JPH0273905A - Production of alloy powder for rare earth element-fe-b permanent magnet - Google Patents

Production of alloy powder for rare earth element-fe-b permanent magnet

Info

Publication number
JPH0273905A
JPH0273905A JP22713788A JP22713788A JPH0273905A JP H0273905 A JPH0273905 A JP H0273905A JP 22713788 A JP22713788 A JP 22713788A JP 22713788 A JP22713788 A JP 22713788A JP H0273905 A JPH0273905 A JP H0273905A
Authority
JP
Japan
Prior art keywords
molten metal
alloy
rare earth
alloy powder
molten alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22713788A
Other languages
Japanese (ja)
Inventor
Yoshitomo Sato
佐藤 義智
Tsuguaki Oki
大木 継秋
Akifumi Kanbe
神戸 章史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22713788A priority Critical patent/JPH0273905A/en
Publication of JPH0273905A publication Critical patent/JPH0273905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce alloy powder for a permanent magnet contg. a small amt. of oxygen in a high yield by adding Ca to a molten alloy consisting of specified percentages of rare earth elements, B and Fe so that a specified amt. of Ca is melted in the alloy, spouting the resulting molten alloy through a vessel and a nozzle each made of CaO-based refractories and blowing an inert cooling gas on the spouted molten alloy. CONSTITUTION:A molten alloy consisting of 8-25 atomic % R (R is one or more kinds of rare earth elements including Y), 2-12atomic% B and the balance Fe with inevitable impurities is prepd. in an inert gaseous atmosphere under 0.3-9.0atm. pressure. Ca or a Cacontg. metal is added to the molten alloy so that 1-100ppm Ca is melted in the alloy. The resulting molten alloy is spouted through a molten alloy holding vessel and a molten alloy nozzle each made of CaO- or Y2O3-based refractories and an inert cooling gas is blown on the spouted molten alloy to obtain alloy powder having >=30mum particle size and contg. a small amt. of oxygen. By using the alloy powder, a permanent magnet having superior magnetic characteristics can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類−F e −13系永久磁石用合金粉
末の製造方法に関し、特に酸素量の少ない永久磁石用合
金粉末が得られ、且つ上記永久磁石用合金粉末の収率を
上げることのできる希土類−FeB系永久磁石用合金粉
末の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing rare earth-Fe-13 based alloy powder for permanent magnets, which produces an alloy powder for permanent magnets with a particularly low oxygen content, and The present invention relates to a method for producing rare earth-FeB alloy powder for permanent magnets, which can increase the yield of the alloy powder for permanent magnets.

〔従来技術〕[Prior art]

希土類−F e −B系永久磁石用合金粉末を製造する
技術としては、インゴットを機械的に粉砕して粉末を得
る方法(特公昭6 ]、−34342>あるいは、溶湯
を水冷したロール」二で象、冷し、得られた箔を機械的
に粉砕する方法(特開昭57−210394)などが知
られているが、これらの方法よりも優れた方法として、
特開昭62−291904号公報に開示の如き製造方法
が提案されている。
Techniques for producing rare earth-F e -B alloy powder for permanent magnets include a method of mechanically crushing an ingot to obtain powder (Special Publication No. 6], -34342), or a method of producing a powder by mechanically crushing an ingot (Japanese Patent Publication No. 6), or using a roll in which molten metal is water-cooled. Methods such as cooling, cooling, and mechanically crushing the obtained foil (Japanese Unexamined Patent Publication No. 57-210394) are known, but as a method superior to these methods,
A manufacturing method as disclosed in Japanese Unexamined Patent Publication No. 62-291904 has been proposed.

