JP2656317B2 - Organic thin film manufacturing equipment - Google Patents

Organic thin film manufacturing equipment

Info

Publication number
JP2656317B2
JP2656317B2 JP63223516A JP22351688A JP2656317B2 JP 2656317 B2 JP2656317 B2 JP 2656317B2 JP 63223516 A JP63223516 A JP 63223516A JP 22351688 A JP22351688 A JP 22351688A JP 2656317 B2 JP2656317 B2 JP 2656317B2
Authority
JP
Japan
Prior art keywords
monomolecular film
film
water surface
organic thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63223516A
Other languages
Japanese (ja)
Other versions
JPH0272666A (en
Inventor
俊夫 中山
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63223516A priority Critical patent/JP2656317B2/en
Publication of JPH0272666A publication Critical patent/JPH0272666A/en
Application granted granted Critical
Publication of JP2656317B2 publication Critical patent/JP2656317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ラングミュア・ブロジェット法により有機
薄膜を製造するのに使用する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an apparatus used for producing an organic thin film by the Langmuir-Blodgett method.

(従来の技術) 近年、ラングミュア・ブロジェット膜(以下LB膜と略
す)に代表される有機薄膜の研究が各種の新機能電子デ
バイスへの応用を目的として盛んに行われている。かか
るデバイスにおいては、均一で極めて薄い膜の中で、色
素等を含有する機能性分子の膜内での配向、積層構造、
分子間距離等を制御することによって始めて所定の機能
を実現することが可能となる。
(Prior Art) In recent years, research on organic thin films represented by Langmuir-Blodgett films (hereinafter abbreviated as LB films) has been actively conducted for the purpose of application to various new functional electronic devices. In such a device, in a uniform and extremely thin film, the orientation of a functional molecule containing a dye or the like in the film, a laminated structure,
A predetermined function can be realized only by controlling the intermolecular distance and the like.

通常のLB製膜方法においては、分子内に親水性のより
高い部分と疎水性のより高い部分を備えた両親媒性有機
分子を水面上に展開し、所定の表面張力を示すように展
開された面積を圧縮することによって分子同志を最密に
パッキングさせた水面上単分子膜を形成した後、所定の
基板を該単分子膜に対して垂直又は水平に移動すること
によって基板上に単分子膜を移し取り、累積膜を形成す
る。
In a normal LB film forming method, an amphiphilic organic molecule having a portion having a higher hydrophilicity and a portion having a higher hydrophobicity in a molecule is developed on the water surface and is developed so as to exhibit a predetermined surface tension. After forming a monolayer on the water surface in which the molecules are packed densely by compressing the area, the predetermined substrate is moved vertically or horizontally with respect to the monolayer to form a monolayer on the substrate. Transfer the film to form a cumulative film.

上述した製膜操作を行なうための製膜装置は、基本的
には単分子膜を展開するための水面を得るための水槽
と、分子の展開面積を変えるための可動バリアと、水面
上の表面圧を検出するための表面圧計と、基板上に前記
単分子膜を移し取るために該基板を上下動作させる累積
機構とから構成されている。しかしながら、従来の製膜
装置では単に単分子膜の圧縮時間を短縮するために水槽
面積を小さくしたり、有効累積面積を稼ぐために基板や
表面圧計を水槽の端に設置するだけで、本来良質な累積
膜を形成するための装置としての最適化がなされていな
かった。このため、本発明者らの研究において市販の製
膜装置を用いて標準的なステアリン酸(カドミウム塩)
分子を製膜して得られた累積膜は多数の欠陥を有するこ
とが明らかとなり(シンセティックメタルズ、第18巻80
3−807頁及び809−814頁、1987年)、その後の学界にお
いてもLB膜に欠陥があることが共通の認識となった。
The film forming apparatus for performing the above-described film forming operation is basically composed of a water tank for obtaining a water surface for developing a monomolecular film, a movable barrier for changing a developed area of the molecule, and a surface on the water surface. It comprises a surface pressure gauge for detecting pressure and an accumulating mechanism for vertically moving the substrate to transfer the monomolecular film onto the substrate. However, with conventional film forming equipment, simply reducing the area of the water tank to shorten the compression time of the monomolecular film, or installing a substrate or surface pressure gauge at the end of the water tank to increase the effective cumulative area, originally provides good quality. The optimization as an apparatus for forming a large accumulation film has not been performed. For this reason, in the study of the present inventors, standard stearic acid (cadmium salt) was used using a commercially available film forming apparatus.
It has been revealed that a cumulative film obtained by forming a molecule has many defects (Synthetic Metals, Vol. 18, 80
Pp. 3-807 and 809-814, 1987), and it has become common knowledge in later academic circles that the LB film is defective.

上述したLB膜の欠陥発生は、製膜時に基板近傍の水面
上単分子膜に所定の表面圧が加わっていないことに起因
するものである。これは、従来の製造装置において以下
に挙げる問題点があるためである。
The above-mentioned occurrence of defects in the LB film is due to the fact that a predetermined surface pressure is not applied to the monomolecular film on the water surface near the substrate at the time of film formation. This is because the conventional manufacturing apparatus has the following problems.

