JP2837790B2 - Low oxygen rare earth alloy atomized powder and method for producing the same - Google Patents

Low oxygen rare earth alloy atomized powder and method for producing the same

Info

Publication number
JP2837790B2
JP2837790B2 JP5132808A JP13280893A JP2837790B2 JP 2837790 B2 JP2837790 B2 JP 2837790B2 JP 5132808 A JP5132808 A JP 5132808A JP 13280893 A JP13280893 A JP 13280893A JP 2837790 B2 JP2837790 B2 JP 2837790B2
Authority
JP
Japan
Prior art keywords
rare earth
powder
earth alloy
ppm
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5132808A
Other languages
Japanese (ja)
Other versions
JPH06322416A (en
Inventor
一郎 高須
昇 原田
彰彦 柳谷
俊一郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Tokushu Seiko KK
Original Assignee
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15090068&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2837790(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Tokushu Seiko KK filed Critical Sanyo Tokushu Seiko KK
Priority to JP5132808A priority Critical patent/JP2837790B2/en
Publication of JPH06322416A publication Critical patent/JPH06322416A/en
Application granted granted Critical
Publication of JP2837790B2 publication Critical patent/JP2837790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、永久磁石、磁気記録
媒体等のエレクトロニクス分野における電気材料および
磁性材料に使用される低酸素希土類合金粉末およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low oxygen rare earth alloy powder used for electric and magnetic materials in the field of electronics such as permanent magnets and magnetic recording media, and to a method for producing the same.

【0002】[0002]

【従来の技術】希土類元素を含む合金の用途は多岐にわ
たっているが、その大きな用途の一つとして、永久磁
石、磁気記録媒体等の電気材料および磁性材料がある。
これらの電磁材料では、磁気特性、耐食性、耐熱性等の
観点から含有酸素の量を低く抑える必要がある。ところ
で、これらの電磁材料に使用される希土類合金粉末の従
来より行われている製造方法は希土類合金の鋳塊の機械
的粉砕によっていた。しかし、この方法では粉砕過程で
粉末が酸化するおそれがあるため、非常にシビアに粉末
を製造し取扱う必要があった。また、粉砕粉の形状は角
ばった異形状であるため粉末の流動性が悪く、粉末の取
扱中に衝撃による発火等のために酸化するおそれもあっ
た。そのため効率よく大量に工業的に低酸素の粉末を製
造することは困難であった。また、組成的には、鋳塊の
粉砕により製造した粉末には鋳造時における偏析を原因
とする成分のばらつきが生じ、均一組成の製品を得るこ
とが困難であった。
2. Description of the Related Art Alloys containing rare earth elements are used in a wide variety of applications. One of the major uses is an electric material such as a permanent magnet and a magnetic recording medium and a magnetic material.
In these electromagnetic materials, it is necessary to keep the amount of oxygen contained low from the viewpoints of magnetic properties, corrosion resistance, heat resistance and the like. By the way, the conventional production method of the rare earth alloy powder used for these electromagnetic materials has been by mechanical pulverization of an ingot of the rare earth alloy. However, in this method, since the powder may be oxidized in the pulverization process, it is necessary to produce and handle the powder very severely. Further, since the shape of the pulverized powder is irregular and irregular, the fluidity of the powder is poor, and the powder may be oxidized due to ignition or the like during handling of the powder. Therefore, it has been difficult to efficiently and industrially produce low oxygen powder in large quantities. In terms of composition, powder produced by pulverizing an ingot has variations in components due to segregation during casting, making it difficult to obtain a product having a uniform composition.

【0003】[0003]

【発明が解決しようとする課題】本発明の解決しようと
する問題点は、偏析のない均一な組成でかつ低酸素の希
土類合金粉末およびこれら低酸素希土類合金粉末を効率
よく容易に製造する方法を提供することである。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to provide a rare earth alloy powder having a uniform composition and a low oxygen content without segregation, and a method for efficiently and easily producing the low oxygen rare earth alloy powder. To provide.

