JPH0273612A - Manufacture of large-sized ferrite core - Google Patents

Manufacture of large-sized ferrite core

Info

Publication number
JPH0273612A
JPH0273612A JP63225443A JP22544388A JPH0273612A JP H0273612 A JPH0273612 A JP H0273612A JP 63225443 A JP63225443 A JP 63225443A JP 22544388 A JP22544388 A JP 22544388A JP H0273612 A JPH0273612 A JP H0273612A
Authority
JP
Japan
Prior art keywords
molded body
ferrite
sintering
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63225443A
Other languages
Japanese (ja)
Inventor
Tsutomu Iimura
飯村 勉
Shunichi Nishiyama
俊一 西山
Kenji Maruta
丸田 賢二
Nobuo Mochida
持田 農夫男
Kyozo Ogawa
共三 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63225443A priority Critical patent/JPH0273612A/en
Publication of JPH0273612A publication Critical patent/JPH0273612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To eliminate the deviation of a molded form from a foundation even if the form is contracted due to sintering and to prevent it from cracking or warping by steadily mounting the form on the foundation through heat resistant rotors, and sintering it. CONSTITUTION:A molded form 1 for a ferrite core is steadily mounted on a foundation 3 through rotors 2, and the interval of the rotors 2 is sufficiently increased. When it is sintered in this state, the form 1 is contracted, but the rotors 2 are moved inward in response to the contraction between the form 1 and the foundation 3. That is, the rotors 2 is completely prevented from sliding between the form 1 and the foundation 3 by the operation of rolls to prevent it from cracking or warping due to the slide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大型フェライトコアの製造方法に関し、特に焼
結中に割れやそりが入らない大型フェライトコアの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a large ferrite core, and more particularly to a method for manufacturing a large ferrite core that does not cause cracks or warpage during sintering.

〔従来の技術〕[Conventional technology]

フェライトはFe、0.に各種の金属酸化物を添加して
なるものであり、永久磁石や軟磁性材料として広く使用
されている。特に、磁心として用いる場合、良好な軟磁
性を有するという理由でNi−Zn系やMn−Zn系の
フェライトが使用されている。フェライトは一般に、F
e2L粉末に各種金属酸化物あるいは金属炭酸塩等の粉
末を配合し、金型プレス、冷間静水圧プレス(CIP)
等により成形した後、焼結することにより製造すること
ができる。
Ferrite is Fe, 0. It is made by adding various metal oxides to magnets, and is widely used as permanent magnets and soft magnetic materials. In particular, when used as a magnetic core, Ni-Zn-based and Mn-Zn-based ferrites are used because they have good soft magnetism. Ferrite is generally F
Mix e2L powder with powders such as various metal oxides or metal carbonates, and perform mold pressing and cold isostatic pressing (CIP).
It can be manufactured by molding by a method such as the above method and then sintering.

最近、自由電子レーザーやシンクロトロン放射光装置の
加速器等にソフトフェライトの大型コアを使用すること
が試みられている。この場合、扇形状のフェライトコア
片を作成し、それらを一体的に接合すれば、簡単に大型
コアとすることができる。ところが、コア片を接合すれ
ばギャップが形成されることになり、そこから磁束が漏
洩したりして、加速器用のコアとしては好ましくない。
Recently, attempts have been made to use large soft ferrite cores in free electron lasers, accelerators for synchrotron radiation devices, and the like. In this case, by creating fan-shaped ferrite core pieces and joining them together, a large core can be easily obtained. However, if the core pieces are joined together, a gap will be formed, from which magnetic flux may leak, making it undesirable as a core for an accelerator.

そこで大型コアを一体的に形成することが望まれている
Therefore, it is desired to integrally form a large core.

〔発明が解決しようとする課題〕 しかしながら、フェライトは焼結により約20%近く収
縮するので、大型フェライトコアの場合、平坦な土台と
成形体の間にすべりが生じ、割れやそりの原因となるこ
とがわかった。
[Problem to be solved by the invention] However, since ferrite shrinks by about 20% during sintering, in the case of large ferrite cores, slipping occurs between the flat base and the molded body, causing cracks and warping. I understand.