この製造方法は、いわゆるガスアトマイズ法により希土
類−Fe−B系永久磁石用合金粉末を製造する方法で、
溶湯を不活性ガスアトマイズ法で噴霧することにより5
0〜1000 lt mの札$′壱とし、該粗粒を真空
中、もしくは不活性雰囲気中1o o o ’c以下で
熱処理した後、機械的粉砕法により30μm以下の粉末
に形成する方法である。
This manufacturing method is a method of manufacturing rare earth-Fe-B alloy powder for permanent magnets by the so-called gas atomization method.
5 by spraying the molten metal using an inert gas atomization method.
This is a method in which coarse particles of 0 to 1000 lt m are heat-treated at a temperature of 1 o o o' c or less in a vacuum or in an inert atmosphere, and then formed into a powder of 30 μm or less by a mechanical crushing method. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このガスアトマイズ法を用いた希土類−FeB系永久磁
石用合金粉末の製造方法では、合金溶湯を取り扱う溶湯
保持容器及び溶湯ノズルの耐火物にAp、203 、M
gO,ZrO2等を主成分とする材料が用いられている
。このため、溶湯中の活性な希土類元素が上記耐火物を
還元し、生成した希土類酸化物が上記溶湯保持容器及び
溶湯ノズルの内壁に付着、或いは溶湯中に浮遊する。
In this method for producing rare earth-FeB alloy powder for permanent magnets using the gas atomization method, Ap, 203, M
Materials whose main components are gO, ZrO2, etc. are used. Therefore, the active rare earth elements in the molten metal reduce the refractory, and the generated rare earth oxides adhere to the inner walls of the molten metal holding container and the molten metal nozzle, or float in the molten metal.

更に、上記溶湯保持容器及び溶湯ノズルは通常外部から
冷却されるため、その内壁近傍の溶湯が冷却され、内壁
近傍の溶湯中の酸素の活量がト昇し、酸素が熔解塵取1
−になる。そし5て、ごの溶解塵取J−になった酸素は
、溶湯中で最も活性な希土類元素と結び(=jいて希土
類酸化物を生成し、該希土類酸化物が上記と同様に溶湯
保持容器や溶湯ノズルの内壁に付着、或いは?8湯中に
浮遊する。
Furthermore, since the molten metal holding container and the molten metal nozzle are usually cooled from the outside, the molten metal near the inner wall is cooled, the activity of oxygen in the molten metal near the inner wall increases, and the oxygen is removed from the melt dust collector 1.
becomes −. Then, the oxygen that has become the melt dust collector J- combines with the most active rare earth element in the molten metal (=j) to form a rare earth oxide, and the rare earth oxide is transferred to the molten metal holding container in the same way as above. or adhere to the inner wall of the molten metal nozzle, or float in the molten metal.

このように希土類酸化物が溶湯保持容器内壁に付着成長
し、合金を酸化物内部にtilt捉するようになると大
きな地金付きがおごり、溶湯保持容器から合金の溶湯を
供給することができなくなる。
In this way, when the rare earth oxide adheres and grows on the inner wall of the molten metal holding container and the alloy comes to be trapped inside the oxide, a large amount of base metal is deposited, making it impossible to supply molten alloy from the molten metal holding container.

また、溶湯ノズルの内壁に上記希土類酸化物が付着成長
すると、ノズル径が見かけ一ト細くなりアトマイズ時間
が旦くなったり、ノズル閉塞を起こしてアトマイズが不
6J能になることがある。そして、アI・マイズが行え
た場合でも、溶湯ノズル径が徐すに細くなるため、得ら
れる粉末の粒度の範囲が広がり、所定の粒度分布範囲の
粉末を製造するには好ましくない。
Furthermore, if the rare earth oxide adheres and grows on the inner wall of the molten metal nozzle, the diameter of the nozzle will appear to become smaller and the atomization time may become shorter, or the nozzle may become clogged and atomization may become impossible. Even if it is possible to carry out Aimize, the diameter of the molten metal nozzle gradually becomes smaller, so the particle size range of the obtained powder widens, which is not preferable for producing powder with a predetermined particle size distribution range.