【0004】[0004]

【課題を解決するための手段】本発明は、粉末中の含有
酸素量が500ppm以下でかつ粉末の粒径分布が5μ
m以上で500μm以下である球状の低酸素希土類合金
アトマイズ粉末および希土類元素を10原子%以上含む
合金母材を溶解し、該溶湯を噴霧ガスにAr、He等の
不活性ガスを用いたガスアトマイズ法により、その噴霧
チャンバ内の残存酸素量を50ppm以下にして噴霧す
る低酸素含有希土類合金アトマイズ粉末の製造方法であ
る。
According to the present invention, an oxygen content in a powder is 500 ppm or less and a particle size distribution of the powder is 5 μm.
gas atomizing method using a spherical low-oxygen rare earth alloy atomized powder having a diameter of not less than m and not more than 500 μm and an alloy base material containing at least 10 atomic% of a rare earth element, and using the molten metal as a spray gas with an inert gas such as Ar or He Thus, a method for producing a low-oxygen-containing rare earth alloy atomized powder in which the amount of residual oxygen in the spray chamber is reduced to 50 ppm or less.

【0005】[0005]

【作用】本発明における希土類合金粉末は、該合金溶湯
を不活性ガスを用いるアトマイズ法により噴霧して得た
ので、鋳塊を機械的粉砕して得た粉末に見られるような
偏析がなく組成的に均一で、かつ粒径が5μm以上で5
00μm以下の粒度分布を有する球状粉末であるので、
流動性がよく取扱いやすく爆発等の危険が少なく、さら
に、アトマイズ粉末中に含有されている酸素濃度が50
0ppm以下と低酸素のものであるので、このアトマイ
ズ粉末を材料とする永久磁石や磁気記録媒体等の電磁材
料は磁気特性、耐食性、耐熱性等において極めて優れた
ものとなる。
Since the rare earth alloy powder of the present invention is obtained by spraying the molten alloy by an atomizing method using an inert gas, the rare earth alloy powder has no segregation as seen in powder obtained by mechanically pulverizing an ingot. 5 and more than 5 μm
Because it is a spherical powder having a particle size distribution of 00 μm or less,
It has good fluidity, is easy to handle, has little danger of explosion, etc., and has an oxygen concentration of 50 in atomized powder.
Since the oxygen content is as low as 0 ppm or less, electromagnetic materials such as permanent magnets and magnetic recording media made of the atomized powder are extremely excellent in magnetic properties, corrosion resistance, heat resistance, and the like.

【0006】[0006]

【実施例】原子%でNd:15.0%、B:8.0%、
Fe:残部の組成となるように、Nd、B、Feの各単
体物およびNdFeB合金を合計で10kgをアルミナ
るつぼに挿入し、真空誘導溶解法により溶解した。一
方、あらかじめArガスをアトマイズチャンバ内に充満
させアトマイズ雰囲気中の酸素濃度を38ppmにした
後、該アトマイズチャンバ内でArガスにより溶解した
合金をアトマイズした。
EXAMPLE Nd: 15.0%, B: 8.0% in atomic%,
Fe: A total of 10 kg of a single substance of Nd, B, and Fe and an NdFeB alloy was inserted into an alumina crucible and melted by a vacuum induction melting method so as to have a balance of Fe. On the other hand, Ar gas was previously filled in the atomizing chamber to adjust the oxygen concentration in the atomizing atmosphere to 38 ppm, and then the alloy dissolved by the Ar gas in the atomizing chamber was atomized.

【0007】表1に、この方法で製造したアトマイズ粉
末の組成および酸素濃度を示した。
[0007] Table 1 shows the composition and oxygen concentration of the atomized powder produced by this method.

【0008】[0008]

【表1】 [Table 1]

【0009】また、上記の合金でアトマイズ雰囲気中の
酸素を変化させてアトマイズを行い、そのとき得られた
粉末の酸素濃度とアトマイズ雰囲気中の酸素濃度の関係
を図1に示した。
Atomization is performed by changing the oxygen in the atomized atmosphere with the above alloy. FIG. 1 shows the relationship between the oxygen concentration of the powder obtained and the oxygen concentration in the atomized atmosphere.