即ち、第1に一部の例外を除いて殆どの分子は、水面
上単分子膜を形成した時に粘弾性を持つ流体として振舞
い、バリアで面積を圧縮した時に均一に圧縮されず、表
面圧分布を示す。このため、表面圧計(特にその検出
子)を設置する場所によって水面中央部の表面圧が所定
値に達していなかったり、或いはバリア近傍の表面圧が
異常に高くなり過ぎて単分子膜が安定化しない等の問題
を招いていた。しかも、基板の単分子膜に対する降下位
置が表面圧計の検出子による設定値と異なるという問題
もあった。第2に、基板を降下して水面上単分子膜を移
し取る際に、基板を動かすことによって基板近傍の単分
子膜が示す表面圧が低下し、特に粘弾性の高い単分子膜
では設定表面圧が殆ど0dyn/cm(水面と同じ表面張力)
になるまで低下する。かかる状態では、基板に移し取ら
れる直前の水面上単分子膜は最密にパッキングされた単
分子膜といえず、構造の乱れ又は欠陥を誘発する原因と
なる。これは、前記基板近傍の表面圧低下が本来観測さ
れるべき表面圧計の検出子によって正しく検出されてお
らず、その結果、圧縮制御駆動部が追従して動かないた
めである。第3に、既に述べた状況下で単分子膜が基板
に移し取られると、水面上単分子膜の面積減少分だけバ
リアを圧縮させて表面圧を維持しなければならない。し
かし、単分子膜の粘弾性が高くなる程、バリアの圧縮に
よる基板近傍の表面圧の回復の応答性が悪化する。
First, most molecules, with some exceptions, behave as a viscoelastic fluid when a monomolecular film is formed on the water surface, and are not uniformly compressed when the area is compressed by the barrier, and the surface pressure distribution is not uniform. Is shown. For this reason, the surface pressure at the center of the water surface does not reach the predetermined value or the surface pressure near the barrier becomes abnormally high depending on the place where the surface pressure gauge (especially the detector) is installed, and the monomolecular film is stabilized. Problems such as not doing so. In addition, there is a problem that the position of the substrate lowered relative to the monomolecular film is different from the value set by the detector of the surface pressure gauge. Secondly, when the monolayer on the water surface is moved down by lowering the substrate, the surface pressure of the monolayer near the substrate is lowered by moving the substrate. Pressure is almost 0dyn / cm (same surface tension as water surface)
It falls until it becomes. In such a state, the monomolecular film on the water surface immediately before being transferred to the substrate cannot be said to be a densely packed monomolecular film, and may cause structural disorder or defects. This is because the surface pressure drop near the substrate is not correctly detected by the detector of the surface pressure gauge that should be originally observed, and as a result, the compression control drive unit does not follow and move. Third, when the monolayer is transferred to the substrate under the conditions described above, the surface pressure must be maintained by compressing the barrier by the reduced area of the monolayer on the water surface. However, as the viscoelasticity of the monomolecular film increases, the responsiveness of recovery of the surface pressure near the substrate due to the compression of the barrier deteriorates.

従って、従来の有機薄膜製造装置では水面上単分子膜
の表面圧分布の均一性、累積時における基板近傍の表面
圧が良好にコントロールされておらず、優れた有機薄膜
を製造することができない問題があった。
Therefore, with the conventional organic thin film manufacturing apparatus, the uniformity of the surface pressure distribution of the monomolecular film on the water surface and the surface pressure near the substrate during accumulation are not well controlled, and it is not possible to manufacture an excellent organic thin film. was there.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、構造が均一で欠陥のない有機薄膜を製造し得る
有機薄膜の製造装置を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and aims to provide an organic thin film manufacturing apparatus capable of manufacturing an organic thin film having a uniform structure and no defects. Things.

[発明の構成] (課題を解決するための手段) 本発明は、展開される両親媒性有機分子の単分子膜の
一方向の二辺を区画するための2つの隔壁を有する水槽
と、前記隔壁間の水面の単分子膜の展開面積を変化さ
せ、かつ前記隔壁と直交する単分子膜の二辺を区画する
ための可動バリアと、前記単分子膜の表面圧を検出する
ための表面圧計と、前記単分子膜を所定の基板上に累積
させるために該基板を駆動する累積機構とを具備した有
機薄膜の製造装置において、前記隔壁は水面と接する部
分が該水面に対して垂直方向に連続的に運動する機能を
有することを特徴とする有機薄膜の製造装置である。
[Constitution of the Invention] (Means for Solving the Problems) The present invention relates to a water tank having two partition walls for dividing two sides in one direction of a monomolecular film of an amphiphilic organic molecule to be developed, A movable barrier for changing the development area of the monolayer on the water surface between the partitions, and defining two sides of the monolayer perpendicular to the partitions, and a surface pressure gauge for detecting the surface pressure of the monolayer And an apparatus for manufacturing an organic thin film, comprising: an accumulating mechanism for driving the substrate to accumulate the monomolecular film on a predetermined substrate, wherein the partition wall has a portion in contact with a water surface in a direction perpendicular to the water surface. An organic thin-film manufacturing apparatus having a function of continuously moving.

上記隔壁はとしては、例えば回転運動する円柱体、
水面付近に設置された円柱状支持体に巻回され、水面
に対して垂直方向に運動するシート、表面に螺旋状の
凹凸が形成された回転運動する円柱体等を挙げることが
できる。かかる隔壁は、水面における接線速度が0.01〜
100mm/minとなるように運動させることが望ましい。こ
うした隔壁の速度に関しては、圧縮から累積に至る一連
の製膜操作の中で常に一定である必要はない。
As the partition wall, for example, a rotating cylindrical body,
Examples thereof include a sheet wound around a cylindrical support provided near the water surface and moving in a direction perpendicular to the water surface, and a rotating cylindrical body having helical irregularities formed on the surface. Such a partition has a tangential velocity on the water surface of 0.01 to
It is desirable to exercise so as to be 100 mm / min. The speed of the partition walls does not need to be always constant during a series of film forming operations from compression to accumulation.

(作用) 本発明者らは、次のような知見により発明を完成する
に至った。即ち、本発明者らは粘弾性的性質の高い分子
について水面上での圧縮挙動を調べた結果、以下のこと
が明らかになった。第1には、粘弾性の高い単分子膜を
圧縮すると圧縮するバリアの近くから表面圧が高くな
る。そのまま圧縮を続行すると、表面圧の高くなる領域
はバリア前方へ伝播するが、バリアの移動距離が長くな
るとバリア近傍の単分子膜が崩壊する。第2に、前記圧
縮過程においてバリアの隔壁近傍では中央部に比較して
表面圧が急激に増加する。第3に、第14図(a)、
(b)に示すように水槽内を2つの隔壁1a、1b及びこれ
と直交する可動バリア2a、2bで区画した水面上に単分子
膜を形成し、一方のバリア2bを移動させて圧縮した時の
水面上単分子膜の流動過程を疎水性微粉末3を用いて可
視化すると、前進するバリア2bの隔壁1a、1b近傍では単
分子膜の流動が著しく阻害されている。なお、第14図中
の4は表面圧計の検出子である。このような結果から、
粘弾性の高い分子の圧縮時にはバリア近傍の隔壁部で単
分子膜の流動が阻害されるため、著しく表面圧が高くな
ることが明らかとなった。これは、表面圧が上昇した単
分子膜が隔壁に付着することによるものと考えられる。
(Action) The present inventors have completed the invention based on the following findings. That is, the present inventors have examined the compressive behavior of a molecule having a high viscoelastic property on the water surface, and as a result, the following has become clear. First, when a monomolecular film having high viscoelasticity is compressed, the surface pressure increases near the barrier to be compressed. If the compression is continued as it is, the region where the surface pressure becomes high propagates forward of the barrier, but when the moving distance of the barrier becomes long, the monomolecular film near the barrier collapses. Second, in the compression process, the surface pressure increases more rapidly near the barrier ribs than at the center. Third, FIG. 14 (a),
(B) As shown in (b), when a monomolecular film is formed on the water surface partitioned by two partition walls 1a and 1b and movable barriers 2a and 2b orthogonal to the inside of the water tank, and one barrier 2b is moved and compressed. When the flow process of the monomolecular film on the water surface is visualized by using the hydrophobic fine powder 3, the flow of the monomolecular film is significantly inhibited in the vicinity of the partition walls 1a and 1b of the advancing barrier 2b. Reference numeral 4 in FIG. 14 denotes a detector of the surface pressure gauge. From these results,
It has been clarified that the surface pressure of the molecules having high viscoelasticity is significantly increased because the flow of the monomolecular film is inhibited at the partition wall near the barrier when the molecules having high viscoelasticity are compressed. It is considered that this is because the monomolecular film whose surface pressure has increased adheres to the partition walls.

