JPS61195902A - Sintering method of rare earth magnet - Google Patents

Sintering method of rare earth magnet

Info

Publication number
JPS61195902A
JPS61195902A JP3562785A JP3562785A JPS61195902A JP S61195902 A JPS61195902 A JP S61195902A JP 3562785 A JP3562785 A JP 3562785A JP 3562785 A JP3562785 A JP 3562785A JP S61195902 A JPS61195902 A JP S61195902A
Authority
JP
Japan
Prior art keywords
sintering
rare earth
molding
earth magnet
small balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3562785A
Other languages
Japanese (ja)
Inventor
Masahiro Nawa
正弘 名和
Atsushi Sakai
淳 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3562785A priority Critical patent/JPS61195902A/en
Publication of JPS61195902A publication Critical patent/JPS61195902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the generation of camber and deformation in the stage of sintering and to prevent the seizure to a base plate, keep plate, etc. in the stage of sintering a thin sheet-shaped green compact molding consisting of rare earth magnet material powder by sintering the green compact molding on many small balls on the base plate. CONSTITUTION:The many small balls 3 are disposed on the base plate 5 and the thin sheet-shaped green compact molding 4 consisting of the rare earth magnet material is imposed thereon; further the small balls 3 are disposed thereon as well and the keep plate 2 is placed thereon. The entire part is put into a Ta foil vessel 6 and a Ta cap 1 is put thereon. The assembly is placed still in an electric furnace and the molding 4 is sintered. Then the seizure arises hardly as the contact area of the molding 4 with the base plate 5 and the keep plate 2 is small in the stage of sintering. Since the small balls 3 have the freedom to move during shrinking of the molding 4, the generation of the nonuniform deformation in the molding 4 is obviated and the camber is effectively suppressed.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、基板の上に希土類磁石材料からなる圧粉成
形体を載せて焼結する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method of placing a powder compact made of a rare earth magnet material on a substrate and sintering the compact.

〔背景技術〕[Background technology]

希土類磁石は、高い飽和磁化および大きな保臘力を有す
ることから、最近、小型化、高性能化の要求の強いステ
ップモータや各種音響機器等に多数用いられ、その際、
薄板状にしたものが多く用いられている。これまで、薄
板状の磁石は、厚いブロック状のものから所定の厚みに
スライスして作られていたが、切り代による材料損失が
多く、不経済であり、コスト高の一要因となっていた。
Rare earth magnets have high saturation magnetization and large holding power, so they have recently been widely used in step motors and various audio equipment, which have strong demands for miniaturization and high performance.
Thin plates are often used. Until now, thin plate magnets have been made by slicing thick blocks to a predetermined thickness, but this was uneconomical as there was a lot of material loss due to cutting allowances, which was a factor in high costs. .

このような欠点を解消するため、最初から磁場中で薄板
状に成形し、その後焼結する方法が考えられているが、
このような薄板状圧粉成形体を焼結すると、焼結時に成
形体が収縮するため、焼結後に反りや不均一変形が生ず
る0反りや不均一変形を防止する一般的な方法として、
薄板状成形体を多数重ねるか、変形を防止するための押
え板等を用いることが考えられた。
In order to overcome these drawbacks, a method has been considered in which the material is first formed into a thin plate in a magnetic field and then sintered.
When such a thin plate-shaped powder compact is sintered, the compact shrinks during sintering, so as a general method to prevent zero warpage and non-uniform deformation that occur after sintering,
It has been considered to stack a large number of thin plate-like molded bodies or to use a presser plate or the like to prevent deformation.

しかし、希土類元素のように反応性の高い材料を含む圧
粉成形体を焼結すると、重ね合わせた圧粉成形体同志あ
るいは変形を防止するための押え板と圧粉成形体が反応
し、部分的な焼き付きが生じて、変形したり許容できな
い寸法上の誤差をもたらすなどが起き、本来の目的を達
成することが困難であった。
However, when compacts containing highly reactive materials such as rare earth elements are sintered, the stacked compacts react with each other, or the presser plate used to prevent deformation reacts with the compacts, resulting in some parts It has been difficult to achieve the original purpose due to the occurrence of burn-in, resulting in deformation and unacceptable dimensional errors.