−・ツノ、上記のような酸化物が溶湯中を浮遊するごと
によって、得られた粉末中に500ppm以上の酸素を
含む場合がある。このような酸素量の多い粉末を用いて
製造した永久磁石は、その磁気特性が低い。
- Horn: Due to the floating of the above oxides in the molten metal, the resulting powder may contain 500 ppm or more of oxygen. Permanent magnets manufactured using such oxygen-rich powders have poor magnetic properties.

従って、本発明の目的とするところは、溶湯中の希土類
元素が、溶湯保持容器や溶湯ノズルの耐火物を還元する
こと、及び溶湯中の酸素量が増加することを防止し、希
土類酸化物が生成しにくい希土類−Fe−B系永久磁石
用合金粉末の製造方法を提供することである。
Therefore, the object of the present invention is to prevent rare earth elements in the molten metal from reducing the refractories in the molten metal holding container and molten metal nozzle, and to prevent the amount of oxygen in the molten metal from increasing. An object of the present invention is to provide a method for producing rare earth-Fe-B alloy powder for permanent magnets, which is difficult to produce.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明が採用する主たる手段
は、原子百分率でR8〜25%(RはYを含む希土類元
素の一種あるいは二種以」―を組み合わせて用いる)、
82〜12%、残部が鉄及びその他製造上不可避な不純
物からなる合金の溶湯に、Ca又はCaを含む金属を添
加し、上記溶湯中のCa溶解量が1〜100 ppmに
なるようにして、−に記溶湯をCaO質又はY2O3質
の耐火物を用いた溶湯保持容器及び溶湯ノズルを経て噴
出させ、これに不活性冷却ガスを吹き付け永久磁石用合
金粉末を得る点である。
The main means adopted by the present invention to achieve the above object is R8 to 25% in atomic percentage (R is a combination of one or more rare earth elements including Y),
Ca or a metal containing Ca is added to a molten metal of an alloy consisting of 82% to 12%, the balance being iron and other impurities unavoidable in manufacturing, and the amount of Ca dissolved in the molten metal is 1 to 100 ppm, - The molten metal is ejected through a molten metal holding container and a molten metal nozzle using a CaO-based or Y2O3-based refractory, and an inert cooling gas is blown onto the molten metal to obtain an alloy powder for a permanent magnet.

即ち、合金き溶湯にCa又はCaを含む金属を添加する
ことにより、酸素をCaOとして生成浮上さゼることか
でき、溶湯中の酸素量が低減する。
That is, by adding Ca or a metal containing Ca to the alloyed molten metal, oxygen can be generated and floated as CaO, thereby reducing the amount of oxygen in the molten metal.

よって希土類酸化物の生成を防止することができる。Therefore, generation of rare earth oxides can be prevented.

更に、熱的に安定で、希土類元素と熱力学的に還元の殆
どおこらないCaO質又はY2O,質の耐火物を溶湯保
持容器及び溶湯ノズルに用いることにより、希土類酸化
物の生成が一層おこりにくくなる。また特に、前者のC
aO質の耐火物を用いた場合、溶湯中の介在物やS等を
吸収するため、磁気特性や機械的性質に優れた永久磁石
用合金粉末を得ることができる。
Furthermore, by using CaO or Y2O refractories, which are thermally stable and hardly thermodynamically reduce with rare earth elements, for the molten metal holding container and molten metal nozzle, the generation of rare earth oxides is even less likely to occur. Become. In particular, the former C
When an aO refractory is used, it absorbs inclusions, S, etc. in the molten metal, so it is possible to obtain an alloy powder for permanent magnets with excellent magnetic properties and mechanical properties.

ここで、溶湯中のCa溶解量を1〜100 ppmとし
たのは、1 ppmより少ないと溶湯中の酸素を効果的
に低減させることができず、100ppn+より多くな
ると磁気特性の低下をきたすためである。
Here, the amount of Ca dissolved in the molten metal was set to 1 to 100 ppm because if it is less than 1 ppm, oxygen in the molten metal cannot be effectively reduced, and if it is more than 100 ppn+, the magnetic properties will deteriorate. It is.