一方、本発明者らは水面上単分子膜の基板上への累積
挙動について詳細に検討した結果、次のような知見を得
た。即ち、水面下に浸漬した基板を上昇させて水面上単
分子膜を累積する場合には、基板の純水に対して接触角
がある臨界値(Θc−up)以上で累積比が零になるこ
と、逆に基板を下降させて水面上単分子膜を累積する場
合には基板の純水に対して示す接触角がある臨界値(Θ
c−down)以下で累積比が零になる。具体的には、疎水
性の高い基板では基板上昇時に単分子膜が付着せず、親
水性の高い基板では基板下降時に単分子膜が付着しな
い。
On the other hand, the present inventors have studied in detail the cumulative behavior of the monomolecular film on the water surface on the substrate, and have obtained the following knowledge. That is, when the monomolecular film on the water surface is accumulated by raising the substrate immersed under the water surface, the accumulation ratio becomes zero when the contact angle of the substrate with respect to pure water is equal to or more than a certain critical value (Θc-up). Conversely, when the substrate is lowered to accumulate the monomolecular film on the water surface, the contact angle of the substrate with respect to pure water has a critical value (Θ
The accumulation ratio becomes zero below c-down). Specifically, the monomolecular film does not adhere to the substrate with high hydrophobicity when the substrate rises, and does not adhere to the substrate with high hydrophilicity when the substrate descends.

以上の知見に基づき、本発明は隔壁を垂直方向に連続
的に運動する機能を持たせることによって、単分子膜の
圧縮時の表面圧分布発生原因となる膜の隔壁への付着を
回避できる。即ち、疎水性の隔壁の場合には単分子膜の
圧縮中に水面との境界において上昇する方向に運動さ
せ、一方親水性の隔壁の場合には単分子膜の圧縮中に水
面との境界において下降する方向に運動させると、単分
子膜の表面圧が上昇しても膜が隔壁に付着せず、バリア
圧縮と共に単分子膜は隔壁に沿って前進する。この時の
隔壁を運動させる速度に関しては、前述した単分子膜の
付着に対する接触角の臨界条件を満たす範囲が本来望ま
しいが、かかる効果とは別に実際には隔壁の運動が与え
る擾乱が隔壁と単分子膜の間の境界層を作る効果も期待
される。従って、単分子膜の安定性を損わない範囲で条
件を設定すればよい。
Based on the above findings, the present invention can avoid the adhesion of the film to the partition, which causes the surface pressure distribution when the monomolecular film is compressed, by providing the function of continuously moving the partition in the vertical direction. That is, in the case of a hydrophobic partition wall, it is moved in an ascending direction at the boundary with the water surface during the compression of the monomolecular film, while in the case of the hydrophilic partition wall, it is moved at the boundary with the water surface during the compression of the monomolecular film. When the monomolecular film is moved in a descending direction, the film does not adhere to the partition walls even if the surface pressure of the monomolecular film increases, and the monomolecular film advances along the partition walls together with the barrier compression. The speed at which the partition wall is moved at this time is desirably within a range that satisfies the above-mentioned critical condition of the contact angle with respect to the adhesion of the monomolecular film. The effect of forming a boundary layer between molecular films is also expected. Therefore, the conditions may be set within a range that does not impair the stability of the monomolecular film.

また、上述した作用では隔壁が水面と垂直方向に運動
させた時の場合について述べたが、隔壁として表面に螺
旋状の凹凸が形成された回転運動する円柱体を用い、こ
の円柱体を膜付着が起こらない条件でその凹凸が水面の
境界においてバリアの圧縮方向に進むように回転させる
ことによって、隔壁境界の水そのものに圧縮方向への速
度成分を与えることができる。その結果、単分子膜の隔
壁への付着阻害効果を一層高めることができると共に、
水及び水面単分子膜の流動を促進して均一圧縮に対する
より一層の効果を達成できる。更に、従来装置ではπ分
布発生を制御するために圧縮速度を極端に遅くしなけれ
ばならなかったが、本発明の製造装置ではより高速で圧
縮しても均一な圧縮が可能であり、製膜時間の短縮化に
対する効果も合せもつものである。
In the above-described operation, the case where the partition wall is moved in the direction perpendicular to the water surface has been described. However, a rotating cylindrical body having helical irregularities formed on the surface is used as the partition wall, and this cylindrical body is attached to a film. By rotating the concavities and convexities so as to advance in the compression direction of the barrier at the boundary of the water surface under the condition where the water does not occur, a velocity component in the compression direction can be given to the water itself at the partition boundary. As a result, the effect of inhibiting the adhesion of the monomolecular film to the partition walls can be further enhanced, and
The flow of water and the monolayer on the water surface can be promoted to achieve a further effect on the uniform compression. Further, in the conventional apparatus, the compression speed had to be extremely slow to control the generation of the π distribution, but in the manufacturing apparatus of the present invention, uniform compression is possible even at a higher speed, and the film is formed. It also has the effect of shortening the time.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明す
る。なお、実施例3、4で用いる第7図、第11図の製造
装置において実施例1で使用した第1図に示す製造装置
と同様な部材は同符号を付して説明を省略する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. In the manufacturing apparatuses of FIGS. 7 and 11 used in the third and fourth embodiments, the same members as those of the manufacturing apparatus shown in FIG. 1 used in the first embodiment are denoted by the same reference numerals and description thereof will be omitted.