〔発明の目的〕[Purpose of the invention]

以上の事情に鑑みて、この発明は、反応性の高い希土類
元素を含む薄板状圧粉成形体を焼結する際、焼結時の反
りおよび変形の発生を抑え、かつ、基板、押え板等との
焼き付きを起こすことのない焼結方法を提供することを
目的とする。
In view of the above circumstances, the present invention is aimed at suppressing the occurrence of warping and deformation during sintering when sintering a thin plate-shaped powder compact containing a highly reactive rare earth element, and suppressing the occurrence of warping and deformation of substrates, presser plates, etc. The object of the present invention is to provide a sintering method that does not cause burn-in.

〔発明の開示〕[Disclosure of the invention]

上記目的を達成するため、この発明は、希土類磁石材料
粉末からなる薄板状圧粉成形体を焼結する工程において
、焼結時に圧粉成形体を載せる基板の上に小球を多数個
配置し、その上に前記圧粉成形体を置いて焼結すること
を特徴とする希土類磁石の焼結方法をその要旨とする。
In order to achieve the above object, the present invention arranges a large number of small balls on a substrate on which the powder compact is placed during sintering, in the process of sintering a thin plate-shaped powder compact made of rare earth magnet material powder. The gist of the present invention is a method for sintering a rare earth magnet, which is characterized in that the powder compact is placed thereon and sintered.

以下にこれを詳しく述べる。This will be explained in detail below.

この発明に供される希土類磁石材料としては、R,T、
で表される材料がある。ここに、Rは、Sm、Ce、p
r等の希土類元素およ°び精製分離されない希土合属で
あるミツシュメタル等を表し、Tは、いわゆる遷移元素
で、そのうち希土類元素を除いたものであり、たとえば
T i+  F e +  Co、Ni、Cu、Zr、
Hf等であって、いずれも、1種または2種以上の元素
からなる。n、 mは任意の数字で表される。このよう
な材料として具体的には、SmCo、、Sm、Co、?
、Ce (CoFeCu)  s  、   Sm  
(CoFeCuZr)  ?。
Rare earth magnet materials used in this invention include R, T,
There is a material represented by Here, R is Sm, Ce, p
It represents rare earth elements such as r, and Mitsushmetal, which is a rare earth combination that is not purified and separated, and T is a so-called transition element, from which rare earth elements have been removed. For example, T i + Fe + Co, Ni, Cu, Zr,
Hf, etc., all of which are composed of one or more types of elements. n and m are represented by arbitrary numbers. Specifically, such materials include SmCo, Sm, Co, ?
, Ce (CoFeCu) s , Sm
(CoFeCuZr)? .

、、Sm (C,oFecu) 、、  (SmPr)
C。
,,Sm (C,oFecu) ,, (SmPr)
C.

、等があるが、勿論、これらに限定されることはな(、
要するに希土類元素が含まれていればよいこの発明にか
かる焼結方法では、これら希土類磁石材料の粉末を所定
の薄板状に成形した圧粉成形体を用いる。圧粉の成形は
、通常、プレス等によって行われる。焼結時に圧粉成形
体を載せる基板は、ステンレス鋼(SUS304等)、
Mo。
, etc., but of course it is not limited to these (,
In short, the sintering method according to the present invention, which only needs to contain rare earth elements, uses a powder compact formed by molding powder of these rare earth magnet materials into a predetermined thin plate shape. The compacted powder is usually formed using a press or the like. The substrate on which the powder compact is placed during sintering is stainless steel (SUS304, etc.),
Mo.