また、雰囲気圧力Pを0.3〜9.Oatmとしたのは
、0.3atmより小さいとCa処理した溶湯中のCa
が揮発して効果が低くなり、9.Oatmより大きくな
ると高圧容器が必要となり実用上好ましくないからであ
る。更に得られる永久磁石用合金粉末の粒径を30μm
以上としたのは、ごの粉末を用いて焼結磁石を製造する
際、この粉末を粉砕して磁気配向させる面から、粉末中
の結晶粒の大きさを5μm以上としたいためである。
In addition, the atmospheric pressure P was set to 0.3 to 9. Oatm is defined as Ca in the molten metal treated with Ca when it is less than 0.3 atm.
9. Volatizes and becomes less effective. This is because if it is larger than Oatm, a high-pressure container will be required, which is not practical. Furthermore, the particle size of the obtained alloy powder for permanent magnets was reduced to 30 μm.
The reason for this is that when producing a sintered magnet using iron powder, the size of crystal grains in the powder is desired to be 5 μm or more in order to achieve magnetic orientation by pulverizing the powder.

〔実施例〕〔Example〕

CaO質の耐火物を用いた溶湯保持容器内で、13at
%Nd−]、5at%Dy−1,6aL%B−FeBa
I!の組成の合金を溶融し、これに溶湯中のCaン容解
景がそれぞれ15.18.20.30ppmになるよう
にCaを添加し、CaO質及びY2O3質の耐火物を用
いた溶湯ノズルから噴出さセで、これにアトマイズガス
圧力40kg/c+IIの不活性冷却ガスを吹き付けて
永久磁石用合金粉末を得た結果と、比較例として、Mg
O質の耐火物を用いた溶湯保持容器内で、13at%N
d  1.5at%Dy7.6at%B−F e B 
a p、の組成の合金を溶融し、これを/120.質の
耐火物を用いた溶湯ノズルから噴出させて、アトマイズ
ガス圧力40kg/ciの不活性冷却ガスを吹き付けて
永久磁石用合金粉末を得た結果を表1に示す。ここで、
粉末粒度の範囲とは、得られた永久磁石用合金粉末の累
積粒度分布の10〜90%の範囲の粉末粒径を示す。
13at in a molten metal holding container made of CaO refractory.
%Nd-], 5at%Dy-1, 6aL%B-FeBa
I! An alloy with a composition of The results of obtaining alloy powder for permanent magnets by spraying an inert cooling gas with an atomizing gas pressure of 40 kg/c + II on this in the blowout chamber, and as a comparative example, Mg
In a molten metal holding container using O quality refractory, 13at%N
d 1.5at%Dy7.6at%B-F e B
An alloy having a composition of a p is melted and the alloy is melted to a composition of /120. Table 1 shows the results of obtaining alloy powder for permanent magnets by blowing inert cooling gas at an atomizing gas pressure of 40 kg/ci through a molten metal nozzle made of high-quality refractories. here,
The range of powder particle size refers to a powder particle size in a range of 10 to 90% of the cumulative particle size distribution of the obtained alloy powder for permanent magnets.

