly. The non-uniformity of surface pressure that appears prominently near the boundary between the barrier and the water surface varies slightly depending on the molecules used, but it can be detected for most molecules within approximately 5 cM from the boundary. It was possible to do so.

次に、基板上への単分子膜の累積操作に関して垂直浸漬
法における基板近傍の表面圧変化を調べた。その結果、
第10図に模式的に示すように基板4への累積時には単
分子膜の流動に伴って表面圧分布が発生することが明ら
かになった。この時の基板4と水面とで形づくられる境
界近傍で顕著に現われる表面圧分布は、使用する分子に
おいても僅かに異なるが、前記境界からおよそbcH以
内の場所であれば殆どの分子について検出することが可
能であった。
Next, we investigated the change in surface pressure near the substrate in the vertical immersion method regarding the accumulation of monolayers on the substrate. the result,
As schematically shown in FIG. 10, it has become clear that a surface pressure distribution occurs as the monomolecular film flows during accumulation on the substrate 4. The surface pressure distribution that appears prominently near the boundary formed by the substrate 4 and the water surface at this time differs slightly depending on the molecules used, but it can be detected for most molecules within approximately bcH from the boundary. was possible.

以上の知見に基づき、本発明は少なくとも1つの表面運
針の検出子を可動バリア及び基板の位置に圧縮後又は累
積操作中での設定表面圧からのずれが10%以内となる
ように配置、より具体的には少なくとも1つの表面運針
の検出子を可動バリア及び基板のうちの少な(とも一方
の水面と境界を形づくる場所から5cM以内を配置する
ことによって、前述した表面圧分布を補償できる。つま
り、バリアによる単分子膜の圧縮操作時にはバリアによ
る表面圧の変化を正確に検出することが可能となり、累
積操作時にはU板近傍での単分子膜の表面圧低下を正確
に検出することが可能となる。従って、かかる表面運針
の検出子からの表面圧検出値を単分子膜の圧縮時におけ
る可動バリアの移動速度や基板への単分子膜の累積時に
おける昇降速度等を制御する指標として用いることによ
って、基板に構造が均一で欠陥のない単分子膜を累積で
きる。
Based on the above findings, the present invention provides at least one surface hand movement detector arranged at the position of the movable barrier and the substrate so that the deviation from the set surface pressure after compression or during cumulative operation is within 10%. Specifically, the above-mentioned surface pressure distribution can be compensated for by placing at least one surface hand movement detector within 5 cM of the movable barrier and the substrate (both of which form a boundary with the water surface on one side). During the compression operation of the monomolecular film by the barrier, it is possible to accurately detect the change in surface pressure due to the barrier, and during the cumulative operation, it is possible to accurately detect the decrease in the surface pressure of the monomolecular film near the U plate. Therefore, the surface pressure detection value from the surface hand movement detector can be used as an index for controlling the moving speed of the movable barrier when compressing the monomolecular film, the lifting speed when accumulating the monomolecular film on the substrate, etc. By this method, a uniformly structured and defect-free monolayer can be deposited on the substrate.

また、前記条件を満たしつつ基板を可動バリアと水面と
で形づけられる境界から5cm以内の場所に設置するこ
とによって、より一層の表面圧分布の補償が可能となる
。特に、表面圧2[の検出子、可動バリア及び基板と水
面とで形づけられる境界を互いに5oI以内に設定する
ことによって、バリアによる単分子膜の圧縮操作時での
バリアによる表面圧の変化の正確な検出、累積操作時で
の基板近傍での単分子膜の表面圧低下の正確な検出が可
能となるばかりか、バリアによる単分子膜への圧縮効果
をより向上することが可能となる。
Furthermore, by installing the substrate within 5 cm from the boundary formed by the movable barrier and the water surface while satisfying the above conditions, it becomes possible to further compensate for the surface pressure distribution. In particular, by setting the boundaries formed by the surface pressure 2 detector, the movable barrier, and the substrate and water surface within 5oI of each other, changes in surface pressure caused by the barrier during compression of the monomolecular film by the barrier can be avoided. Not only is it possible to accurately detect and accurately detect the decrease in surface pressure of the monomolecular film near the substrate during the accumulation operation, but it is also possible to further improve the compression effect of the barrier on the monomolecular film.

史に、複数の表面片針の検出子を可動バリア及び基板の
うちの少なくとも一方の水面と境界を形づくる場所から
501以内を配置することによって、前述した表面圧分
布をより効果的に′r4償できる。
In addition, the surface pressure distribution described above can be compensated for more effectively by arranging a plurality of single-surface needle detectors within 501 degrees of a location forming a boundary with the water surface of at least one of the movable barrier and the substrate. can.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
。なお、実施例2以降で用いる第2図〜第8図の製造装
置において実施例1で使用した第1図に示す製造装置と
同様な部材は同符号を付して説明を省略する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. Incidentally, in the manufacturing apparatus shown in FIGS. 2 to 8 used in Example 2 and later, the same members as those in the manufacturing apparatus shown in FIG.