実施例1 第1図は、本発明の実施例1に係わる有機薄膜の製造
装置を示す概略斜視図である。図中の11は、内面がフッ
素樹脂被膜でコーティングされた水槽である。この水槽
11には、展開される両親媒性有機分子の単分子膜の一方
向の二辺を区画するための2つの隔壁としての例えば直
径20mmの円柱体12a、12bが配置されている。これら円柱
体12a、12bは、両端が吊架された支持板13により回転自
在に支持されていると共に、図示しない駆動源により互
いに反対方向に回転できるようになっている。前記各円
柱体12a、12bの表面は、フッ素樹脂で被覆されている。
前記各円柱体12a、12b上には、前記単分子膜の他の二辺
を区画するための可動バリア14a、14bがそれら円柱体12
a、12bの軸方向に移動自在に配置されている。これらの
バリア14a、14bの端部には、アーム15a、15bが夫々連結
されており、かつ各アーム15a、15bの他端は図示しない
駆動機構に連結されている。また、前記円柱体12a、12b
及び可動バリア14a、14bで区画された水槽11部分の水面
近傍には、表面圧計の検出子16が配置されている。な
お、前記水槽1の側壁近くには単分子膜を所定の基板上
に累積させるために該基板を駆動する累積機構(図示せ
ず)が配置されている。
Embodiment 1 FIG. 1 is a schematic perspective view showing an organic thin film manufacturing apparatus according to Embodiment 1 of the present invention. Numeral 11 in the figure denotes a water tank whose inner surface is coated with a fluororesin film. This aquarium
The column 11 is provided with, for example, cylindrical members 12a and 12b each having a diameter of, for example, 20 mm and serving as two partition walls for partitioning two sides in one direction of a monomolecular film of an amphiphilic organic molecule to be developed. These cylinders 12a, 12b are rotatably supported at both ends by a suspended support plate 13, and can be rotated in opposite directions by a drive source (not shown). The surface of each of the cylindrical bodies 12a and 12b is covered with a fluororesin.
On each of the cylindrical bodies 12a and 12b, movable barriers 14a and 14b for dividing the other two sides of the monomolecular film are provided.
They are arranged movably in the axial direction of a and 12b. Arms 15a and 15b are connected to ends of the barriers 14a and 14b, respectively, and the other ends of the arms 15a and 15b are connected to a drive mechanism (not shown). Further, the cylindrical bodies 12a, 12b
A detector 16 of a surface pressure gauge is arranged near the water surface of the water tank 11 defined by the movable barriers 14a and 14b. An accumulation mechanism (not shown) for driving the substrate is provided near the side wall of the water tank 1 so as to accumulate the monomolecular film on a predetermined substrate.

このような構成の製造装置において、円柱体12a、12b
及び可動バリア14a、14bで区画された水槽11の水面にAl
Cl3を含む水[(Al3+)=1×10-5M]で溶解されたステ
アリン酸を展開し、前記円柱体12a、12bを分子を展開し
た水槽11側で上に昇る方向(円柱体12aは半時計回り方
向、円柱体12bは時計回り方向)に0.5゜/secの角速度で
回転させた。この時、円柱体12a、12bが水面を横切る速
さは約5mm/minである。かかる状態で2本の可動バリア1
4a、14bを互いに接近するように移動させて展開された
ステアリン酸の単分子膜の圧縮を行なった。
In the manufacturing apparatus having such a configuration, the cylindrical bodies 12a and 12b
And the water surface of the water tank 11 partitioned by the movable barriers 14a and 14b
The stearic acid dissolved in water containing Cl 3 [(Al 3+ ) = 1 × 10 −5 M] is developed, and the cylinders 12a and 12b are moved upward in the water tank 11 side where the molecules are developed (the cylinder). The body 12a was rotated in a counterclockwise direction and the cylindrical body 12b was rotated in a clockwise direction) at an angular velocity of 0.5 ° / sec. At this time, the speed at which the cylinders 12a and 12b cross the water surface is about 5 mm / min. In this state, two movable barriers 1
4a and 14b were moved close to each other to compress the developed monomolecular film of stearic acid.

上述した操作において、圧縮前に単分子膜が展開され
た水面上に疎水性微粉末17を等間隔縞状に分散させ、圧
縮過程での流れのパターンを観察したところ、第2図に
示す結果を得た。なお、第3図に従来法と同様、水槽内
の隔壁(円柱体)1a、1bを回転せずに固定した状態で単
分子膜が展開された水面上に疎水性微粉末3を等間隔縞
状に分散させ、可動バリア2a、2bで圧縮した時の流れの
パターンを示す。これらの第2図及び第3図の比較から
本実施例1の製造装置のように円柱体12a、12bを回転さ
せることによって該円柱体12a、12bへの膜付着による阻
害化を緩和できることがわかる。
In the operation described above, the hydrophobic fine powder 17 was dispersed in the form of equidistant stripes on the water surface where the monomolecular film was developed before compression, and the flow pattern in the compression process was observed. The result shown in FIG. 2 was obtained. I got FIG. 3 shows that, similarly to the conventional method, the hydrophobic fine powder 3 is equidistantly striped on the water surface where the monomolecular film is spread while the partition walls (cylindrical bodies) 1a and 1b in the water tank are fixed without rotating. 5 shows a flow pattern when the particles are dispersed in a shape and compressed by the movable barriers 2a and 2b. 2 and 3, it can be seen that by rotating the cylinders 12a and 12b as in the manufacturing apparatus of the first embodiment, it is possible to alleviate the inhibition due to the film adhesion to the cylinders 12a and 12b. .

また、上述した操作において圧縮過程での単分子膜の
表面圧を多点計測を行なったところ、第4図に示す結果
を得た。なお、第4図は円柱体12a、12b及びバリア14
a、14bで区画された単分子膜の展開領域の表面圧計測箇
所A〜Dと、この計測箇所A〜Dでの面積−表面圧の特
性線を示す。この第4図から明らかなように可動バリア
による圧縮に伴って単分子膜に表面圧分布が発生する
が、本実施例1の装置では従来の装置に比べて表面圧分
布の程度が著しく改善されていることがわかる。
In addition, when the surface pressure of the monomolecular film during the compression process was measured at multiple points in the above-described operation, the results shown in FIG. 4 were obtained. FIG. 4 shows the cylindrical bodies 12a and 12b and the barrier 14
The surface pressure measurement points A to D in the developed region of the monomolecular film partitioned by a and 14b and the characteristic line of the area-surface pressure at the measurement points A to D are shown. As is apparent from FIG. 4, the surface pressure distribution is generated in the monomolecular film by the compression by the movable barrier. However, in the apparatus of the first embodiment, the degree of the surface pressure distribution is remarkably improved as compared with the conventional apparatus. You can see that it is.