この結果から本発明法は、従来法に比べて溶解歩留が1
0〜13%向−1ニし、且つ得られた永久磁石用合金粉
末の酸素量を低減することができることがわかる。
These results show that the method of the present invention has a dissolution yield of 1% compared to the conventional method.
It can be seen that the amount of oxygen in the obtained alloy powder for permanent magnets can be reduced from 0 to 13%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子百分率でR8〜25%(RはYを
含む希土類元素の一種あるいは二種基」二を組の合わせ
て用いる)、82〜12%、残部が鉄及びその他製造」
二不可避な不純物からなる合金の溶湯に、Ca又はCa
を含む金属を添加し、上δ己?容湯中のCa?容解鼠が
1〜]00ppmになるようにして、上記溶湯をCaO
質又はY、0.質の耐火物を用いた溶湯保持容器及び溶
湯ノズルを経°ζ噴出させ、これに不活性冷却ガスを吹
き付け永久磁石用合金粉末を得ることを特徴とする希土
類F e −B系永久磁石用合金粉末の製造方法が提供
され、これにより溶湯中の酸素量の低減及び希土類酸化
物の生成を防止することができる。
According to the present invention, the atomic percentage of R is 8 to 25% (R is one or two groups of rare earth elements including Y), 82 to 12%, and the balance is iron and other materials.
Ca or Ca is added to the molten alloy consisting of two inevitable impurities.
Adding metals containing δ? Ca in hot water? Add CaO to the molten metal so that the melting concentration is 1 to 00 ppm.
Quality or Y, 0. A rare earth Fe-B alloy for permanent magnets, which is characterized in that a molten metal holding container and a molten metal nozzle made of high-quality refractories are used to eject the molten metal over time, and an inert cooling gas is sprayed thereto to obtain alloy powder for permanent magnets. A method for producing a powder is provided, which can reduce the amount of oxygen in the molten metal and prevent the formation of rare earth oxides.

従って、溶湯保持容器及び溶湯ノズルの内壁に希土類酸
化物が付着成長することがなくなり、地金付きあるいは
ノズル径が見かけ上細くなったり、ノズル閉塞がおこる
といったことがなくなる。
Therefore, rare earth oxides do not adhere to and grow on the inner walls of the molten metal holding container and the molten metal nozzle, and no metal buildup, apparent narrowing of the nozzle diameter, or nozzle clogging occurs.

そして、ノズル径の変化がなくなるため、得られる粉末
の粒度が一定し、所定の粒度分布範囲の粉末を製造する
ことができる。
Further, since there is no change in the nozzle diameter, the particle size of the obtained powder is constant, and powder having a predetermined particle size distribution range can be manufactured.

また、溶湯中の酸素量を低減することができるため、磁
気特性の優れた永久磁石を製造することができる。
Furthermore, since the amount of oxygen in the molten metal can be reduced, a permanent magnet with excellent magnetic properties can be manufactured.

Claims (2)

【特許請求の範囲】[Claims] (1)原子百分率でR8〜25%(RはYを含む希土類
元素の一種あるいは二種以上を組み合わせて用いる)、
B2〜12%、残部が鉄及びその他製造上不可避な不純
物からなる合金の溶湯に、Ca又はCaを含む金属を添
加し、上記溶湯中のCa溶解量が1〜100ppmにな
るようにして、上記溶湯をCaO質又はY_2O_3質
の耐火物を用いた溶湯保持容器及び溶湯ノズルを経て噴
出させ、これに不活性冷却ガスを吹き付け永久磁石用合
金粉末を得ることを特徴とする希土類−Fe−B系永久
磁石用合金粉末の製造方法。
(1) R8 to 25% in atomic percentage (R is one type or a combination of two or more rare earth elements including Y),
Ca or a metal containing Ca is added to a molten metal of an alloy consisting of B2 to 12%, the balance being iron and other impurities unavoidable in manufacturing, and the amount of Ca dissolved in the molten metal is 1 to 100 ppm. A rare earth-Fe-B system characterized by ejecting molten metal through a molten metal holding container and a molten metal nozzle using a CaO-based or Y_2O_3-based refractory, and spraying an inert cooling gas onto the molten metal to obtain alloy powder for permanent magnets. A method for producing alloy powder for permanent magnets.
(2)上記合金の溶湯を、雰囲気圧力Pが0.3〜9.
0atmの不活性ガス雰囲気内で得るようにした請求項
(1)記載の希土類−Fe−B系永久磁石用合金粉末の
製造方法。(3)上記永久磁石用合金粉末の粒径が30
μm以上になるようにした希土類−Fe−B系永久磁石
用合金粉末の製造方法。
(2) The molten metal of the above alloy is heated to an atmospheric pressure P of 0.3 to 9.
The method for producing rare earth-Fe-B alloy powder for permanent magnets according to claim 1, wherein the powder is obtained in an inert gas atmosphere of 0 atm. (3) The particle size of the above alloy powder for permanent magnets is 30
A method for producing a rare earth-Fe-B alloy powder for permanent magnets having a particle size of μm or more.
JP22713788A 1988-09-09 1988-09-09 Production of alloy powder for rare earth element-fe-b permanent magnet Pending JPH0273905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22713788A JPH0273905A (en) 1988-09-09 1988-09-09 Production of alloy powder for rare earth element-fe-b permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22713788A JPH0273905A (en) 1988-09-09 1988-09-09 Production of alloy powder for rare earth element-fe-b permanent magnet