実施例1 第1図は、本発明の実施例1に係わる有機薄膜の製造装
置を示す概略平面図である。図中の11は、内面がフッ
素樹脂被膜でコーティングされた水槽である。この水M
IL内には、単分子膜が展開されろ水もしくは水溶液が
収容され、かつ収容された水等は図示しない温度調節機
構により恒温に保持されている。前記水槽11の一端側
には、水面上単分子膜を区画するフッ素樹脂性の可動バ
リア12が配置されている。このバリア12は、図示し
ないバリア駆動機構により移動され、水面上単分子膜を
圧縮できるようになっている。また、前記水槽11の側
壁近くには単分子膜を基板13上に累積させるために該
基板13を水平及び垂直に駆動する累積機構(図示せず
)が配置されている。そして、表面片針の検出子として
のろ紙14が前記基板13と水面とで形づくられる場所
から20の位ril(図中の斜線部)に配置されている
。前記表面片針は、前記ろ紙14にかかる表面張力を測
定するウィルヘルミイ (Wllhelmy )型であ
り、その張力は直角変位型の歪みゲージによって検出す
る構造になっている。
Example 1 FIG. 1 is a schematic plan view showing an organic thin film manufacturing apparatus according to Example 1 of the present invention. 11 in the figure is a water tank whose inner surface is coated with a fluororesin film. This water M
Inside the IL, a monomolecular film is developed and filtered water or an aqueous solution is accommodated, and the accommodated water and the like are maintained at a constant temperature by a temperature control mechanism (not shown). A movable barrier 12 made of fluororesin is disposed at one end of the water tank 11 to partition a monomolecular film on the water surface. This barrier 12 is moved by a barrier drive mechanism (not shown) so that it can compress the monomolecular film on the water surface. Further, an accumulation mechanism (not shown) is disposed near the side wall of the water tank 11 to drive the substrate 13 horizontally and vertically in order to accumulate a monomolecular film on the substrate 13. A filter paper 14 serving as a detector for the surface single needle is placed at about 20 ril (shaded area in the figure) from the location formed by the substrate 13 and the water surface. The surface needle is of a Wilhelmy type that measures the surface tension applied to the filter paper 14, and the tension is detected by a right-angle displacement type strain gauge.

このような構成の製造装置において、純水が収容された
水槽IIの水面にN5N−ジオクタデシルバラフェニレ
ンジアミンを展開した後、可動バリア12を移動させて
展開された単分子膜を前記表面片針の指示値が40 d
yn/cMの表面圧を示すように圧縮した。こうした圧
縮操作後に、基板13として疎水化処理したシリコンウ
ェハを用い、前記表面片針の指示値が4dyn/cx以
上低下しないように0.5ii/sinの速度で垂直浸
漬法により累積を行なった。
In a manufacturing apparatus having such a configuration, after N5N-dioctadecylbaraphenylenediamine is spread on the water surface of water tank II containing pure water, the movable barrier 12 is moved to transfer the spread monomolecular film to the surface single needle. The indicated value is 40 d
It was compressed to exhibit a surface pressure of yn/cM. After such a compression operation, using a silicon wafer subjected to hydrophobization treatment as the substrate 13, accumulation was performed by a vertical dipping method at a rate of 0.5 ii/sin so that the indicated value of the surface needle did not decrease by more than 4 dyn/cx.

しかして、上記操作を10回繰返した後の基板の累積膜
をX線回折、SEMにより調べたところ、構造が均一で
欠陥のない10層累積膜が形成されていることが確認さ
れた。
When the accumulated film on the substrate after repeating the above operation 10 times was examined by X-ray diffraction and SEM, it was confirmed that a 10-layer accumulated film with a uniform structure and no defects was formed.

実施例2 第2図は、本発明の実施例2に係わる有機薄膜の製造装
置を示す概略平面図である。この製造装置は、表面片針
の検出子としてのろ紙14’が可動バリア12と水面と
で形づくられる場所から1c11の位置(図中の斜線部
)に該バリア12の移動に追従して前記距離を一定に保
持できるように移動可能な配置された構造になっている
Example 2 FIG. 2 is a schematic plan view showing an organic thin film manufacturing apparatus according to Example 2 of the present invention. In this manufacturing apparatus, a filter paper 14' serving as a detector of a single surface needle is moved from a place formed by the movable barrier 12 and the water surface to a position 1c11 (the shaded area in the figure) by following the movement of the barrier 12 and moving the filter paper 14' over the distance described above. It has a movable arrangement structure that allows it to maintain a constant level.

このような構成の製造装置において、純水が収容された
水槽11の水面にN、N−ジオクタデシルパラフェニレ
ンジアミンを展開した後、可動バリア12を移動させて
展開された単分子膜を前記表面片針の指示値が40dy
n/C11の表面圧を示すように圧縮した。こうした圧
縮操作後に、基板13として疎水化処理したシリコンウ
ェハを用い、前記表面片針の指示値が4dyn/ax以
上低下しないように0.511Jl/sinの速度で垂
直浸漬法により累積を行なった。
In a manufacturing apparatus having such a configuration, after N,N-dioctadecylparaphenylenediamine is spread on the water surface of the water tank 11 containing pure water, the movable barrier 12 is moved to spread the spread monomolecular film onto the surface. The indicated value for one needle is 40dy.
It was compressed to exhibit a surface pressure of n/C11. After such a compression operation, using a silicon wafer subjected to hydrophobization treatment as the substrate 13, accumulation was performed by a vertical dipping method at a rate of 0.511 Jl/sin so that the indicated value of the surface needle did not decrease by more than 4 dyn/ax.

しかして、上記操作を10回繰返した後の基板の累積膜
をxt*on折、SEMにより調べたところ、構造が均
一で欠陥のない10層累積膜が形成されていることが確
認された。
When the cumulative film of the substrate after repeating the above operation 10 times was examined by SEM, it was confirmed that a 10-layer cumulative film with a uniform structure and no defects was formed.