従って本発明の目的は焼結中に割れやそりを生ずること
なく大型フェライトコアを製造する方法を提供すること
である。
It is therefore an object of the present invention to provide a method for manufacturing large ferrite cores without cracking or warping during sintering.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に汲み鋭意研究の結果、本発明者は焼結中に成
形体と土台との間に直接すべりが生じないようにその間
に回転体を配置し、かつ成形体の収縮に応じて回転体が
回転したときに近隣の回転体が妨害し合わないように、
回転体間に十分な間隔を設けておくことにより、割れや
そりのない大型フェライトコアを製造することができる
ことを発見し、また厚手の大型フェライトコアの場合、
フェライト成形体と球面接触する媒体を介在させること
により、フェライト成形体がその媒体上をスムーズにす
べることができることを発見し、本発明に想到した。
As a result of intensive research with the above purpose in mind, the present inventors placed a rotating body between the molded body and the base to prevent direct slippage between the molded body and the base during sintering, and the rotating body To prevent neighboring rotating bodies from interfering with each other when the rotates,
We discovered that by providing sufficient space between rotating bodies, it is possible to manufacture large ferrite cores without cracks or warpage, and in the case of thick large ferrite cores,
The inventors have discovered that by interposing a medium that makes spherical contact with the ferrite molded body, the ferrite molded body can smoothly slide on the medium, and have conceived the present invention.

すなわち、本発明の大型フェライトコアの第一の製造方
法は、平坦な土台上に多数の耐熱性回転体を介してフェ
ライト成形体を静置し、前記フェライト成形体を焼結す
るものであって、焼結による前記フェライト成形体の収
縮に応じて前記耐熱性回転体が自由に回転できるように
、前記回転体間に十分な間隔を存在させることを特徴と
する。
That is, the first method for producing a large ferrite core of the present invention is to place a ferrite molded body on a flat base via a large number of heat-resistant rotating bodies, and then sinter the ferrite molded body. A sufficient space is provided between the rotary bodies so that the heat-resistant rotary bodies can freely rotate in response to contraction of the ferrite molded body due to sintering.

本発明の第二の製造方法は、平坦な土台上に多数の耐熱
性球体を介してフェライト成形体を静置し、前記フェラ
イト成形体を焼結することにより厚手の大型フェライト
コアを製造する方法であって、焼結による前記フェライ
ト成形体の収縮に応じて前記耐熱性球体上を前記フェラ
イト成形体がすべることを特徴とする。
A second manufacturing method of the present invention is a method of manufacturing a thick large ferrite core by placing a ferrite molded body on a flat base via a large number of heat-resistant spheres and sintering the ferrite molded body. The ferrite molded body is characterized in that the ferrite molded body slides on the heat-resistant sphere in response to contraction of the ferrite molded body due to sintering.

本発明の第三の製造方法は、多数の球面状突起を有する
平坦な耐熱性土台上にフェライト成形体を静置し、前記
フェライト成形体を焼結することにより厚手の大型フェ
ライトコアを製造する方法であって、焼結による前記フ
ェライト成形体の収縮に応じて前記球面状突起上を前記
フェライト成形体がすべることを特徴とする。
A third manufacturing method of the present invention is to manufacture a thick large ferrite core by placing a ferrite molded body still on a flat heat-resistant base having a large number of spherical protrusions and sintering the ferrite molded body. The method is characterized in that the ferrite molded body slides on the spherical protrusion in response to contraction of the ferrite molded body due to sintering.

〔作 用〕[For production]

第1図に示すように、フェライトコア用の成形体Iは回
転体2を介して土台3上に静置されるが、各回転体2の
間隔は十分にとられている。このような状態で焼結を行
うと成形体1は収縮するが、それに応じて回転体2は成
形体1と土台3との間で回転しながら、内側に移動する
。すなわち回転体2はころの作用をする。これにより成
形体1と土台3との間のすべりは完全に防止され、それ
に基づく割れやそりの問題がなくなる。
As shown in FIG. 1, a molded body I for a ferrite core is placed on a base 3 via rotating bodies 2, with sufficient intervals between the rotating bodies 2. When sintering is performed in such a state, the molded body 1 contracts, and the rotating body 2 rotates between the molded body 1 and the base 3 and moves inward accordingly. That is, the rotating body 2 acts as a roller. This completely prevents slippage between the molded body 1 and the base 3, and eliminates the problems of cracking and warping caused by this.