実施例2 本実施例2の製造装置では、前述した第1図の円柱体
12a、12bとして親水性の表面をもつガラス棒を用いた。
Example 2 In the manufacturing apparatus of Example 2, the above-described cylindrical body shown in FIG.
Glass rods having hydrophilic surfaces were used as 12a and 12b.

このような構成の製造装置において、円柱体12a、12b
及び可動バリア14a、14bで区画された水槽11の水面にAl
Cl3を含む水[(Al3+)=1×10-5M]で溶解されたステ
アリン酸を展開し、前記円柱体12a、12bを分子を展開し
た水槽11側で下に潜る方向(円柱体12aは時計回り方
向、円柱体12bは半時計回り方向)に0.5゜/secの角速度
で回転させた。この時、円柱体12a、12bが水面を横切る
速さは約5mm/minである。かかる状態で2本の可動バリ
ア14a、14bを互いに接近するように移動させて展開され
たステアリン酸の単分子膜の圧縮を行なった。
In the manufacturing apparatus having such a configuration, the cylindrical bodies 12a and 12b
And the water surface of the water tank 11 partitioned by the movable barriers 14a and 14b
The stearic acid dissolved in water containing [Cl 3 ] [(Al 3+ ) = 1 × 10 −5 M] is developed, and the cylinders 12 a and 12 b are diverted downward on the side of the water tank 11 where the molecules are developed (the cylinder). The body 12a was rotated in a clockwise direction and the cylindrical body 12b was rotated in a counterclockwise direction) at an angular velocity of 0.5 ° / sec. At this time, the speed at which the cylinders 12a and 12b cross the water surface is about 5 mm / min. In this state, the two movable barriers 14a and 14b were moved so as to approach each other to compress the developed monomolecular film of stearic acid.

上述した操作において、圧縮前に単分子膜が展開され
た水面上に疎水性微粉末17を等間隔縞状に分散させ、圧
縮過程での流れのパターンを観察したところ、第5図に
示す結果を得た。この第5図及び前述した従来法を流れ
のパターンを示す第3図の比較から本実施例2の製造装
置のように円柱体12a、12bを回転させるこによって該円
柱体12a、12bへの膜付着による阻害化を緩和できること
がわかる。
In the operation described above, the hydrophobic fine powder 17 was dispersed in the form of equidistant stripes on the water surface where the monomolecular film was developed before compression, and the flow pattern in the compression process was observed. The result shown in FIG. 5 was obtained. I got From the comparison between FIG. 5 and FIG. 3 showing the flow pattern of the conventional method, the film on the cylindrical bodies 12a and 12b is rotated by rotating the cylindrical bodies 12a and 12b as in the manufacturing apparatus of the second embodiment. It can be seen that inhibition due to adhesion can be reduced.

また、上述した操作において圧縮過程での単分子膜の
表面圧を多点計測を行なったところ、第6図に示す結果
を得た。なお、第6図は円柱体12a、12b及びバリア14
a、14bで区画された単分子膜の展開領域の表面圧計測箇
所A〜Dと、この計測箇所A〜Dでの面積−表面圧の特
性線を示す。この第6図から明らかなように可動バリア
による圧縮に伴って単分子膜に表面圧分布が発生する
が、本実施例2の装置では従来の装置に比べて表面圧分
布の程度が著しく改善されていることがわかる。
When the surface pressure of the monomolecular film during the compression process was measured at multiple points in the above-described operation, the results shown in FIG. 6 were obtained. FIG. 6 shows the cylindrical bodies 12a and 12b and the barrier 14
The surface pressure measurement points A to D in the developed region of the monomolecular film partitioned by a and 14b and the characteristic line of the area-surface pressure at the measurement points A to D are shown. As is apparent from FIG. 6, the surface pressure distribution is generated in the monomolecular film by the compression by the movable barrier. However, in the apparatus of the second embodiment, the degree of the surface pressure distribution is remarkably improved as compared with the conventional apparatus. You can see that it is.

実施例3 第7図は、本発明の実施例3に係わる有機薄膜の製造
装置を示す概略斜視図である。この製造装置は、互いに
平行する2本の円柱状支持体18a、18bを水槽11の一部に
配置し、夫々の支持体18a、18bに該支持体18a、18bとほ
ぼ同幅の隔壁としてのフッ素樹脂製シート19a、19bを下
側から半周巻回し、例えば4つの回転ローラ20a〜23a、
20b〜23bで前記各シート19a、19bが夫々各支持体18a、1
8bの直下に垂直方向に移動するように巻き取る構造にな
っている。また、バリア14a、14bの端部には、垂直方向
に延びるアーム24a、24bが夫々連結されており、かつ各
アーム24a、24bの他端は図示しない駆動機構に連結され
ている。
Third Embodiment FIG. 7 is a schematic perspective view showing an organic thin film manufacturing apparatus according to a third embodiment of the present invention. In this manufacturing apparatus, two columnar supports 18a, 18b parallel to each other are arranged in a part of the water tank 11, and the respective supports 18a, 18b serve as partitions having substantially the same width as the supports 18a, 18b. Fluororesin sheets 19a and 19b are wound half-turn from below, for example, four rotating rollers 20a to 23a,
In 20b to 23b, each of the sheets 19a and 19b is a respective support 18a and 1
It has a structure in which it is wound just below 8b so as to move vertically. Arms 24a and 24b extending in the vertical direction are connected to ends of the barriers 14a and 14b, respectively, and the other ends of the arms 24a and 24b are connected to a drive mechanism (not shown).

このような構成の製造装置において、円柱状支持体18
a、18bに巻回されたシート19a、19b及び可動バリア14
a、14bで区画された水槽11の水面にAlCl3を含む水[(A
l3+)=1×10-5M]で溶解されたステアリン酸を展開
し、前記シート19a、19bを回転ローラ20a〜23a、20b〜2
3bにより分子を展開した水槽11側で上に昇る方向に移動
するように巻き取った。この時、シート19a、19bが水面
を横切る速さは約5mm/minである。かかる状態で2本の
可動バリア14a、14bを互いに接近するように移動させて
展開されたステアリン酸の単分子膜の圧縮を行なった。
In the manufacturing apparatus having such a configuration, the columnar support 18
a, 19b, and the movable barrier 14
Water containing AlCl 3 on the water surface of the water tank 11 partitioned by a and 14b [(A
l 3+ ) = 1 × 10 −5 M], and dissolve the stearic acid, and apply the sheets 19a and 19b to rotating rollers 20a to 23a and 20b to 2
The molecule was wound so as to move in the upward direction on the side of the water tank 11 where the molecules were developed by 3b. At this time, the speed at which the sheets 19a and 19b cross the water surface is about 5 mm / min. In this state, the two movable barriers 14a and 14b were moved so as to approach each other to compress the developed monomolecular film of stearic acid.