実施例3 第3図は、本発明の実施例3に係わる有機薄膜の製造装
置を示す概略平面図である。この製造装置は、表面片針
の検出子としての第1のろ紙141が可動バリア12と
水面とで形づくられる場所から2IS11の位置(図中
の斜線部)に連結治具15を介して該バリア12の移動
に追従して移動可能に配置され、第2のろ紙142がバ
リア12と反対側の水tell内側壁から2cMの位置
(図中の斜線部)に配置された構造になっている。
Example 3 FIG. 3 is a schematic plan view showing an organic thin film manufacturing apparatus according to Example 3 of the present invention. In this manufacturing apparatus, a first filter paper 141 as a detector of a single surface needle is connected to the barrier via a connecting jig 15 from a place formed by the movable barrier 12 and the water surface to a position 2IS11 (shaded area in the figure). The structure is such that the second filter paper 142 is disposed at a position 2 cM from the inner wall of the water cell on the opposite side to the barrier 12 (the shaded area in the figure).

このような構成の製造装置において、純水が収容された
水Illの水面にN、N−ジオクタデシルパラフェニレ
ンジアミンを展開した後、可動バリア12を第1、第2
のろ紙141 % 142で検出された表面圧(π1)
、(π2)の差が4dyn/nを越えない速度で移動さ
せて展開された単分子膜を前記表面圧計の指示値が40
 dynlofの表面圧を示すように圧縮した。こうし
た圧縮操作後に、基板13として疎水化処理したシリコ
ンウェハ1を用い、前記表面圧計の指示値が4dyn/
C11以上低下しないように0.5mm/1rlの速度
で垂直浸漬法により累積を行なった。
In the manufacturing apparatus having such a configuration, after N,N-dioctadecylparaphenylenediamine is spread on the water surface of water Ill containing pure water, the movable barrier 12 is moved to the first and second
Surface pressure (π1) detected on filter paper 141% 142
, (π2) at a speed that does not exceed 4 dyn/n.
It was compressed to show the surface pressure of the dynlof. After such compression operation, the silicon wafer 1 subjected to hydrophobization treatment was used as the substrate 13, and the indicated value of the surface pressure gauge was 4 dyn/
Accumulation was carried out by a vertical dipping method at a rate of 0.5 mm/1 rl so as not to reduce C11 or more.

しかして、上記操作を10回繰返した後の基板の累積膜
をX線回折、SEMにより調べたところ、構造が均一で
欠陥のない101’!i累積膜が形成されていることが
確認された。
However, when the accumulated film on the substrate after repeating the above operation 10 times was examined by X-ray diffraction and SEM, it was found that the structure was uniform and defect-free! It was confirmed that an i-cumulative film was formed.

実施例4 第4図は、本発明の実施例4に係わる有機薄膜の製造!
jt置を示す概略平面図である。この製造装置は、2つ
の可動バリア12s s 122が互いに接離するよう
に移動可能に配置され、かつ表面圧計の検出子としての
第1のろ紙141が第1の可動バリア12.と水面とで
形づくられる場所から2cmの位置(図中の斜線部)に
連結治具15を介して譲バリア12.の移動に追従して
移動可能に配置されていると共に、第2のろ紙142が
第2の可動バリア122と水面とで形づくられる場所か
ら2c11の位置(図中の斜線部)に連結治具15を介
して該バリア122の移動に追従して移動可能に配置さ
れた横這になっている。
Example 4 Figure 4 shows the production of an organic thin film according to Example 4 of the present invention!
FIG. 3 is a schematic plan view showing the jt position. In this manufacturing apparatus, two movable barriers 12s s 122 are movably arranged so as to approach and separate from each other, and a first filter paper 141 as a detector of a surface pressure meter is connected to the first movable barrier 12s. The transfer barrier 12. The connecting jig 15 is arranged to be movable following the movement of the second filter paper 142, and is located at a position 2c11 (shaded area in the figure) from the place where the second filter paper 142 is formed by the second movable barrier 122 and the water surface. The barrier 122 is disposed horizontally so as to be movable following the movement of the barrier 122.

このような構成の製造装置において、純水が収容された
水Illの水面にN、N−ジオクタデシルパラフェニレ
ンジアミンを展開した後、第1、第2の可動バリアIL
  122を第1のろ紙14゜で検出された表面圧(π
l)と第2のろ紙142で検出された表面圧(π2)の
差が4dyn/、iを越えない速度で互いに接近するよ
うに移動させて展開された単分子膜を前記表面圧計の指
示値が40dyn/c11の表面圧を示すように圧縮し
た。こうした圧縮操作後に、基板13として疎水化処理
したシリコンウェハを用い、前記表面圧計の指示値が4
 dyn /α以上低下しないように0.5m/sin
の速度で垂直浸漬法により累積を行なった。
In the production apparatus having such a configuration, after N,N-dioctadecylparaphenylenediamine is developed on the water surface of the water Ill containing pure water, the first and second movable barriers IL
122 is the surface pressure detected at 14° of the first filter paper (π
l) and the surface pressure (π2) detected by the second filter paper 142 is 4 dyn/. was compressed so that it exhibited a surface pressure of 40 dyn/c11. After such a compression operation, a silicon wafer subjected to hydrophobic treatment was used as the substrate 13, and the indicated value of the surface pressure gauge was 4.
0.5m/sin so as not to drop more than dyn/α
The accumulation was carried out by the vertical dipping method at a speed of .