ところが、回転体2の密度が高すぎると、回転体2が内
側に移動中前方の回転体2により進路を妨げられ、結局
第3図に示すように乗り上げる格構となる。こうなると
成形体lは変形し、そのまま焼結するので局部的に曲が
ったりそったりした形状となる。またこれにより焼結割
れが生ずることもある。
However, if the density of the rotating body 2 is too high, the rotating body 2 will be obstructed in its path by the rotating body 2 in front of it while moving inward, and will end up running over as shown in FIG. In this case, the molded body l is deformed and sintered as it is, resulting in a locally bent or warped shape. This may also cause sintering cracks.

一方厚手の大型フェライトコアの場合、フェライト成形
体に接触する球体又は球面状突起の密度が高くないと、
点接触により成形体にへこみができるので、密度を高く
する。この場合、成形体と球体又は球面状突起とは球面
接触であるので、成形体の重みにもかかわらずスムーズ
にすべることができる。
On the other hand, in the case of a thick large ferrite core, if the density of the spheres or spherical protrusions that contact the ferrite molded body is not high,
Point contact creates dents in the molded body, so the density is increased. In this case, since the molded body and the sphere or spherical protrusion are in spherical contact, the molded body can slide smoothly despite the weight of the molded body.

〔実施例〕〔Example〕

本発明の大型フェライトコアは、各種のフェライト材料
により形成することができるが、良好な軟磁性を有する
という意味でN1Jn系フエライトにより形成するのが
好ましい。特に酸化第二鉄(Fe、03)に酸化ニッケ
ル(NiO) 12〜30モル%、酸化亜鉛(ZnO)
 15〜35モル%、酸化銅(Cub)  2〜10モ
ル%を配合してなるものが好ましい。
Although the large ferrite core of the present invention can be formed from various ferrite materials, it is preferably formed from N1Jn ferrite in the sense that it has good soft magnetic properties. In particular, ferric oxide (Fe, 03), nickel oxide (NiO) 12-30 mol%, zinc oxide (ZnO)
It is preferable to mix 15 to 35 mol % of copper oxide (Cub) and 2 to 10 mol % of copper oxide (Cub).

成形体は、上記成分の粉末を混合、仮焼し、粉砕後造粒
し、150〜350μm程度の粒度に分級したものを用
いて形成する。成形は金型プレスにより行うことができ
るが、大型コア成形体全体を均一な密度にするという観
点から冷間静水圧プレス(CIP)により行うのが好ま
しい。金型プレスの場合、0,5t/cff1以上の圧
力で行い、CIPの場合も0.5t/cff1以上の圧
力で行う。
The molded body is formed by mixing powders of the above components, calcining them, pulverizing them, granulating them, and classifying them into particle sizes of about 150 to 350 μm. Although the molding can be performed by die pressing, it is preferable to perform the molding by cold isostatic pressing (CIP) from the viewpoint of making the entire large core molded body have a uniform density. In the case of mold press, it is performed at a pressure of 0.5 t/cff1 or more, and in the case of CIP, it is performed at a pressure of 0.5 t/cff1 or more.

第1図に示すように、成形体lを、回転体2を介して土
台3上に静置する。回転体2は焼結中度性しないように
十分な耐熱性を有する必要があり、かつ焼結中成形体と
反応しないものである必要がある。この意味でセラミッ
ク製とするのが好ましく、特にアルミナ(AIJ:+)
IJとするのが好ましい。
As shown in FIG. 1, a molded body 1 is placed on a base 3 via a rotating body 2. The rotating body 2 needs to have sufficient heat resistance so as not to cause intermediate sintering, and needs to not react with the compact during sintering. In this sense, it is preferable to use ceramic, especially alumina (AIJ:+).
It is preferable to use IJ.