上述した操作において、圧縮前に単分子膜が展開され
た水面上に疎水性微粉末17を等間隔縞状に分散させ、圧
縮過程での流れのパターンを観察したところ、第8図に
示す結果を得た。この第8図及び前述した従来法を流れ
のパターンを示す第3図の比較から本実施例3の製造装
置のように隔壁としてのシート19a、19bを水面に対して
垂直方向に移動させるこによって該シート19a、19bへの
膜付着による阻害化を緩和できることがわかる。
In the operation described above, the hydrophobic fine powder 17 was dispersed in the form of equidistant stripes on the water surface on which the monomolecular film was developed before compression, and the flow pattern in the compression process was observed. The result shown in FIG. 8 was obtained. I got Comparison between FIG. 8 and FIG. 3 showing the flow pattern of the conventional method described above shows that the sheets 19a and 19b as partition walls are moved in the direction perpendicular to the water surface as in the manufacturing apparatus of the third embodiment. It can be seen that inhibition due to film adhesion to the sheets 19a and 19b can be reduced.

また、上述した操作において圧縮過程での単分子膜の
表面圧を多点計測を行なったところ、第9図に示す結果
を得た。なお、第9図は円柱状支持体に巻回されシート
19a、19b及びバリア14a、14bで区画された単分子膜の展
開領域の表面圧計測箇所A〜Dと、この計測箇所A〜D
での面積−表面圧の特性線を示す。この第9図から明ら
かなように可動バリアによる圧縮に伴って単分子膜に表
面圧分布が発生するが、本実施例3の装置では従来の装
置に比べて表面圧分布の程度が著しく改善されているこ
とがわかる。
When the surface pressure of the monomolecular film during the compression process was measured at multiple points in the above-described operation, the results shown in FIG. 9 were obtained. FIG. 9 shows a sheet wound around a cylindrical support.
Surface pressure measurement points A to D in the development region of the monomolecular film partitioned by 19a, 19b and barriers 14a, 14b, and measurement points A to D
2 shows a characteristic line of the area-surface pressure at. As is apparent from FIG. 9, the surface pressure distribution is generated in the monomolecular film with the compression by the movable barrier. However, in the apparatus of the third embodiment, the degree of the surface pressure distribution is remarkably improved as compared with the conventional apparatus. You can see that it is.

実施例4 第10図は、本発明の実施例4に係わる有機薄膜の製造
装置を示す概略斜視図、第11図は第10図の表面に螺旋状
の凹凸が形成された円柱体の拡大斜視図である。この製
造装置は、表面にフッ素樹脂製の螺旋状凹凸25a、25bが
形成された2本のフッ素樹脂被覆円柱体26a、26bを水槽
11の一部に互いに平行となるように配置した構造になっ
ている。なお、前記螺旋状凹凸25aは、円柱体26aの軸に
対して左下方向に傾斜され、螺旋状凹凸25bは円柱体26b
の軸に対して右下方向に傾斜されて各螺旋状凹凸25a、2
5bの螺旋方向が互いに交わる形状となっている。
Embodiment 4 FIG. 10 is a schematic perspective view showing an apparatus for producing an organic thin film according to Embodiment 4 of the present invention. FIG. 11 is an enlarged perspective view of a cylindrical body having spiral irregularities formed on the surface of FIG. FIG. This manufacturing apparatus is composed of two fluororesin-coated cylindrical bodies 26a and 26b having spiral irregularities 25a and 25b made of fluororesin formed on the surface thereof in a water tank.
The structure is such that it is arranged parallel to each other on a part of 11. The spiral unevenness 25a is inclined downward and to the left with respect to the axis of the cylindrical body 26a, and the spiral unevenness 25b is
Of each spiral 25a, 2
The spiral directions of 5b cross each other.

このような構成の製造装置において、表面にフッ素樹
脂製の螺旋状凹凸25a、25bが形成された2本の円柱体26
a、26b及び可動バリア14a、14bで区画された水槽11の水
面にAlCl3を含む水[(Al3+)=1×10-5M]で溶解され
たステアリン酸を展開し、前記円柱体26a、26bを分子を
展開した水槽11側で上に昇る方向に0.5゜/secの各速度
で回転させる。この時、円柱体26a、26bが水面を横切る
速さは約5mm/minである。また、水面境界部での螺旋状
凹凸25a、25bの前進速さはバリア14aの前進速度とほぼ
同じである。かかる状態で一方の可動バリア14aを他方
の固定バリア14bに向けて移動させることにより、展開
されたステアリン酸の単分子膜の圧縮を行なった。
In the manufacturing apparatus having such a configuration, two cylindrical bodies 26 having spiral irregularities 25a and 25b made of fluororesin are formed on the surface.
The stearic acid dissolved in water [(Al 3+ ) = 1 × 10 −5 M] containing AlCl 3 is developed on the water surface of the water tank 11 defined by the a, 26b and the movable barriers 14a, 14b. 26a and 26b are rotated at a speed of 0.5 ° / sec in a direction of ascending on the water tank 11 side where the molecules are developed. At this time, the speed at which the cylinders 26a and 26b cross the water surface is about 5 mm / min. Further, the advance speed of the spiral unevenness 25a, 25b at the boundary of the water surface is substantially the same as the advance speed of the barrier 14a. In this state, by moving one movable barrier 14a toward the other fixed barrier 14b, the developed monomolecular film of stearic acid was compressed.

上述した操作において、圧縮前に単分子膜が展開され
た水面上に疎水性微粉末17を等間隔縞状に分散させ、圧
縮過程での流れのパターンを観察したところ、第12図に
示す結果を得た。この第12図及び前述した従来法を流れ
のパターンを示す第3図の比較から本実施例4の製造装
置のように隔壁としての表面に螺旋状凹凸25a、25bが形
成された円柱体26a、26bを回転させることによって該円
柱体26a、26bへの膜付着による阻害化を緩和できること
がわかる。
In the above-described operation, the hydrophobic fine powder 17 was dispersed in a uniform stripe pattern on the water surface where the monomolecular film was developed before compression, and the flow pattern in the compression process was observed. I got From the comparison between FIG. 12 and FIG. 3 showing the flow pattern of the conventional method described above, a cylindrical body 26a having spiral irregularities 25a and 25b formed on the surface as a partition as in the manufacturing apparatus of the fourth embodiment, It can be seen that by rotating 26b, inhibition due to film adhesion to the cylindrical bodies 26a and 26b can be alleviated.