しかして、上記操作を10回繰返した後の基板の累積膜
をX線回折、SEMにより調べたところ、構造が均一で
欠陥のない10層累積膜が形成されていることが確認さ
れた。
When the accumulated film on the substrate after repeating the above operation 10 times was examined by X-ray diffraction and SEM, it was confirmed that a 10-layer accumulated film with a uniform structure and no defects was formed.

実施例5 第5図は、本発明の実施例5に係わる有機薄膜の製造装
置を示す概略平面図である。この製造装置は、2つの可
動バリア121.122が互いに接離するように移動可
能に配置され、かつ表面圧計の検出子としての第1のろ
紙141が第1の可動バリア121と水面とで形づくら
れる場所から2c11の位置(図中の斜線部)に連結治
具15を介して該バリア121の移動に追従して移動可
能に配置されていると共に、第2のろ紙14□が第2の
可動バリア12□と水面とで形づくられる場所から2c
1Mの位置(図中の斜線部)に連結治具15を介して該
バリア122の移動に追従して移動可能に配置され、更
に第3のろ紙143が基板■3と水面とで形づくる境界
から2CMに位置(図中の斜線部)に該基板13と平行
に配置された構造になっている。
Example 5 FIG. 5 is a schematic plan view showing an organic thin film manufacturing apparatus according to Example 5 of the present invention. In this manufacturing device, two movable barriers 121 and 122 are movably arranged so as to approach and separate from each other, and a first filter paper 141 as a detector of a surface pressure meter is formed by the first movable barrier 121 and the water surface. The second filter paper 14□ is movable from the position 2c11 (the shaded area in the figure) via the connecting jig 15 to follow the movement of the barrier 121. 2c from the place formed by barrier 12□ and the water surface
A third filter paper 143 is disposed at a position 1M (hatched area in the figure) via a connecting jig 15 so as to be movable following the movement of the barrier 122, and a third filter paper 143 is arranged from the boundary formed by the substrate 3 and the water surface. It has a structure in which it is arranged parallel to the substrate 13 at a position 2CM (shaded area in the figure).

このような構成の製造装置において、純水が収容された
水槽11の水面にN%N−ジオクタデシルパラフェニレ
ンジアミンを展開した後、第1、第2の可動バリア12
. 122を第1、第2、第3のろ紙141 142.
143で検出された表面圧(πl)、(π2)、(π3
)の差が4dyn/C11を越えない速度で互いに接近
するように移動させて展開された単分子膜を前記表面圧
計の指示値が40 dyn/c11の表面圧を示すよう
に圧縮した。こうした圧縮操作後に、基板13として疎
水化処理したシリコンウェハを用い、前記第1のろ紙1
4.で検出された表面圧(πl)が第2、第3のろ紙1
4□、143で検出された表面圧(π2)  (π3)
と4 dyn /cm以上異ならないように前記バリア
121.122を制御すると共に、第3のろ紙143で
検出された表面圧(π3)が設定表面圧と4 dyn 
/α以」二人ならないように0.5mm/i1nの基板
速度で垂直浸漬法により累積を行なった。
In the manufacturing apparatus having such a configuration, after N%N-dioctadecylparaphenylenediamine is spread on the water surface of the water tank 11 containing pure water, the first and second movable barriers 12
.. 122 to the first, second, and third filter papers 141 142.
The surface pressure detected at 143 (πl), (π2), (π3
) The monomolecular films were spread so as to move close to each other at a speed that the difference in dyn/c11 did not exceed 4 dyn/c11, and the monomolecular films were compressed so that the reading on the surface pressure meter indicated a surface pressure of 40 dyn/c11. After such a compression operation, a hydrophobically treated silicon wafer is used as the substrate 13, and the first filter paper 1 is
4. The surface pressure (πl) detected on the second and third filter paper 1
Surface pressure detected at 4□, 143 (π2) (π3)
The barriers 121 and 122 are controlled so that the surface pressure (π3) detected on the third filter paper 143 is not different from the set surface pressure by 4 dyn/cm or more.
Accumulation was carried out by a vertical immersion method at a substrate speed of 0.5 mm/i1n so that no more than 2 people were involved.

しかして、上記操作を10回繰返した後の基板の累積膜
をX線回折、SEMにより調べたところ、構造が均一で
欠陥のない10層累積膜が形成されていることが確認さ
れた。
When the accumulated film on the substrate after repeating the above operation 10 times was examined by X-ray diffraction and SEM, it was confirmed that a 10-layer accumulated film with a uniform structure and no defects was formed.

実施例6 第6図は、本発明の実施例6に係わる有機薄膜の製造装
置を示す概略平面図である。この製造装置は1.2!板
13が可動バリア12と水面とで形づくる界面から2a
Iの位置に連結治具15を介して該バリア12の移動に
追従して移動可能に配置され、かつ表面運針の検出子と
してのろ紙14’が前記基板13と水面とで形づくる界
面から前記バリア12の長手方向に沿って2Gの位置に
連結治具I5を介して該バリア12の移動に追従して移
動可能に配置された構造になっている。
Example 6 FIG. 6 is a schematic plan view showing an organic thin film manufacturing apparatus according to Example 6 of the present invention. This manufacturing equipment is 1.2! 2a from the interface formed by the plate 13 between the movable barrier 12 and the water surface
A filter paper 14', which is disposed movably following the movement of the barrier 12 via a connecting jig 15 at a position I, and serves as a surface needle movement detector, connects the barrier from the interface formed by the substrate 13 and the water surface. The structure is such that the barrier 12 is movably disposed at a position 2G along the longitudinal direction of the barrier 12 via a connecting jig I5 to follow the movement of the barrier 12.