回転体2はまた、任意の方向へ自由に回転できるという
意味で球体であるのが好ましい。球体の直径は成形体の
重量により異なるが、一般に焼結後の厚さが172イン
チ(12,7mm)以下の場合1〜10m1Tlφ程度
であればよく、焼結後の厚さが172インチ(12,7
mm) 〜1インチ(25,4mm)の場合15〜20
mmφ程度であればよい。球体はまた同じ大きさである
必要はなく、大直径の球体と小直径の球体とを組合せて
用いることにより、ころがりを−層良好にすることがで
きる。この場合大直径の球体だけが成形体と接触する。
The rotating body 2 is also preferably spherical in the sense that it can freely rotate in any direction. The diameter of the sphere varies depending on the weight of the molded body, but in general, if the thickness after sintering is 172 inches (12.7 mm) or less, it may be about 1 to 10 m1Tlφ; ,7
mm) ~15~20 for 1 inch (25,4mm)
It suffices if it is about mmφ. The spheres also do not have to be of the same size; a combination of large and small diameter spheres can be used to improve rolling. In this case only the large diameter spheres come into contact with the shaped body.

例えば10mmφの球体と5mmφの球体を組み合わせ
て使用することができる。焼結により成形体は約20%
近く収縮し、第2図に示すように、回転体(球体)2間
の間隔は狭くなる。成形体の収縮率から考えて、理論的
には回転体2の平面占有率(平面上を回転体2が占める
割合で最密充填の場合を100%とする)は約80%と
すればよいわけであるが、実用的には回転体2の配置の
局所的不均一さや回転の不均一さの可能性等を考慮して
、平面占有率は20〜80%程度とする。20%未満で
あると、個々の回転体2にかかる成形体1の重量が大き
くなりすぎ、成形体1に凹みが生じる。また80%を超
えると隣接する回転体2が回転を妨害し合って、第3図
に示すように回転体2が乗り上げる現象が生ずるおそれ
がある。
For example, a 10 mmφ sphere and a 5 mmφ sphere can be used in combination. Approximately 20% of the compact is reduced by sintering.
It will soon contract, and as shown in FIG. 2, the distance between the rotating bodies (spherical bodies) 2 will become narrower. Considering the shrinkage rate of the molded body, theoretically, the plane occupancy rate of the rotating body 2 (the proportion that the rotating body 2 occupies on the plane, in the case of close packing is assumed to be 100%) should be about 80%. However, in practical terms, the plane occupancy rate is set to about 20 to 80%, taking into consideration the possibility of local non-uniformity in the arrangement of the rotating body 2 and non-uniform rotation. If it is less than 20%, the weight of the molded body 1 applied to each rotating body 2 becomes too large, and a dent occurs in the molded body 1. If it exceeds 80%, there is a risk that adjacent rotating bodies 2 will interfere with each other's rotation, causing a phenomenon in which the rotating bodies 2 ride on each other as shown in FIG.

この平面占有率の選定は、成形体の厚みによっである程
度決まるものであり、成形体が厚い場合には平面占有率
を大きくし、成形体が薄い場合には平面占有率を小さく
することができる。
The selection of this plane occupancy rate is determined to some extent by the thickness of the molded body; if the molded body is thick, the plane occupancy rate may be increased, and if the molded body is thin, the plane occupancy rate may be decreased. can.

なお回転体2は均一に配置する必要があり、そのために
は土台3上に焼結温度により焼失する粘着剤や結合剤等
を塗布する等して、固定しておけばよい。
Note that the rotating bodies 2 need to be arranged uniformly, and for this purpose, they may be fixed by applying an adhesive, a binder, or the like that is burnt off at the sintering temperature onto the base 3.

一方厚手の大型フェライトコアの場合、成形体と球面接
触する媒体を用い、成形体をスムーズにすべらせるのが
好ましい。例えば球体を用いる場合、成形体の重みによ
り前の球体に乗り上げるおそれはない。また球面状突起
を多数有する平面体を用いる場合も同様に、球面接触に
よりスムーズなすべりが保証される。いずれの場合も、
平面占有率としては100%まで可能である。
On the other hand, in the case of a thick large ferrite core, it is preferable to use a medium that makes spherical contact with the molded body to allow the molded body to slide smoothly. For example, when using a sphere, there is no risk of the molded body riding on the previous sphere due to its weight. Similarly, when using a planar body having a large number of spherical protrusions, smooth sliding is ensured by the spherical contact. In either case,
The plane occupancy rate can be up to 100%.