また、上述した操作において圧縮過程での単分子膜の
表面圧を多点計測を行なったところ、第13図に示す結果
を得た。なお、第13図は表面に螺旋状凹凸25a、25bが形
成された円柱体26a、26b及びバリア14a、14bで区画され
た単分子膜の展開領域の表面圧計測箇所A〜Dと、この
計測箇所A〜Dでの面積−表面圧の特性線を示す。この
第13図から明らかなように本実施例4の装置では螺旋状
凹凸25a、25bが形成された円柱体26a、26bの回転並びに
水面境界部での螺旋状凹凸25a、25bのバリア14aと同方
向、同速度の前進がなされることによって従来の装置に
比べて可動バリアの圧縮による単分子膜の表面圧分布発
生を著しく改善できることがわかる。
In addition, when the surface pressure of the monomolecular film during the compression process was measured at multiple points in the above-described operation, the results shown in FIG. 13 were obtained. FIG. 13 shows surface pressure measurement points A to D in the development region of the monomolecular film partitioned by the cylindrical bodies 26a and 26b having the spiral irregularities 25a and 25b formed on the surface and the barriers 14a and 14b, and the measurement. The characteristic line of area-surface pressure at points A to D is shown. As is apparent from FIG. 13, in the apparatus of the fourth embodiment, the rotation of the cylindrical bodies 26a and 26b on which the spiral irregularities 25a and 25b are formed and the barrier 14a of the spiral irregularities 25a and 25b at the boundary of the water surface. It can be seen that, by performing the forward movement at the same speed in the direction, the generation of the surface pressure distribution of the monomolecular film due to the compression of the movable barrier can be remarkably improved as compared with the conventional apparatus.

[発明の効果] 以上詳述した如く、本発明によれば水面上単分子膜を
均一かつ高速に圧縮形成できるばかりか、累積時におけ
る圧縮膜の流動による表面圧低下を速やかに補償でき、
構造が均一で欠陥のない有機薄膜を製造し得る有機薄膜
の製造装置を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, not only can a monomolecular film on the water surface be formed uniformly and at high speed, but also a decrease in surface pressure due to the flow of the compressed film during accumulation can be quickly compensated,
An apparatus for manufacturing an organic thin film capable of manufacturing an organic thin film having a uniform structure and no defects can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1の有機薄膜の製造装置を示す
概略斜視図、第2図は実施例1の製造装置により展開さ
れた単分子膜を圧縮した時の該単分子膜上の疎水性微粉
末の流れパターンを示す平面図、第3図は従来の製造装
置により展開された単分子膜を圧縮した時の該単分子膜
上の疎水性微粉末の流れパターンを示す平面図、第4図
は実施例2における圧縮過程での単分子膜の表面圧を多
点計測を行なった時の区画された単分子膜の展開領域の
表面圧計測箇所とこれら計測箇所での面積−表面圧の特
性線を示す説明図、第5図は実施例2の製造装置により
展開された単分子膜を圧縮した時の該単分子膜上の疎水
性微粉末の流れパターンを示す平面図、第6図は実施例
2における圧縮過程での単分子膜の表面圧を多点計測を
行なった時の区画された単分子膜の展開領域の表面圧計
測箇所とこれら計測箇所での面積−表面圧の特性線を示
す説明図、第7図は本発明の実施例3の有機薄膜の製造
装置を示す概略斜視図、第8図は実施例3の製造装置に
より展開された単分子膜を圧縮した時の該単分子膜上の
疎水性微粉末の流れパターンを示す平面図、第9図は実
施例3における圧縮過程での単分子膜の表面圧を多点計
測を行なった時の区画された単分子膜の展開領域の表面
圧計測箇所とこれら計測箇所での面積−表面圧の特性線
を示す説明図、第10図は本発明の実施例4の有機薄膜の
製造装置を示す概略斜視図、第11図は第10図の表面に螺
旋状凹凸が形成された円柱体を示す拡大斜視図、第12図
は実施例4の製造装置により展開された単分子膜を圧縮
した時の該単分子膜上の疎水性微粉末の流れパターンを
示す平面図、第13図は実施例4における圧縮過程での単
分子膜の表面圧を多点計測を行なった時の区画された単
分子膜の展開領域の表面圧計測箇所とこれら計測箇所で
の面積−表面圧の特性線を示す説明図、第14図(a)、
(b)は従来の製造装置により展開された単分子膜の圧
縮過程での疎水性微粉末の流れパターンを示す平面図で
ある。 11……水槽、12a、12b、26a、26b……円柱体、14a、14b
……可動バリア、16……表面圧計の検出子、17……疎水
性微粉末、18a、18b……円柱状支持体、19a、19b……シ
ート、25a、25b……螺旋状凹凸。
FIG. 1 is a schematic perspective view showing an apparatus for producing an organic thin film according to the first embodiment of the present invention, and FIG. 2 is a view showing a state where the monomolecular film developed by the production apparatus according to the first embodiment is compressed. FIG. 3 is a plan view showing a flow pattern of the hydrophobic fine powder, FIG. 3 is a plan view showing a flow pattern of the hydrophobic fine powder on the monomolecular film when the monomolecular film developed by the conventional manufacturing apparatus is compressed, FIG. 4 is a diagram showing the surface pressure measurement points in the developed region of the partitioned monomolecular film when multi-point measurement of the surface pressure of the monomolecular film in the compression process in Example 2 and the area-surface at these measurement points FIG. 5 is an explanatory view showing pressure characteristic lines, FIG. 5 is a plan view showing a flow pattern of hydrophobic fine powder on the monomolecular film when the monomolecular film developed by the manufacturing apparatus of Example 2 is compressed, FIG. 6 is a section when the surface pressure of the monomolecular film in the compression process in Example 2 was measured at multiple points. FIG. 7 is an explanatory view showing surface pressure measurement points in the developed region of the monomolecular film and characteristic lines of area-surface pressure at these measurement points. FIG. 7 is a schematic diagram showing an organic thin film manufacturing apparatus according to a third embodiment of the present invention. FIG. 8 is a plan view showing a flow pattern of the hydrophobic fine powder on the monomolecular film when the monomolecular film developed by the manufacturing apparatus of Example 3 is compressed, and FIG. Showing the surface pressure measurement points in the developed region of the partitioned monomolecular film and the characteristic line of area-surface pressure at these measurement points when multi-point measurement of the surface pressure of the monomolecular film in the compression process is performed FIG. 10, FIG. 10 is a schematic perspective view showing an apparatus for producing an organic thin film of Example 4 of the present invention, FIG. 11 is an enlarged perspective view showing a cylindrical body having spiral irregularities formed on the surface of FIG. FIG. 12 shows the hydrophobic fine powder on the monomolecular film when the monomolecular film developed by the manufacturing apparatus of Example 4 was compressed. FIG. 13 is a plan view showing a flow pattern, and FIG. 13 is a diagram showing the surface pressure measurement points in the developed region of the partitioned monomolecular film when performing multipoint measurement of the surface pressure of the monomolecular film in the compression process in Example 4. FIG. 14 (a) is an explanatory diagram showing a characteristic line of the area-surface pressure at the measurement point.
(B) is a plan view showing a flow pattern of a hydrophobic fine powder in a process of compressing a monomolecular film developed by a conventional manufacturing apparatus. 11… Aquarium, 12a, 12b, 26a, 26b …… Cylindrical body, 14a, 14b
... movable barrier, 16 ... detector of surface pressure gauge, 17 ... hydrophobic fine powder, 18a, 18b ... cylindrical support, 19a, 19b ... sheet, 25a, 25b ... spiral unevenness.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】展開される両親媒性有機分子の単分子膜の
一方向の二辺を区画するための2つの隔壁を有する水槽
と、前記隔壁間の水面の単分子膜の展開面積を変化さ
せ、かつ前記隔壁と直交する単分子膜の二辺を区画する
ための可動バリアと、前記単分子膜の表面圧を検出する
ための表面圧計と、前記単分子膜を所定の基板上に累積
させるために該基板を駆動する累積機構とを具備した有
機薄膜の製造装置において、前記隔壁は水面と接する部
分が該水面に対して垂直方向に連続的に運動する機能を
有することを特徴とする有機薄膜の製造装置。
1. A water tank having two partition walls for partitioning two sides of a unimolecular film of an amphiphilic organic molecule to be developed in one direction, and a developed area of a monomolecular film on a water surface between the partition walls is changed. And a movable barrier for partitioning two sides of the monomolecular film orthogonal to the partition wall, a surface manometer for detecting the surface pressure of the monomolecular film, and accumulating the monomolecular film on a predetermined substrate. An organic thin film manufacturing apparatus having an accumulation mechanism for driving the substrate to cause the partition to have a function of continuously moving a portion in contact with a water surface in a direction perpendicular to the water surface. Organic thin film manufacturing equipment.
【請求項2】隔壁は、回転運動する円柱体からなること
を特徴とする請求項1記載の有機薄膜の製造装置。
2. The apparatus for producing an organic thin film according to claim 1, wherein the partition comprises a rotating cylindrical body.
【請求項3】隔壁は、水面付近に設置された円柱状支持
体に巻回され、水面に対して垂直方向に運動するシート
から構成されることを特徴とする請求項1記載の有機薄
膜の製造装置。
3. The organic thin film according to claim 1, wherein the partition is formed of a sheet wound around a cylindrical support provided near the water surface and moving in a direction perpendicular to the water surface. Manufacturing equipment.
【請求項4】隔壁は、表面に螺旋状の凹凸が形成された
回転運動する円柱体からなることを特徴とする請求項1
記載の有機薄膜の製造装置。
4. The partition according to claim 1, wherein the partition comprises a rotating cylindrical body having helical irregularities formed on a surface thereof.
An apparatus for producing an organic thin film according to the above.
JP63223516A 1988-09-08 1988-09-08 Organic thin film manufacturing equipment Expired - Lifetime JP2656317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223516A JP2656317B2 (en) 1988-09-08 1988-09-08 Organic thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223516A JP2656317B2 (en) 1988-09-08 1988-09-08 Organic thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0272666A JPH0272666A (en) 1990-03-12
JP2656317B2 true JP2656317B2 (en) 1997-09-24