Ta等の金属材料またはA l t Os 、 S i
 x Na等のセラミック材料からなるものであり、こ
の基板の上に、同じくステンレス鋼(SUS304等)
、Mo、Taといった金属材料またはAlI3、、Si
@N、等のセラミック材料で構成された小球(ボール)
を、多少動きうる程度の密度で多数個配置し、その上に
、前記薄板状圧粉成形体を置いて焼結するようにする。
Metal materials such as Ta or Al t Os, Si
It is made of ceramic material such as x Na, and on this substrate is also made of stainless steel (SUS304 etc.).
, Mo, Ta or other metal materials such as AlI3, , Si
Small spheres (balls) made of ceramic materials such as @N, etc.
are arranged in large numbers at a density that allows some movement, and the thin plate-shaped powder compact is placed thereon and sintered.

さらには、必要に応じ、圧粉成形体の上にも同種の小球
を多数個配置し、その上に同種の押え板を載せて焼結す
るようにすることもでき、これらの組合せを数層にわた
って積層することも可能である。そのようにすれば、生
産性を大いに上げることができる。焼結時に微振動を与
えるようにすると、より好ましい結果が得られる。
Furthermore, if necessary, it is also possible to arrange a large number of the same type of small balls on the powder compact and sinter it by placing the same type of presser plate on top. Lamination over layers is also possible. By doing so, you can greatly increase productivity. More favorable results can be obtained by applying slight vibrations during sintering.

以下に、これを、その実施例に基づいて詳しく説明する
This will be explained in detail below based on an example.

(実施例1) 第1図にみるように、基板5上に小球3を配置し、その
上に、希土類磁石材料の薄板状圧粉成形体4を載せ、さ
らに、その上にも小球3を配置し、その上に押え板2を
置き、全体をタンタル製箔容器6に収め、タンタル製蓋
1を被せた。なお、第1図は基板や小球等の配置の基本
構成を示すのみであり、形状、寸法等はこれに拘束され
ない。
(Example 1) As shown in FIG. 1, small balls 3 are arranged on a substrate 5, a thin plate-shaped powder compact 4 of rare earth magnet material is placed on top of the small balls 3, and small balls 3, a press plate 2 was placed thereon, the whole was placed in a tantalum foil container 6, and a tantalum lid 1 was placed thereon. Note that FIG. 1 only shows the basic configuration of the arrangement of the substrate, small balls, etc., and the shape, dimensions, etc. are not restricted thereto.

用いた希土類磁石材料は、基本組成Sm(C。The rare earth magnet material used had a basic composition of Sm(C.

FeCuZr)t、sからなる粉末で、プレスによって
直径45鶴、厚み1.2 mの薄板円板状に圧粉成形し
たものである(グリーン密度は約4.4g/−)、基板
5および押え板2はともに50鶴角。
It is a powder consisting of FeCuZr)t, s, which is compacted into a thin disk shape with a diameter of 45 mm and a thickness of 1.2 m (green density is about 4.4 g/-), the substrate 5 and the presser. Board 2 is both 50 Tsuru Kaku.

厚みl■のステンレス板(SUS304)である基板5
および圧粉成形体4の上に配置した小球は、直径1鶴の
ステンレスポール(SUS304)であり、相互に移動
できる自由度をもたせた。
Substrate 5 is a stainless steel plate (SUS304) with a thickness of l■
The small balls placed on the powder compact 4 were stainless steel poles (SUS304) with a diameter of 1 square inch, and were allowed to move relative to each other.

すなわち、若干のすき間が設けられる程度の個数を使用
した。つぎに、これらを内寸50■角のタンタル製箔容
器6に収め、51鶴角のタンタル製蓋1で覆い、電気炉
中に静置した。若干時間減圧後、アルゴンガスを炉中に
流入し無酸化雰囲気中において、1100〜1200℃
で1時間加熱して焼結後、1050〜1150℃で2時
間溶体化処理を行い、その後急冷した。
In other words, the number of pieces used was such that a slight gap could be provided. Next, these were placed in a tantalum foil container 6 with an inner dimension of 50 square square inches, covered with a tantalum lid 1 of 51 square square square square inches, and placed in an electric furnace. After reducing the pressure for a while, argon gas was introduced into the furnace and heated to 1100-1200°C in a non-oxidizing atmosphere.
After heating for 1 hour and sintering, solution treatment was performed at 1050 to 1150°C for 2 hours, and then rapidly cooled.