焼結は大型熱処理炉中で1050〜1200℃で2〜1
0時間行う。焼結後は焼結体を研削加工し、所定のサイ
ズにそろえる。
Sintering is performed in a large heat treatment furnace at 1050-1200℃ for 2 to 1
Do it for 0 hours. After sintering, the sintered body is ground to the desired size.

このようにして外径500 mm以上、特に650 m
m以上で、厚さ4〜60mmの大型フェライトコアを製
造することができる。なお厚さが4mm未満となると割
れやそりが発生しやすくなり、製造歩留まりが低下する
。大型フェライトコアの内径はとくに制限ないが、例え
ば外径が650 mmの場合350 mm程度であれば
よい。
In this way, with an outer diameter of 500 mm or more, especially 650 m
m or more, a large ferrite core with a thickness of 4 to 60 mm can be manufactured. Note that if the thickness is less than 4 mm, cracks and warpage are likely to occur, resulting in a decrease in manufacturing yield. The inner diameter of the large ferrite core is not particularly limited, but for example, if the outer diameter is 650 mm, it may be about 350 mm.

このようにして得られた大型フェライトコアは、特にN
i−Zn−Cu系フェライトからなる場合、3000〜
4300KGと高い飽和磁束密度(BS)と、0.1〜
1.50eと低い保磁力(Ha)と、80J/m’kG
以下のコアロス(エネルギー損失)とを有する。
The large ferrite core obtained in this way is particularly
When made of i-Zn-Cu ferrite, 3000~
High saturation magnetic flux density (BS) of 4300KG and 0.1~
Low coercive force (Ha) of 1.50e and 80J/m'kG
It has the following core loss (energy loss).

一般に、コアロスはコアにかかるパルスの周波数ととも
に増大し、また厚さとともに増大する。
Generally, core loss increases with the frequency of pulses applied to the core, and also increases with thickness.

従って、コアロスによる熱を放冷するとともに、コアロ
ス自身を低下させるために、大型フェライトコアはでき
るだけ薄い方が好ましい。しかし製造歩留まりの観点か
ら、500 mmφ以上の外径の場合、174インチ(
6,4mm)以下とすることは困難である。
Therefore, it is preferable that the large ferrite core be as thin as possible in order to dissipate the heat caused by the core loss and to reduce the core loss itself. However, from the viewpoint of manufacturing yield, in the case of an outer diameter of 500 mmφ or more, 174 inches (
6.4 mm) or less is difficult.

実施例I N+Q粉末25.0モル%、XnO粉末21.0モル%
、CuO粉末4.5モル%、残部Fe2O:+粉末を混
合し、800℃で仮焼し、粉砕後スプレードライ法で造
粒し、150〜350μmの粒度に分級した。
Example I N+Q powder 25.0 mol%, XnO powder 21.0 mol%
, 4.5 mol % of CuO powder, and the remainder Fe2O:+ powder were mixed, calcined at 800°C, pulverized, granulated by a spray drying method, and classified to a particle size of 150 to 350 μm.

得られた厚料粉末にポリビニルアルコールバインダー1
%を添加し、金型ブレスにより0.75t/c++1の
成形圧で外径825 mm、内径410 mm、厚さ3
8mmの環状成形体を作成した。この成形体を、直径1
0mmのhl 、0.球体を介してムライト製土台板上
にほぼ均一に配置した。
Polyvinyl alcohol binder 1 is added to the obtained thick powder.
%, and molding pressure of 0.75t/c++1 with a mold press to form an outer diameter of 825 mm, an inner diameter of 410 mm, and a thickness of 3.
An 8 mm annular molded body was created. This molded body has a diameter of 1
0mm hl, 0. The spheres were placed almost uniformly on the mullite base plate.