Family

ID=16799365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223516A Expired - Lifetime JP2656317B2 (en) 1988-09-08 1988-09-08 Organic thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2656317B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368895A (en) * 1992-03-05 1994-11-29 Canon Kabushiki Kaisha Apparatus and method for producing monomolecular films or monomolecular built-up films

Also Published As

Publication number Publication date
JPH0272666A (en) 1990-03-12

Similar Documents

Publication Publication Date Title
Tsao et al. Long-range attraction between a hydrophobic surface and a polar surface is stronger than that between two hydrophobic surfaces
US8109010B2 (en) Method for drying applied film and drying apparatus
US20110135834A1 (en) Modular transfer apparatus and process
Sakata et al. Surface diffusion in monolayers
JP2656317B2 (en) Organic thin film manufacturing equipment
US4798740A (en) Polymerizable film and pattern forming method by use thereof
Adamczyk et al. Characterization of polyelectrolyte multilayers on mica and oxidized titanium by streaming potential and wetting angle measurements
JPH09168761A (en) Coating method and apparatus
Ariga et al. In situ characterization of Langmuir-Blodgett films during a transfer process. Evaluation of transfer ratio and water incorporation by using a quartz crystal microbalance
McGuiggan et al. A study of surfactant solution wetting on mica
US4646678A (en) Thin film deposition
CA1087044A (en) Process and device for coating a film
US5286529A (en) Method of forming an organic thin film
JP2558839B2 (en) Organic thin film manufacturing method and film forming apparatus
KR101960526B1 (en) Silver nanowire film and method for manufacturing thereof
JPWO2019175710A5 (en)
Abu-Sharkh Structure and mechanism of formation of polyelectrolyte multilayers
JP2008221085A (en) Coating device and coating method
JPH01130755A (en) Curtain coating device
US20080124477A1 (en) Apparatus and method for bar coating
FI91047B (en) A method of forming a single molecular film and a coating apparatus for forming it
WO2009099983A1 (en) Dispenser for a coating apparatus having reduced sag
JPH0288618A (en) Supporting base material having very thin single- or multi-layer covering, manufacture thereof, and polyurethane as intermediate for manufacture of covered supporting base material
JP2008253863A (en) Coating method and coating apparatus
BR102019017173A2 (en) method of preparing the colloidal suspension for deposition of monolayer of photonic crystals