焼結後の密度は約8.4 g /−であり、寸法は直径
36fi、厚み0.95鶴であった。このときの変形度
合9反り、焼き付きおよびクラック発生の有無を、ステ
ンレス小球を使用せず、押え板のみを用いて焼結した場
合(比較例)と比べて、その結果を第1表に示す。
The density after sintering was about 8.4 g/-, and the dimensions were 36 fi in diameter and 0.95 in thickness. At this time, the degree of deformation 9 Warpage, seizure, and crack occurrence were compared with the case where stainless steel balls were not used and only the holding plate was used (comparative example). The results are shown in Table 1. .

第1表 (注)真円度:最大直径−最小直径 反 リ:第2図のhであられす 実施例は、その変形度合が、比較例のそれに比べて明ら
かに良好であり、焼き付き、クラックの発生が生じてい
ない点でも優れている。なお、反りについては両者共掻
めてわずかであった。
Table 1 (Note) Roundness: Maximum diameter - Minimum diameter Circularity: In the example shown by h in Figure 2, the degree of deformation is clearly better than that of the comparative example, and there is no seizure or cracking. It is also excellent in that it does not cause the occurrence of It should be noted that the warpage was very slight in both cases.

(実施例2) 焼結時に、焼結開始後10分間微振動を加えて焼結し、
他は実施例1と同じとした。
(Example 2) During sintering, slight vibration was applied for 10 minutes after the start of sintering.
The rest was the same as in Example 1.

このときの変形度合9反り、焼き付きおよびクランク発
生の有無を第1表に示す。微振動を加えると小球の移動
が容易となり、不均一変形が抑えられるので、真円度に
おいて一層良好な結果を示している。
Table 1 shows the degree of deformation 9, the presence or absence of warping, seizure, and crank occurrence at this time. Adding micro-vibration facilitates the movement of the globules and suppresses non-uniform deformation, resulting in even better results in terms of roundness.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる焼結方法は、以上のような構成を有し
ており、焼結工程時、圧粉成形体と基板や押え板との接
触面積が小さく、したがって焼き付きが生じにくい、圧
粉成形体の焼結時の収縮に際し、小球が移動できる自由
度をもっていると、収縮を部分的に抑えるような外力が
加わることがないので、不均一変形が生じることがなく
、反りも効果的に抑えられる。したがって、この発明に
よれば、製造歩留りの高い薄板状希土類磁石を得ること
ができる。
The sintering method according to the present invention has the above configuration, and the contact area between the powder compact and the substrate or presser plate is small during the sintering process. If the small spheres have the freedom to move when the body contracts during sintering, no external force is applied to partially suppress the contraction, so uneven deformation does not occur and warping is effectively prevented. It can be suppressed. Therefore, according to the present invention, it is possible to obtain a thin plate-shaped rare earth magnet with a high manufacturing yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す断面図、第2図は
反りの測定法を示す側面図である。 2・・・押え板 3・・・小球 4・・・希土類磁石の
圧粉成形体 5・・・基板 代理人 弁理士  松 本 武 彦 第1図 濁漬−−〆π
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a side view showing a method for measuring warpage. 2... Holding plate 3... Small ball 4... Green compact of rare earth magnet 5... Substrate representative Patent attorney Takehiko Matsumoto Figure 1 Nage-zuke --〆π

Claims (3)

【特許請求の範囲】[Claims] (1)希土類磁石材料粉末からなる薄板状圧粉成形体を
焼結する工程において、焼結時に圧粉成形体を載せる基
板の上に小球を多数個配置し、その上に前記圧粉成形体
を置いて焼結することを特徴とする希土類磁石の焼結方
法。
(1) In the step of sintering a thin plate-shaped powder compact made of rare earth magnet material powder, a large number of small balls are arranged on a substrate on which the compact is placed during sintering, and the compacted powder is placed on top of the substrate. A method for sintering rare earth magnets, which is characterized by sintering a rare earth magnet by placing a body thereon.
(2)圧粉成形体の上にも小球を多数個配置し、その上
に押え板を載せて焼結する特許請求の範囲第1項記載の
希土類磁石の焼結方法。
(2) A method for sintering a rare earth magnet according to claim 1, wherein a large number of small balls are also arranged on the compacted powder body, and a presser plate is placed thereon for sintering.
(3)焼結時に、微振動を与える特許請求の範囲第1項
または第2項記載の希土類磁石の焼結方法
(3) A method for sintering a rare earth magnet according to claim 1 or 2, which provides slight vibrations during sintering.
JP3562785A 1985-02-25 1985-02-25 Sintering method of rare earth magnet Pending JPS61195902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3562785A JPS61195902A (en) 1985-02-25 1985-02-25 Sintering method of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3562785A JPS61195902A (en) 1985-02-25 1985-02-25 Sintering method of rare earth magnet