このような構成の製造装置において、純水が収容された
水槽itの水面にN、N−ジオクタデシルバラフェニレ
ンジアミンを展開した後、可動バリア12を移動させて
展開された単分子膜を前記表面運針の指示値が40 d
yn/c11の表面圧を示すように圧縮した。こうした
圧縮操作後に、基板13として疎水化処理したシリコン
ウェハを用い、前記表面運針の指示値が4dyn/c!
1以上低下しないように0.51111/winの速度
で垂直浸漬法により累積を行なった。
In the manufacturing apparatus having such a configuration, after N,N-dioctadecylbalaphenylenediamine is spread on the water surface of the water tank IT containing pure water, the movable barrier 12 is moved to spread the spread monomolecular film onto the surface. The indicated value of the hand movement is 40 d
It was compressed to show a surface pressure of yn/c11. After such a compression operation, a hydrophobically treated silicon wafer was used as the substrate 13, and the indicated value of the surface hand movement was 4 dyn/c!
Accumulation was carried out by the vertical dipping method at a rate of 0.51111/win so as not to decrease by more than 1.

しかして、上記操作を10回繰返した後の基板の累積膜
をX線回折、SEMにより調べたところ、構造が均一で
欠陥のないIO層累85@が形成されていることが確認
された。
When the accumulated film on the substrate after repeating the above operation 10 times was examined by X-ray diffraction and SEM, it was confirmed that an IO layer stack 85@ with a uniform structure and no defects was formed.

実施例7 第7図は、本発明の実施例7に係わる有機薄膜の製造装
置を示す概略平面図である。この製造装置は、2つの可
動バリア12Is 122が互いに接離するように移動
可能に配置され、かつ基板13が第1の可動バリア12
.と水面とで形づくる界面から2cMの位置に連結治具
15を介して該バリア121の移動に追従して移動可能
に配置され、更に表面圧;[の検出子としての第1のろ
紙14]が前記基板13と水面とで形づくる界面から前
記バリア12の長手方向に沿って2C1Mの位置に連結
治具15を介して該バリア12の移動に追従して移動可
能に配置されていると共に、第2のろ紙142が第2の
可動バリア122と水面とで形づくられる場所から2c
11の位置(図中の斜線部)に連結治具15を介して該
バリア122の移動に追従して移動可能に配置された構
造になっている。
Example 7 FIG. 7 is a schematic plan view showing an organic thin film manufacturing apparatus according to Example 7 of the present invention. In this manufacturing apparatus, two movable barriers 12Is 122 are movably arranged so as to approach and separate from each other, and the substrate 13 is connected to the first movable barrier 12Is 122.
.. The barrier 121 is disposed at a position 2 cM from the interface formed by the water surface and the surface pressure via a connecting jig 15 so as to be movable following the movement of the barrier 121, and furthermore, a surface pressure; It is disposed at a position 2C1M along the longitudinal direction of the barrier 12 from the interface formed by the substrate 13 and the water surface via a connecting jig 15 so as to be movable following the movement of the barrier 12, and a second 2c from where the filter paper 142 is formed by the second movable barrier 122 and the water surface.
11 (shaded area in the figure) via a connecting jig 15 so as to be movable following the movement of the barrier 122.

このような構成の製造装置において、純水が収容された
水槽11の水面にN、N−ジオクタデシルバラフェニレ
ンジアミンを展開した後、第1、第2の可動バリア12
s  122を第1、第2のろ紙14+ 、142で検
出された表面圧(π1)、(π2)が4dyn/c11
以上異なることがないような速度で互いに接近するよう
に移動させて展開された単分子膜を前記表面運針の指示
値が40 dyn/CMの表面圧を示すように圧縮した
。こうした圧縮操作後に、基板I3として疎水化処理し
たシリコンウェハを用い、前記第1、第2のろ紙1’h
  142で検出された表面圧(π1)  (π2)が
設定表面圧から4 dyn /α以上異なることのない
よう、0.5m/a1nの速度で垂直浸漬法により累積
を行なった。
In the manufacturing apparatus having such a configuration, after N,N-dioctadecylvar phenylenediamine is spread on the water surface of the water tank 11 containing pure water, the first and second movable barriers 12
The surface pressures (π1) and (π2) detected on the first and second filter papers 14+ and 142 are 4dyn/c11.
The monomolecular films, which were developed by moving toward each other at speeds that did not differ above, were compressed so that the indicated value of the surface needle movement indicated a surface pressure of 40 dyn/CM. After such a compression operation, a silicon wafer subjected to hydrophobization treatment is used as the substrate I3, and the first and second filter papers 1'h are
The accumulation was carried out by the vertical dipping method at a speed of 0.5 m/a1n so that the surface pressure (π1) (π2) detected at 142 did not differ by more than 4 dyn/α from the set surface pressure.

しかして、上記操作を10回繰返した後の基板の累積膜
をX!1回折、SEMにより調べたところ、構造が均一
で欠陥のない10層累積膜が形成されていることが確認
された。
After repeating the above operation 10 times, the cumulative film on the substrate is determined to be X! When examined by single diffraction and SEM, it was confirmed that a 10-layer cumulative film with a uniform structure and no defects was formed.