【0010】図1から、アトマイズ雰囲気中の酸素濃度
が50ppm以下であれば、得られたアトマイズ粉末中
の酸素濃度は500ppm以下であることが判る。しか
し、アトマイズ雰囲気中の酸素濃度が50ppmを超え
ると、得られるアトマイズ粉末中の酸素濃度は急激に増
加し、アトマイズ雰囲気中の酸素濃度が60ppmにな
るとアトマイズ粉末中の酸素濃度は略1000ppm近
くにも達することが判る。
FIG. 1 shows that if the oxygen concentration in the atomized atmosphere is 50 ppm or less, the oxygen concentration in the obtained atomized powder is 500 ppm or less. However, when the oxygen concentration in the atomized atmosphere exceeds 50 ppm, the oxygen concentration in the obtained atomized powder rapidly increases, and when the oxygen concentration in the atomized atmosphere reaches 60 ppm, the oxygen concentration in the atomized powder becomes nearly 1000 ppm. It turns out that it reaches.

【0011】以上のことから、酸素濃度が500ppm
以下の低酸素希土類合金粉末をアトマイズ法により製造
するためには、アトマイズチャンバ内の不活性ガス雰囲
気中の酸素濃度を50ppm以下にしたチャンバ内で希
土類合金の溶湯をガスアトマイズすれば良いことが判
る。
From the above, the oxygen concentration is 500 ppm
In order to produce the following low-oxygen rare earth alloy powder by the atomizing method, it can be seen that the rare earth alloy melt should be gas-atomized in the chamber in which the oxygen concentration in the inert gas atmosphere in the atomizing chamber is 50 ppm or less.

【0012】一般にチャンバ内の酸素量は、操業開始に
際して行うチャンバ内空気の不活性ガスによる置換の徹
底度によって定まる。酸素量50ppmは空気の置換率
にして99.75%を達成しなければならず、また操業
中はシステム各部からの空気の僅かの侵入も防がねばな
らない。従来ここまでの配慮はしないのが普通であっ
た。
In general, the amount of oxygen in the chamber is determined by the degree of replacement of the air in the chamber with an inert gas at the start of operation. An oxygen content of 50 ppm must achieve an air displacement of 99.75% and, during operation, slight ingress of air from various parts of the system must be prevented. In the past, it was usual not to consider this.

【0013】[0013]

【発明の効果】以上説明したように、本発明における希
土類元素を10%以上含有する希土類合金粉末は含有す
る酸素量が500ppm以下と低酸素でかつ組成が均一
であるので、該粉末を永久磁石や磁気記録媒体の材料と
した場合、磁気特性、耐食性、耐熱性等に極めて優れた
電磁材料が得られ、また、本発明の希土類合金粉末は球
状であるため取扱が容易であり、かつ、発火する危険も
少なく、従来の鋳塊の粉砕粉に比して優れた効果を有す
る。
As described above, the rare-earth alloy powder containing 10% or more of the rare-earth element in the present invention has a low oxygen content of 500 ppm or less and a uniform composition. When used as a material for magnetic recording media, magnetic materials having excellent magnetic properties, corrosion resistance, heat resistance, and the like can be obtained, and the rare earth alloy powder of the present invention is spherical, so that it is easy to handle and fire. There is less danger of sintering, and it has an excellent effect as compared with the conventional pulverized ingot powder.

【0014】また、本発明の希土類合金粉末の製造方法
は従来の鋳塊の粉砕法に比して極めて効率よく安全に低
酸素の希土類合金粉末を製造することができる。
Further, the method for producing a rare earth alloy powder of the present invention can produce a low oxygen rare earth alloy powder extremely efficiently and safely as compared with the conventional ingot crushing method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アトマイズ雰囲気中の酸素濃度とアトマイズ粉
末中の酸素濃度の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between an oxygen concentration in an atomized atmosphere and an oxygen concentration in an atomized powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 俊一郎 兵庫県姫路市飾磨区中島字一文字3007番 地 山陽特殊製鋼株式会社内 (56)参考文献 特開 平1−242733(JP,A) 特開 昭62−130207(JP,A) 特開 平4−314803(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22F 9/08 G11B 5/62 H01F 1/053──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shunichiro Nishikawa 3007 1 character Nakajima character in Shima, Himeji City, Hyogo Prefecture Inside Sanyo Special Steel Co., Ltd. (56) References JP 1-2242733 (JP, A) JP 62-130207 (JP, A) JP-A-4-314803 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22F 9/08 G11B 5/62 H01F 1/053