次に大型熱処理炉中で1100℃で5時間焼結を行い、
外径660 mm、内径328 mm、厚さ30.4m
mの焼結体を得た。得られた焼結体には割れやそりは全
くなかった。このようにして得られた焼結体を研削加工
することにより、外径650 mm、内径350 mm
、厚さ12.8mmの環状大型フェライトコアを得るこ
とができた。
Next, sintering was performed at 1100°C for 5 hours in a large heat treatment furnace.
Outer diameter 660 mm, inner diameter 328 mm, thickness 30.4 m
A sintered body of m was obtained. The obtained sintered body had no cracks or warpage. By grinding the sintered body thus obtained, it has an outer diameter of 650 mm and an inner diameter of 350 mm.
, a large annular ferrite core with a thickness of 12.8 mm could be obtained.

〔発明の効果] 以上説明した通り、本発明の方法は、耐熱回転体を介し
て成形体を土台上に静置し焼結するので、焼結により成
形体が収縮しても土台との間にずりが起こることはなく
、従って割れやそりを防止することができる。また厚手
の大型フェライトコアの場合は球面接触する媒体を用い
て成形体をすべらせるので、同様に割れやそりのおそれ
がなく、さらに接触によるへこみも最小におさえること
ができる。このため、本発明の方法によれば大型フェラ
イトコアを歩留まりよく製造することができる。
[Effects of the Invention] As explained above, in the method of the present invention, the molded body is placed on the base via the heat-resistant rotating body and sintered, so even if the molded body shrinks due to sintering, there is no gap between the molded body and the base. No shearing occurs, and therefore cracking and warping can be prevented. In addition, in the case of a thick large ferrite core, since the molded body is slid using a medium that contacts the spherical surfaces, there is no fear of cracking or warping, and furthermore, dents due to contact can be minimized. Therefore, according to the method of the present invention, large ferrite cores can be manufactured with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフェライト成形体が耐熱回転体を介して土台上
に静置されている状態を示す断面図であり、 第2図は焼結によりフェライト成形体が収縮している状
態を示す断面図であり、 第3図は耐熱回転体が乗り上げることにより成形体(焼
結体)が変形したことを示す断面図である。 1・・・フェライト成形体 2・・・耐熱回転体 3・・・土台 第1図 嘉2図
Fig. 1 is a sectional view showing a state in which the ferrite molded body is placed on a base via a heat-resistant rotating body, and Fig. 2 is a sectional view showing the state in which the ferrite molded body is contracted due to sintering. FIG. 3 is a cross-sectional view showing that the molded body (sintered body) is deformed due to the heat-resistant rotating body running over it. 1... Ferrite molded body 2... Heat resistant rotating body 3... Base Figure 1 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)平坦な土台上に多数の耐熱性回転体を介してフェ
ライト成形体を静置し、前記フェライト成形体を焼結す
ることにより大型フェライトコアを製造する方法であっ
て、焼結による前記フェライト成形体の収縮に応じて前
記耐熱性回転体が自由に回転できるように、前記回転体
間に十分な間隔を存在させることを特徴とする方法。
(1) A method for manufacturing a large ferrite core by placing a ferrite molded body on a flat base via a number of heat-resistant rotating bodies and sintering the ferrite molded body, the method comprising: A method characterized in that a sufficient distance is provided between the rotary bodies so that the heat-resistant rotary bodies can freely rotate in response to contraction of the ferrite molded body.
(2)請求項1に記載の方法において、前記耐熱性回転
体がAl_2O_3製球体であり、かつ前記球体の平面
占有率が20〜80%であることを特徴とする方法。
(2) The method according to claim 1, wherein the heat-resistant rotating body is a sphere made of Al_2O_3, and the surface area of the sphere is 20 to 80%.
(3)平坦な土台上に多数の耐熱性球体を介してフェラ
イト成形体を静置し、前記フェライト成形体を焼結する
ことにより厚手の大型フェライトコアを製造する方法で
あって、焼結による前記フェライト成形体の収縮に応じ
て前記耐熱性球体上を前記フェライト成形体がすべるこ
とを特徴とする方法。
(3) A method for manufacturing a thick large ferrite core by placing a ferrite molded body on a flat base via a large number of heat-resistant spheres and sintering the ferrite molded body, the ferrite core being produced by sintering. A method characterized in that the ferrite molded body slides on the heat-resistant sphere in response to contraction of the ferrite molded body.
(4)請求項3に記載の方法において、前記耐熱性回転
体がAl_2O_3製球体であることを特徴とする方法
(4) The method according to claim 3, wherein the heat-resistant rotating body is a sphere made of Al_2O_3.
(5)多数の球面状突起を有する平坦な耐熱性土台上に
フェライト成形体を静置し、前記フェライト成形体を焼
結することにより厚手の大型フェライトコアを製造する
方法であって、焼結による前記フェライト成形体の収縮
に応じて前記球面状突起上を前記フェライト成形体がす
べることを特徴とする方法。
(5) A method for manufacturing a thick large ferrite core by placing a ferrite molded body on a flat heat-resistant base having a large number of spherical projections and sintering the ferrite molded body, the method comprising: A method characterized in that the ferrite molded body slides on the spherical protrusion in accordance with the contraction of the ferrite molded body.
JP63225443A 1988-09-08 1988-09-08 Manufacture of large-sized ferrite core Pending JPH0273612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225443A JPH0273612A (en) 1988-09-08 1988-09-08 Manufacture of large-sized ferrite core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225443A JPH0273612A (en) 1988-09-08 1988-09-08 Manufacture of large-sized ferrite core