実施例8 第8図は、本発明の実施例8に係わる有機薄膜の製造装
置を示す概略平面図である。この製造装置は、2つの可
動バリア12. 、122が互いに接離するように移動
可能に配置され、かっ水Illの大きさを前記可動バリ
ア12+ 、122により所定表面圧に圧縮した状態で
該水槽11全周囲が基板」3から51の領域(図中の斜
線部)に入るようにし、がっ表面運針の検出子としての
ろ紙14が基板13と水面とで形づくる境界から2cI
lに位置に該基板I3と平行に配置された構造になって
いる。
Example 8 FIG. 8 is a schematic plan view showing an organic thin film manufacturing apparatus according to Example 8 of the present invention. This manufacturing device consists of two movable barriers 12. , 122 are arranged to be movable toward and away from each other, and with the size of the water tank 11 being compressed to a predetermined surface pressure by the movable barriers 12+ and 122, the entire periphery of the water tank 11 is in the area from 3 to 51 of the substrate. (the shaded area in the figure), so that the filter paper 14, which serves as a detector for surface hand movement, is 2 cI from the boundary formed by the substrate 13 and the water surface.
It has a structure in which it is placed parallel to the substrate I3 at a position 1.

このような構成の製造装置において、純水が収容された
水tfJllの水面にN5N−ジオクタデシルバラフェ
ニレンジアミンを展開した後、可動バリア12. 12
.を互いに接近するように移動させて展開された単分子
膜を前記表面運針の指示値が40dyn/ffの表面圧
を示すように圧縮した。こうした圧縮操作後に、基板1
3として疎水化処理したシリコンウェハを用い、前記ろ
紙14で検出された表面圧の指示値が4dyn/CM以
上低下しないよう、0.5 Ill / minの基板
速度で垂直浸漬法により累積を行なった。
In the manufacturing apparatus having such a configuration, after N5N-dioctadecylbaraphenylenediamine is spread on the water surface of water tfJll containing pure water, the movable barrier 12. 12
.. The monomolecular film, which was developed by moving them close to each other, was compressed so that the indicated value of the surface hand movement indicated a surface pressure of 40 dyn/ff. After such a compression operation, the substrate 1
3, using a silicon wafer subjected to hydrophobization treatment, accumulation was performed by a vertical dipping method at a substrate speed of 0.5 Ill/min so that the indicated value of the surface pressure detected by the filter paper 14 did not decrease by 4 dyn/CM or more. .

しかして、上記操作を10回繰返した後の基板の累積膜
をX線回折、SEMにより調べたところ、構造が均一で
欠陥のない10層累積膜が形成されていることが確認さ
れた。
When the accumulated film on the substrate after repeating the above operation 10 times was examined by X-ray diffraction and SEM, it was confirmed that a 10-layer accumulated film with a uniform structure and no defects was formed.

比較例1 第H図は、従来使用されてきたq機薄膜の製造装置を示
す概略平面図である。図中の21は、内面がフッ素樹脂
被膜でコーティングされた水槽である。この水tell
内には、単分子膜が展開される水もしくは水溶液が収容
され、かつ収容された水等は図示しない温度調節機構に
より恒温に保持されている。前記水槽11の一端側には
、該水1’621面内の表面圧分布が均一であるという
前提に基づいてバリア22の可動距離を最大限にするた
め、表面圧制御用の表面運針の検出子としてのろ紙24
.が設置されている。また、基板23は前記ろ紙24.
から15cmはど中央よりの位置に設置されている。史
に、垂直浸漬法で連続製膜を行なうために単分子膜圧縮
時のバリア22の初期位置は水槽2I端から25〜35
cMの位置となるように展開分子量を設定する。
Comparative Example 1 FIG. H is a schematic plan view showing a conventionally used Q-type thin film manufacturing apparatus. 21 in the figure is a water tank whose inner surface is coated with a fluororesin film. This water tell
Water or an aqueous solution in which a monomolecular film is developed is housed inside, and the housed water and the like are kept at a constant temperature by a temperature control mechanism (not shown). On one end side of the water tank 11, there is a surface needle movement detection device for surface pressure control in order to maximize the movable distance of the barrier 22 based on the premise that the surface pressure distribution within the surface of the water 1'621 is uniform. Filter paper as a child 24
.. is installed. Further, the substrate 23 is connected to the filter paper 24.
It is placed 15cm from the center. Historically, in order to perform continuous film formation using the vertical dipping method, the initial position of the barrier 22 during monomolecular film compression was 25 to 35 minutes from the end of the water tank 2I.
Set the developed molecular weight to be at the cM position.

このような構成の製造装置において、純水が収容された
水Ffj21の水面にN、N−ジオクタデシルパラフェ
ニレンジアミンを展開した後、可動バリア22を移動さ
せて展開された単分子膜を前記表面運針の指示値が40
dyn/、3の表面圧を示すように圧縮した。こうした
圧M操作後に、基板23として疎水化処理したシリコン
ウェハを用い、従来の標準的な累積速度である5++u
y/winで垂直浸漬法により累積を行なった。かかる
配置で基板23から2 czの位置に配置した別の表面
運針の検出子としてのろ紙242の指示値はOday/
cIMまで低下していた。
In the production apparatus having such a configuration, after N,N-dioctadecylparaphenylenediamine is spread on the water surface of the water Ffj 21 containing pure water, the movable barrier 22 is moved to spread the spread monomolecular film onto the surface. The indicated value of the hand movement is 40
It was compressed to exhibit a surface pressure of dyn/,3. After such a pressure M operation, a hydrophobically treated silicon wafer was used as the substrate 23, and the conventional standard cumulative speed was 5++u.
Accumulation was carried out by the vertical dipping method in y/win. In this arrangement, the indicated value of the filter paper 242 as another surface hand movement detector placed at a position 2 cz from the substrate 23 is Oday/
It had decreased to cIM.