Publications (1)

Publication Number Publication Date
JPS61195902A true JPS61195902A (en) 1986-08-30

Family

ID=12447099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3562785A Pending JPS61195902A (en) 1985-02-25 1985-02-25 Sintering method of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS61195902A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273612A (en) * 1988-09-08 1990-03-13 Hitachi Metals Ltd Manufacture of large-sized ferrite core
JPH02254103A (en) * 1989-03-28 1990-10-12 Hitachi Powdered Metals Co Ltd Production of sintered metallic parts
WO2005009654A3 (en) * 2003-07-19 2005-06-16 Mtu Aero Engines Gmbh Method for producing components of a gas turbine
JP2010209400A (en) * 2009-03-10 2010-09-24 Sumitomo Electric Sintered Alloy Ltd Method for producing sintered compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273612A (en) * 1988-09-08 1990-03-13 Hitachi Metals Ltd Manufacture of large-sized ferrite core
JPH02254103A (en) * 1989-03-28 1990-10-12 Hitachi Powdered Metals Co Ltd Production of sintered metallic parts
WO2005009654A3 (en) * 2003-07-19 2005-06-16 Mtu Aero Engines Gmbh Method for producing components of a gas turbine
JP2010209400A (en) * 2009-03-10 2010-09-24 Sumitomo Electric Sintered Alloy Ltd Method for producing sintered compact

Similar Documents

Publication Publication Date Title
US8984742B2 (en) Method of making soft magnetic amorphous metal electromechanical component
KR20100043086A (en) Process for producing sintered ndfeb magnet and mold for producing sintered ndfeb magnet
US4076561A (en) Method of making a laminated rare earth metal-cobalt permanent magnet body
JP6627307B2 (en) Manufacturing method of sintered magnet
JPS61195902A (en) Sintering method of rare earth magnet
JP7251264B2 (en) Manufacturing method of RTB system permanent magnet
US4533407A (en) Radial orientation rare earth-cobalt magnet rings
WO2003005383A1 (en) Method for producing rare earth sintered magnets
JP2020096187A (en) R-tm-b based sintered magnet
JP2002270418A (en) Rare earth thick film magnet manufacturing method and magnet motor using rare earth thick film magnet manufactured through the above method
CN114334415A (en) Multilayer grain boundary diffusion method of neodymium iron boron thick magnet
JPH0336895B2 (en)
JPS61190005A (en) Production of rare earth magnet
JPS5848608A (en) Production of permanent magnet of rare earths
JP3051906B2 (en) Rare earth magnet
JP2002020803A (en) Sintering case, manufacturing method of sintered rare earth magnet using the case, and device for storing sintered molding therein
JP2003086445A (en) Method for manufacturing rare-earth sintered magnet
JPS60250604A (en) Manufacture of rare earth cobalt thin plate magnet
JP2006230031A (en) Powder-compressed molded core, core made of combined powder-compressed molded bodies, and core manufacturing method
JPH0629114A (en) Dust core and manufacture thereof
JPS6367323B2 (en)
JPS58210101A (en) Radiate arrangement rare earth element-cobalt magnet ring
JPH0645832B2 (en) Rare earth magnet manufacturing method
JPS6096701A (en) Preparation of rare earth element-co type thin plate magnet
AU2004246416A1 (en) Soft-metal electromechanical component and method making same