Publications (1)

Publication Number Publication Date
JPH0273612A true JPH0273612A (en) 1990-03-13

Family

ID=16829442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225443A Pending JPH0273612A (en) 1988-09-08 1988-09-08 Manufacture of large-sized ferrite core

Country Status (1)

Country Link
JP (1) JPH0273612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136483A (en) * 2005-11-16 2007-06-07 Denso Corp Laser beam machining device
US8184381B2 (en) 2006-05-26 2012-05-22 Ricoh Company, Ltd. Lens driving-control device and imaging apparatus including the lens driving-control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195902A (en) * 1985-02-25 1986-08-30 Matsushita Electric Works Ltd Sintering method of rare earth magnet
JPS63202011A (en) * 1987-02-17 1988-08-22 Nippon Ferrite Ltd Manufacture of cylindrical core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195902A (en) * 1985-02-25 1986-08-30 Matsushita Electric Works Ltd Sintering method of rare earth magnet
JPS63202011A (en) * 1987-02-17 1988-08-22 Nippon Ferrite Ltd Manufacture of cylindrical core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136483A (en) * 2005-11-16 2007-06-07 Denso Corp Laser beam machining device
US8184381B2 (en) 2006-05-26 2012-05-22 Ricoh Company, Ltd. Lens driving-control device and imaging apparatus including the lens driving-control device

Similar Documents

Publication Publication Date Title
CN112456998A (en) Garnet ferrite material with high dielectric constant and preparation method thereof
US3535200A (en) Multilayered mechanically oriented ferrite
JPH0273612A (en) Manufacture of large-sized ferrite core
CA2039509A1 (en) Heat-resistant metal monolith and manufacturing method therefor
JPH0676257B2 (en) Method for firing Mn-Zn ferrite
JPH088111A (en) Anisotropic permanent magnet and its manufacturing method
JP2855068B2 (en) Rare earth magnet manufacturing method
JP2624839B2 (en) Manufacturing method of high permeability ferrite core
JP2708160B2 (en) Ferrite manufacturing method
JPH1143375A (en) Production of setter for sintering soft ferrite
JP2006111518A (en) Method for manufacturing soft ferrite core
EP0697383B1 (en) Method of preparing a ferrite compact
CN108070777A (en) A kind of method that powder tape casting prepares Fe-6.5%Si soft magnetic materials thin strips
JPS63219548A (en) Production of permanent magnet
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
JPH05226176A (en) Method for burning ferrite core
CN107983962A (en) A kind of method that powder rolling prepares single-phase Fe-6.5%Si silicon steel
JPS63290272A (en) Production of rare earth element-transition metal target material
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPH07115013A (en) Magnetic body and manufacture thereof
JPH01319910A (en) Magnetic substance and manufacture thereof
JP2018193281A (en) Production method of cylindrical ceramic sintered body
JP3285636B2 (en) Manufacturing method of oxide superconductor