Publications (1)

Publication Number Publication Date
JPH0273905A true JPH0273905A (en) 1990-03-13

Family

ID=16856061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22713788A Pending JPH0273905A (en) 1988-09-09 1988-09-09 Production of alloy powder for rare earth element-fe-b permanent magnet

Country Status (1)

Country Link
JP (1) JPH0273905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019513A1 (en) * 2013-08-09 2015-02-12 Jx日鉱日石金属株式会社 Process for manufacturing neodymium-iron-boron-based rare earth powder or sputtering target, neodymium-iron-boron-based rare earth powder or sputtering target, and neodymium-iron-boron-based thin film for rare earth magnet or manufacturing process therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019513A1 (en) * 2013-08-09 2015-02-12 Jx日鉱日石金属株式会社 Process for manufacturing neodymium-iron-boron-based rare earth powder or sputtering target, neodymium-iron-boron-based rare earth powder or sputtering target, and neodymium-iron-boron-based thin film for rare earth magnet or manufacturing process therefor
JPWO2015019513A1 (en) * 2013-08-09 2017-03-02 Jx金属株式会社 Production method of rare earth powder or sputtering target mainly composed of neodymium, iron and boron, thin film for rare earth magnet mainly composed of neodymium, iron and boron, or production method thereof

Similar Documents

Publication Publication Date Title
US8430978B2 (en) Sputtering target and method for production thereof
JP5191620B2 (en) Rare earth permanent magnet alloy manufacturing method
JP4836136B2 (en) Sputtering target for producing metal glass film and method for producing the same
JP5342810B2 (en) Method for producing Al-based alloy sputtering target material
KR20170093951A (en) Magnetic-material sputtering target and method for producing same
GB2606652A (en) Method for preparing aluminum-containing alloy powder, use thereof and alloy strip
CN101195160A (en) Amorphous powdered alloy and method for producing the same
US6045629A (en) Alloy used for production of a rare-earth magnet and method for producing the same
US5948179A (en) Alloy used for production of a rare-earth magnet and method for producing the same
JPH09256122A (en) Ferrous amorphous alloy
JP2001355050A (en) R-t-b-c based rare earth magnet powder and bond magnet
JPH0273905A (en) Production of alloy powder for rare earth element-fe-b permanent magnet
JP3628575B2 (en) Ni-P alloy sputtering target and method for producing the same
JPH09248665A (en) Manufacture of al base alloy ingot containing high melting point metal by spray forming method
KR101683439B1 (en) Permanent Magnet Powder containing Rare Earth Element and a Method thereof
JP2718314B2 (en) Method for producing alloy powder containing rare earth metal
JP2837790B2 (en) Low oxygen rare earth alloy atomized powder and method for producing the same
KR20210067740A (en) Method of producing titanium-based powder using transfer arc plasma
US6328825B1 (en) Alloy used for production of a rare-earth magnet and method for producing the same
JPH0578715A (en) Production of alloy powder containing pare-earth metal
JP2837788B2 (en) Method for producing alloy powder for target for producing magneto-optical recording medium and alloy powder
US7195661B2 (en) Magnetic material
JPH0268904A (en) Manufacture of alloy powder for rare earth-fe-b system bond magnet
CN117696883A (en) Spherical metal powder containing active metal elements and preparation method and application thereof
JP3121901B2 (en) Manufacturing method of alloy powder