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類元素を10原子%以上含む合金の
ガスアトマイズ法により製造した希土類合金粉末におい
て、アトマイズ雰囲気中の酸素含有量を50ppm以下
に制御することにより得られた希土類合金粉末の酸素含
有量が500ppm以下であることを特徴とする低酸素
希土類合金ガスアトマイズ粉末。
1. An oxygen content of a rare earth alloy powder obtained by controlling an oxygen content in an atomized atmosphere to 50 ppm or less in a rare earth alloy powder produced by a gas atomization method of an alloy containing 10 at% or more of a rare earth element. Is 500 ppm or less.
【請求項2】 希土類元素を10原子%以上含む合金を
ガスアトマイズ法を用いて製造する希土類合金粉末の製
造法において、アトマイズ雰囲気中の酸素含有量を50
ppm以下に制御することを特徴とする酸素含有量が5
00ppm以下である低酸素希土類合金ガスアトマイズ
粉末の製造方法。
2. A method for producing a rare earth alloy powder in which an alloy containing at least 10 atomic% of a rare earth element is produced by a gas atomization method, wherein the oxygen content in the atomized atmosphere is reduced to 50%.
The oxygen content is controlled to 5 ppm or less.
A method for producing a low-oxygen rare earth alloy gas atomized powder of not more than 00 ppm.
JP5132808A 1993-05-11 1993-05-11 Low oxygen rare earth alloy atomized powder and method for producing the same Expired - Lifetime JP2837790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5132808A JP2837790B2 (en) 1993-05-11 1993-05-11 Low oxygen rare earth alloy atomized powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5132808A JP2837790B2 (en) 1993-05-11 1993-05-11 Low oxygen rare earth alloy atomized powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06322416A JPH06322416A (en) 1994-11-22
JP2837790B2 true JP2837790B2 (en) 1998-12-16

Family

ID=15090068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132808A Expired - Lifetime JP2837790B2 (en) 1993-05-11 1993-05-11 Low oxygen rare earth alloy atomized powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2837790B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1554411B1 (en) 2002-10-25 2013-05-08 Showa Denko K.K. Production method of an alloy containing rare earth element
CN102248171A (en) * 2011-07-12 2011-11-23 中南大学 Gas atomization method for preparing oxygen supersaturated iron-based alloy powder
JP6215329B2 (en) * 2013-08-09 2017-10-18 Jx金属株式会社 Production method of rare earth powder or sputtering target mainly composed of neodymium, iron and boron, thin film for rare earth magnet mainly composed of neodymium, iron and boron, or production method thereof
JP6466362B2 (en) * 2016-04-01 2019-02-06 ミネベアミツミ株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
CN107377983A (en) * 2017-08-04 2017-11-24 米亚索乐装备集成(福建)有限公司 A kind of atomising device for preparing alloyed metal powder

Also Published As

Publication number Publication date
JPH06322416A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
US4801340A (en) Method for manufacturing permanent magnets
KR900001477B1 (en) Permanent magnetic alloy and method of manufacturing the same
US6296720B1 (en) Rare earth/iron/boron-based permanent magnet alloy composition
US4541877A (en) Method of producing high performance permanent magnets
US6045629A (en) Alloy used for production of a rare-earth magnet and method for producing the same
JP2837790B2 (en) Low oxygen rare earth alloy atomized powder and method for producing the same
US4994109A (en) Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets
JPS6393841A (en) Rare-earth permanent magnet alloy
JPH09104902A (en) Powder compacting method
EP0571002B2 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
JP2789364B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JP2837788B2 (en) Method for producing alloy powder for target for producing magneto-optical recording medium and alloy powder
JPS5693848A (en) Rare earth intermetallic compound magnet
JP3083963B2 (en) Method and apparatus for producing anisotropic granulated powder
JPS61208807A (en) Permanent magnet
JPS59229461A (en) Magnetic alloy powder for magnetic recording
JP3142851B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JP2961360B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property
JPH06200307A (en) Production of raw material alloy for rare earth magnet
JPH09115755A (en) Improved re-fe-b magnet and manufacture thereof
JPH10330806A (en) Production of metal powder of pseudo-spherical irregular shape
JP2779654B2 (en) Sintered permanent magnet alloy with excellent oxidation resistance