しかして、上記操作を10回繰返した後の基板の累積膜
をX線回折、SEMにより調べたところ、周期構造を示
すxvA回折パターンは全く観測されず、またSEMで
は礼状、敵状の構造の乱れが至るところに観察された。
However, when the accumulated film on the substrate after repeating the above operation 10 times was examined by X-ray diffraction and SEM, no xvA diffraction pattern indicating a periodic structure was observed. Disturbances were observed everywhere.

その結果、累積膜は構造の乱れた欠陥の多い膜であるこ
とがわかった。
As a result, it was found that the accumulated film was a film with a disordered structure and many defects.

比較例2 第12図は、従来使用されてきた別の有機薄膜の製造装
置を示す概略平面図である。この装置では、可動バリア
22. 、222は両側から圧縮するために基板23と
表面圧制御用の表面運針の検出子としてのろ紙241は
水槽21のほぼ中央に設置されている。
Comparative Example 2 FIG. 12 is a schematic plan view showing another conventionally used organic thin film manufacturing apparatus. In this device, a movable barrier 22. , 222 are placed approximately in the center of the water tank 21, so that a substrate 23 and a filter paper 241 as a surface needle movement detector for surface pressure control are installed in order to compress from both sides.

他だし、水槽21の面内の表面圧分布が均一であるとい
う前提に基づいているため、前記ろ紙241 と基板2
3はおよそ80前後離れて配置している。
However, since it is based on the assumption that the surface pressure distribution within the surface of the water tank 21 is uniform, the filter paper 241 and the substrate 2
3 are placed approximately 80 degrees apart.

このような構成の製造装置において、純水が収容された
水槽21の水面にN、N−ジオクタデシルバラフェニレ
ンジアミンを展開した後、可動バリア22..22□を
移動させて展開された単分子膜を前記表面運針の指示値
が40 dyn/αの表面圧を示すように圧縮した。こ
の時のバリアll+ 、222間の距離はおよそ25c
′11であり、基板23がらバリアの距離は11cII
程度であった。こうした圧縮操作後に、基板23として
疎水化処理したシリコンウェハを用い、従来の標準的な
累積速度である5R/sinで垂直浸漬法により累積を
行なった。ががる配置で基板23から2c11の位置に
配置した別の表面運針の検出子としてのろ紙242の指
示値は、Oday/cIMまで低下していた。
In the manufacturing apparatus having such a configuration, after N,N-dioctadecylbaraphenylenediamine is spread on the water surface of the water tank 21 containing pure water, the movable barrier 22. .. The monomolecular film developed by moving 22 □ was compressed so that the indicated value of the surface hand movement indicated a surface pressure of 40 dyn/α. At this time, the distance between barrier ll+ and 222 is approximately 25c
'11, and the distance of the barrier from the substrate 23 is 11cII.
It was about. After such a compression operation, a hydrophobized silicon wafer was used as the substrate 23, and accumulation was performed by a vertical dipping method at a conventional standard accumulation rate of 5R/sin. The indicated value of the filter paper 242 as another surface hand movement detector disposed at a position 2c11 from the substrate 23 in a tilted arrangement had decreased to Oday/cIM.

しかして、上記操作を10回繰返した後の基板の累積膜
をX線回折、SEMにより調べたところ、周期構造−を
示すX!!j1回折パターンは全く観71PIされず、
またSEMでは礼状、敵状の構造の乱れが至るところに
観察された。その結果、累積膜は構造の乱れた欠陥の多
い膜であることがわがった。
However, when the accumulated film on the substrate after repeating the above operation 10 times was examined by X-ray diffraction and SEM, it was found that X! ! The j1 diffraction pattern was not observed at all by 71PI,
Furthermore, in the SEM, disturbances in the structures of thank you letters and enemy letters were observed everywhere. As a result, it was found that the accumulated film was a film with a disordered structure and many defects.

〔発明の効果〕〔Effect of the invention〕

以−■−詳述した如く、本発明によれば水面上単分子膜
を均一に圧縮形成できるばかりか、累積時における基板
近傍の表面圧低下を直ちに検出し、速やかに圧縮するこ
とによって所定表面圧を回復することができ、ひいては
構造が均一で欠陥のない47機薄膜を製造し得る6機薄
膜の製造装置を提供できる。
As described in detail below, according to the present invention, not only is it possible to uniformly compress and form a monomolecular film on a water surface, but also it is possible to immediately detect a drop in surface pressure near the substrate during accumulation and quickly compress it to form a monomolecular film on a predetermined surface. It is possible to provide an apparatus for producing a 6-layer thin film that can recover the pressure and, in turn, produce a 47-layer thin film with a uniform structure and no defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は夫々本発明の実施例1〜8に係オ)る
有機薄膜の製造装置を示す概略平面図、第9図は水槽上
の表面圧不均一を模式的に示す説明図、第1O図は猛板
累積操作により基板近傍に発生する表面圧低下を括板面
に対して垂直方向に現わした説明図、第11図、第12
図は夫々従来の有機薄膜の製造装置を示す概略平面図で
ある。 11・・・水槽、12.12+ 、122・・・可動バ
リア、13・・・基板、14、+4’ 、141.14
2.143・・・表面運針の検出子(ろ紙)。 出願人代理人 弁理士 鈴江武彦 第 図 第 図 第 9図 第 図
1 to 8 are schematic plan views showing an organic thin film manufacturing apparatus according to Examples 1 to 8 of the present invention, respectively, and FIG. 9 is an explanation schematically showing nonuniform surface pressure on a water tank. Figures 10 and 10 are explanatory diagrams showing the surface pressure drop that occurs near the substrate due to the board accumulation operation in the direction perpendicular to the plate surface, Figures 11 and 12.
Each figure is a schematic plan view showing a conventional organic thin film manufacturing apparatus. 11...Aquarium, 12.12+, 122...Movable barrier, 13...Substrate, 14, +4', 141.14
2.143... Surface hand movement detector (filter paper). Applicant's agent Patent attorney Takehiko Suzue Figure 9 Figure 9

Claims (3)

【特許請求の範囲】[Claims] (1)両親媒性有機分子の単分子膜を展開するための水
槽と、前記単分子膜を展開した水槽表面の展開面積を変
化させるための水槽を区画する可動バリアと、前記単分
子膜の表面圧を検出するための少なくとも1つの表面圧
計と、前記単分子膜を所定の基板上に累積させるために
該基板を駆動する累積機構とを具備した有機薄膜の製造
装置において、前記少なくとも1つの表面圧計の検出子
を前記可動バリア及び基板の位置に圧縮後又は累積操作
中での設定表面圧からのずれが10%以内となるように
配置したことを特徴とする有機薄膜の製造装置。
(1) A water tank for developing a monomolecular film of amphiphilic organic molecules, a movable barrier that partitions the water tank for changing the development area of the surface of the tank on which the monomolecular film is developed, and An organic thin film manufacturing apparatus comprising at least one surface pressure meter for detecting surface pressure, and an accumulation mechanism for driving the monomolecular film on a predetermined substrate in order to accumulate the monomolecular film on the substrate. An apparatus for manufacturing an organic thin film, characterized in that a detector of a surface pressure meter is arranged at the position of the movable barrier and the substrate so that the deviation from the set surface pressure after compression or during cumulative operation is within 10%.
(2)少なくとも1つの表面圧計の検出子を、可動バリ
ア及び基板のうちの少なくとも一方の水面と境界を形づ
くる場所から5cm以内に配置したことを特徴とする請
求項1記載の有機薄膜の製造装置。
(2) The organic thin film manufacturing apparatus according to claim 1, wherein the detector of at least one surface pressure gauge is arranged within 5 cm from a location forming a boundary with the water surface of at least one of the movable barrier and the substrate. .
(3)基板が、可動バリアから5cm以内の場所に配置
されることを特徴とする請求項2記載の有機薄膜の製造
装置。
(3) The organic thin film manufacturing apparatus according to claim 2, wherein the substrate is placed within 5 cm from the movable barrier.
JP63225913A 1988-09-09 1988-09-09 Organic thin film manufacturing equipment Expired - Fee Related JP2666975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225913A JP2666975B2 (en) 1988-09-09 1988-09-09 Organic thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225913A JP2666975B2 (en) 1988-09-09 1988-09-09 Organic thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0274072A true JPH0274072A (en) 1990-03-14
JP2666975B2 JP2666975B2 (en) 1997-10-22

Family

ID=16836849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225913A Expired - Fee Related JP2666975B2 (en) 1988-09-09 1988-09-09 Organic thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2666975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500716A (en) * 2008-08-22 2012-01-12 コーニング インコーポレイテッド Fine particle coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500716A (en) * 2008-08-22 2012-01-12 コーニング インコーポレイテッド Fine particle coating method

Also Published As

Publication number Publication date
JP2666975B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
CN109407463B (en) Large area imprint lithography
EP1999200B1 (en) Production method of porous film
US20140308523A1 (en) Methods for direct production of graphene on dielectric substrates, and associated articles/devices
CN102405438B (en) Polarization film lamination apparatus, and LCD device production system equipped with same
JPH0274072A (en) Organic thin film manufacturing device
Sangwal Micromorphology of as-grown surfaces of crystals
JP2656317B2 (en) Organic thin film manufacturing equipment
GB1582860A (en) Device
Ramesh et al. Tailoring strained oxanorbornane headgroups to dimensionally controlled nanostructures through hydrogen bonding
US5670624A (en) Two-dimensional aggregation and fixation of protein by injection into a substrate solution having higher surface tension and specific gravity
JPS63236563A (en) Manufacturing of lb membranes
JPS63161626A (en) Substrate
JP2004351261A (en) Coater and coating method
TW201700394A (en) Device for formation of nanostructured coatings on solid surfaces can improve flatness and uniformity of obtained coating layer to obviously improve stability and other performances within physical and chemical characteristics
JPS63229172A (en) Method for forming monomolecular film on surface of liquid and apparatus for building up single layer or multilayer of monomolecular film on solid substrate
JP2004033882A (en) Assembling method and assembling device for die coater, die coater, and application method using the die coater
JP2647121B2 (en) Organic thin film manufacturing method
CN105453160A (en) Manufacturing system for optical display device
US20160329064A1 (en) Method for making ultra-narrow read sensor and read transducer device resulting therefrom
Raposo et al. Thickness and roughness measurements in poly (o-methoxyaniline) layer-by-layer films using AFM
JPH0377667A (en) Formation of monomolecular film and device therefor
Kautek STM Tip-generated 0D Nanocavities
JP2001277412A (en) Laminated material, coating manufacturing method therefor and method for detecting minute charged region
CAI et al. Nanoscale imaging of molecular adsorption(Technical Report, 1 May 1993-30 Jun. 1994)
JPH02172567A (en) Preparation of organic membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees