JP2018193281A - Production method of cylindrical ceramic sintered body - Google Patents

Production method of cylindrical ceramic sintered body Download PDF

Info

Publication number
JP2018193281A
JP2018193281A JP2017099562A JP2017099562A JP2018193281A JP 2018193281 A JP2018193281 A JP 2018193281A JP 2017099562 A JP2017099562 A JP 2017099562A JP 2017099562 A JP2017099562 A JP 2017099562A JP 2018193281 A JP2018193281 A JP 2018193281A
Authority
JP
Japan
Prior art keywords
cylindrical ceramic
support member
cylindrical
firing
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017099562A
Other languages
Japanese (ja)
Other versions
JP6842369B2 (en
Inventor
秀之 有泉
Hideyuki Ariizumi
秀之 有泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017099562A priority Critical patent/JP6842369B2/en
Publication of JP2018193281A publication Critical patent/JP2018193281A/en
Application granted granted Critical
Publication of JP6842369B2 publication Critical patent/JP6842369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

To provide a production method of a cylindrical ceramic sintered body which has small deformation on sintering and has a stable shape after repeated firing.SOLUTION: The production method of a cylindrical ceramic sintered body by firing a cylindrical ceramic molding using a firing furnace includes: a molding step S1 of filling raw material powder in a cavity of a cylindrical molding die, followed by press-molding to give a cylindrical ceramic molding; an arrangement step S2 of arranging the cylindrical ceramic molding in the firing furnace; and a firing step S3 of firing the arranged cylindrical ceramic molding in the firing furnace to give a cylindrical ceramic sintered body. In the arrangement step S2, a plurality of first supporting members provided with a plurality of ridge parts on a top face are arranged on a furnace bottom of the firing furnace or on a bottom plate installed on the furnace bottom, a columnar second supporting member is placed on the first supporting members, and the cylindrical ceramic molding is placed standing straight on the second supporting member.SELECTED DRAWING: Figure 1

Description

本発明は、マグネトロン型回転カソードスパッタリング装置において、スパッタリングターゲットとして用いられる円筒形セラミックス焼結体の製造方法に関する。   The present invention relates to a method for manufacturing a cylindrical ceramic sintered body used as a sputtering target in a magnetron rotary cathode sputtering apparatus.

従来、スパッタリングターゲットとしては、平板状のものが一般的に利用されているが、この平板状ターゲットを使用して、マグネトロンスパッタリング法によりスパッタリングを行った場合には、その使用効率は10%〜30% にとどまる。これは、マグネトロンスパッタリング法では、磁場によってプラズマを平板状ターゲットの特定箇所に集中して衝突させるため、ターゲット表面の特定箇所にエロージョンが進行する現象が起こり、その最深部がターゲット中のバッキングプレートまで達したところで、ターゲットの寿命となってしまうためである。   Conventionally, a flat plate is generally used as a sputtering target, but when this flat plate target is used for sputtering by a magnetron sputtering method, the use efficiency is 10% to 30%. Stay at%. This is because in magnetron sputtering, plasma is concentrated and collides with a specific part of a flat target by a magnetic field, causing a phenomenon in which erosion proceeds to a specific part of the target surface, and the deepest part reaches the backing plate in the target. This is because the life of the target is reached.

この問題に対して、スパッタリングターゲットを円筒形とすることで、ターゲットの使用効率を上げることが提案されている。このスパッタリング法は、円筒形のバッキングチューブとその外周部に形成された円筒形のターゲット材とからなる円筒形スパッタリングターゲットを用い、バッキングチューブの内側に磁場発生設備と冷却設備を設置して、円筒形スパッタリングターゲットを回転させながら、スパッタリングを行うものである。このような円筒形スパッタリングターゲットの使用により、ターゲットの使用効率を60%〜70%にまで高めることができる。加えて、このスパッタリング法は冷却効率に優れるため、投入電力を大きくし、高い成膜速度で成膜することができる。   In response to this problem, it has been proposed to increase the usage efficiency of the target by making the sputtering target cylindrical. This sputtering method uses a cylindrical sputtering target consisting of a cylindrical backing tube and a cylindrical target material formed on the outer periphery thereof, and a magnetic field generating facility and a cooling facility are installed inside the backing tube, Sputtering is performed while rotating the sputtering target. By using such a cylindrical sputtering target, the usage efficiency of the target can be increased to 60% to 70%. In addition, since this sputtering method is excellent in cooling efficiency, it is possible to increase the input power and form a film at a high film formation rate.

このような円筒形スパッタリングターゲットの材料としては、円筒形状への加工が容易で機械的強度の高い金属材料が広く使用されているものの、セラミックス材料については、機械的強度が低く、脆いという性質から、いまだ普及するに至っていない。   As a material for such a cylindrical sputtering target, a metal material that can be easily processed into a cylindrical shape and has high mechanical strength is widely used. However, ceramic materials have low mechanical strength and are brittle. It has not yet spread.

セラミックス製の円筒形スパッタリングターゲットは、円筒形状のバッキングチューブの外周にセラミックス粉末を溶射して付着させる溶射法や、円筒形状のバッキングチューブの外周にセラミックス粉末を充填し、高温高圧の不活性雰囲気下でセラミックス粉末を焼成する、熱間静水圧プレス(HIP)法などにより製造することが一般的である。しかしながら、溶射法には高密度のターゲットが得られにくいという問題がある。また、HIP法には、イニシャルコストやランニングコストが高く、熱膨張差による剥離、さらにはターゲットやバッキングチューブのリサイクルができないといった問題がある。   Ceramic cylindrical sputtering targets are sprayed by spraying ceramic powder on the outer periphery of a cylindrical backing tube, or filled with ceramic powder on the outer periphery of a cylindrical backing tube. The ceramic powder is generally manufactured by hot isostatic pressing (HIP) method or the like. However, the thermal spraying method has a problem that it is difficult to obtain a high-density target. Further, the HIP method has a problem that initial cost and running cost are high, peeling due to a difference in thermal expansion, and further, recycling of the target and the backing tube cannot be performed.

これに対して、近年、冷間静水圧プレス(CIP)法により円筒形セラミックス成形体を成形し、これを焼成炉内の敷板上に載置し、焼成することで円筒形セラミックス焼結体とした後、研削加工することにより円筒形ターゲット材を得て、これを円筒形状のバッキングチューブと接合する、円筒形スパッタリングターゲットの製造方法が研究されている。この方法によれば、工業規模の製造において、比較的低コストで、高密度の円筒形スパッタリングターゲットを容易に得ることができる。また、スパッタリング後に、円筒形ターゲット材からバッキングチューブを容易に取り外して、リサイクルすることが可能であるため、円筒形スパッタリングターゲットの低コスト化を図ることができる。   On the other hand, in recent years, a cylindrical ceramic molded body is formed by a cold isostatic press (CIP) method, placed on a floor plate in a firing furnace, and fired to obtain a cylindrical ceramic sintered body. After that, a manufacturing method of a cylindrical sputtering target in which a cylindrical target material is obtained by grinding and joined to a cylindrical backing tube has been studied. According to this method, a high-density cylindrical sputtering target can be easily obtained at a relatively low cost in industrial scale production. In addition, since the backing tube can be easily removed from the cylindrical target material and recycled after sputtering, the cost of the cylindrical sputtering target can be reduced.

しかしながら、この方法では焼成工程において、円筒形セラミックス成形体が収縮する際に、その下端面(焼成時に、敷板と接する面)と敷板との間に作用する摩擦力によって、得られる円筒形セラミックス焼結体が大きく変形するという問題がある。このように変形した円筒形セラミックス焼結体は、引き続き行われる研削加工工程において加工機器への取り付けが困難となるばかりでなく、研削量が増加し、生産性が著しく低下することとなる。また、加工中に微細な亀裂(マイクロクラック)や欠けが生じやすく、バッキングチューブとの接合(ボンディング)時やスパッタリング時における円筒形ターゲット材の割れや欠けなどの原因となる。また、変形したセラミックス焼結体は加工時の取り代が十分に取れなく不良となる場合もある。   However, in this method, when the cylindrical ceramic compact shrinks in the firing process, the cylindrical ceramic fired body is obtained by the frictional force acting between the lower end surface (the surface in contact with the base plate during firing) and the base plate. There is a problem that the combined body is greatly deformed. The cylindrical ceramic sintered body thus deformed not only becomes difficult to attach to the processing equipment in the subsequent grinding process, but also increases the amount of grinding and significantly reduces the productivity. Further, fine cracks (microcracks) and chips are likely to occur during processing, which causes cracks and chips in the cylindrical target material during bonding (bonding) to the backing tube and sputtering. In addition, the deformed ceramic sintered body may be defective due to insufficient machining allowance during processing.

この問題に対して、特許文献1では、被焼成物である円筒形セラミックス成形体を、この円筒形セラミックス成形体と同等の焼結収縮を有する板状のセラミックス成形体からなる敷板の上に載置して焼成する方法を提案している。なお、特許文献1には板状のセラミックス成形体と円筒形セラミックス成形体の間に、アルミナ粉末などの敷粉を敷くことが好ましい旨が記載されている。   With respect to this problem, in Patent Document 1, a cylindrical ceramic molded body, which is an object to be fired, is mounted on a floor plate made of a plate-shaped ceramic molded body having sintering shrinkage equivalent to the cylindrical ceramic molded body. A method of placing and firing is proposed. Patent Document 1 describes that it is preferable to spread a bed powder such as alumina powder between a plate-shaped ceramic molded body and a cylindrical ceramic molded body.

特許文献2では、平面を有する基体(敷板)と独立して移動可能な複数の部材からなる成形体支持体と、基体と成形体支持体との間に介在して両者の相対移動を妨げる力を低減する、丸棒または球状のセラミックス焼結体から構成される摺動層とを備えた焼成治具を用いて、円筒形セラミックス成形体を成形体支持体により指示した状態で、その焼成を行う方法を提案している。   In Patent Document 2, a molded body support composed of a plurality of members that can move independently from a flat substrate (laying plate), and a force that intervenes between the substrate and the molded body support to prevent relative movement between the two. In a state where the cylindrical ceramic molded body is instructed by the molded body support using a firing jig provided with a sliding layer composed of a round bar or a spherical ceramic sintered body, Proposes how to do.

しかしながら、これらの方法では、丸棒または球状のセラミックス材から構成される摺動層は安定性が低く、炉床のわずかな傾斜、炉内に供給する雰囲気ガスまたは有機成分が分解することによって生じる気流の影響により、摺動層とともに円筒形セラミックス成形体が炉内を移動し、炉壁や隣接する円筒形セラミックス成形体と接触するという問題がある。また、焼成炉内における円筒形セラミックス成形体の配置は、分解生成ガスや炉内に供給する雰囲気ガスの影響を考慮して、円筒形セラミックス成形体が均一に焼成されるように設定されるものであるが、このような移動により、円筒形セラミックス成形体が均一に焼成されなくなるという問題がある。   However, in these methods, the sliding layer composed of a round bar or a spherical ceramic material has low stability, and is generated by slight inclination of the hearth, decomposition of atmospheric gas or organic components supplied into the furnace. Due to the influence of the air flow, there is a problem that the cylindrical ceramic molded body moves in the furnace together with the sliding layer and comes into contact with the furnace wall and the adjacent cylindrical ceramic molded body. In addition, the arrangement of the cylindrical ceramic molded body in the firing furnace is set so that the cylindrical ceramic molded body is uniformly fired in consideration of the influence of the decomposition product gas and the atmospheric gas supplied to the furnace. However, there is a problem that the cylindrical ceramic molded body is not uniformly fired by such movement.

これに対して、特許文献3では、通気孔を有する敷板上に、複数の支持部材を、該通気孔を中心として長手方向が円の径方向に一致するように、かつ放射上に配置し、その上に円筒成形体を垂直に載置する方法が提案されている。この方法によれば円筒成形体の炉内水平方向の移動を抑制し、かつ酸化物同士の摩擦係数は小さいため敷板上を支持部材が滑ることによって変形が小さく、均質な焼結体が得られるとしている。   On the other hand, in Patent Document 3, a plurality of support members are arranged on the base plate having the air holes so that the longitudinal direction thereof coincides with the radial direction of the circle around the air holes, There has been proposed a method in which a cylindrical molded body is placed vertically thereon. According to this method, movement of the cylindrical molded body in the horizontal direction in the furnace is suppressed, and the coefficient of friction between the oxides is small, so that the support member slides on the floor plate, so that deformation is small and a homogeneous sintered body is obtained. It is said.

特開2005−281862号公報JP 2005-281862 A 特開2008−184337号公報JP 2008-184337 A 特開2016−88831号公報Japanese Patent Laid-Open No. 2006-88831

円筒形セラミックス焼結体の製造方法において、焼成炉を繰り返し使用すると、支持体や支持部材の変形又は固着等によって、摺動機能を十分に発揮することができず、支持体や支持部材との引っ掛かりによって円筒形セラミックス成形体に大きな変形が生じてしまうことがある。   In the method of manufacturing a cylindrical ceramic sintered body, if the firing furnace is repeatedly used, the sliding function cannot be sufficiently exhibited due to deformation or fixing of the support or the support member, and the The cylindrical ceramic molded body may be greatly deformed by the catch.

本発明は、上記状況を鑑み、マグネトロン型回転カソードスパッタリング装置において、スパッタリングターゲットとして用いられる円筒形セラミックス焼結体において、焼結時における変形が少なく、繰り返し焼成を行っても安定した形状を有する円筒形セラミックス焼結体の製造方法を提供することを目的とする。   In view of the above situation, the present invention is a cylindrical ceramic sintered body used as a sputtering target in a magnetron type rotary cathode sputtering apparatus, and has a stable shape even when repeatedly fired with little deformation during sintering. An object of the present invention is to provide a method for producing a shaped ceramic sintered body.

本発明者は、上述した問題に鑑みて、円筒形セラミックス焼結体の焼結収縮に伴う変形を抑制する方法について誠意検討を重ねた。その結果、高温耐久性を備えた第1の支持部材を放射状に配置し、その表面の滑りを利用する焼成方法において、上面に複数の凸条部を有する第1の支持部材の上に第2の支持部材を配置し、その上に成形体を載置することによって、第1及び第2の支持部材同士の接触面積が減少し、支持部材同士が固着することもなく安定的に表面のすべりを得ることができるとの知見を得た。   In view of the above-described problems, the present inventor has made sincere studies on a method for suppressing deformation accompanying sintering shrinkage of a cylindrical ceramic sintered body. As a result, in the firing method in which the first support member having high-temperature durability is arranged radially and the slippage of the surface is used, the second support member has a plurality of protrusions on the upper surface. By arranging the support member of this and placing the molded body thereon, the contact area between the first and second support members is reduced, and the surface slips stably without the support members sticking together. The knowledge that can be obtained.

すなわち、本発明の一態様は、焼成炉を用いて円筒形セラミックス成形体を焼成する円筒形セラミックス焼結体の製造方法であって、円筒形成形型のキャビティ内に原料粉末を充填し、加圧成形して円筒形セラミックス成形体を得る成形工程と、前記円筒形セラミックス成形体を前記焼成炉内に配置する配置工程と、前記配置した円筒形セラミックス成形体を前記焼成炉において焼成して円筒形セラミックス焼結体を得る焼成工程とを有し、前記配置工程では、前記焼成炉内の炉床あるいは炉床の上に設置した敷板に、上面に複数の凸条部を有する第1の支持部材を複数並べ、該第1の支持部材の上に柱状の第2の支持部材を載置し、該第2の支持部材上に前記円筒形セラミックス成形体を直立させた状態で載置する。   That is, one aspect of the present invention is a method of manufacturing a cylindrical ceramic sintered body in which a cylindrical ceramic molded body is fired using a firing furnace, in which a raw material powder is filled in a cavity of a cylindrical forming mold and subjected to processing. A forming step of obtaining a cylindrical ceramic formed body by pressure forming, an arranging step of placing the cylindrical ceramic formed body in the firing furnace, and a cylinder obtained by firing the placed cylindrical ceramic formed body in the firing furnace And a first support having a plurality of ridges on the top surface of the floor in the firing furnace or a floor plate installed on the furnace floor in the firing step. A plurality of members are arranged, a columnar second support member is placed on the first support member, and the cylindrical ceramic molded body is placed in an upright state on the second support member.

本発明の一態様によれば、第2の支持部材は第1の支持部材の凸条部とのみ接触するため、摩擦力が低減され、成形体の焼結時収縮に応じて第2の支持部材が滑ることで焼結体の変形を少なくすることができる。   According to one aspect of the present invention, since the second support member contacts only with the ridges of the first support member, the frictional force is reduced, and the second support is provided according to the shrinkage during sintering of the molded body. The deformation of the sintered body can be reduced by sliding the member.

このとき、本発明の一態様では、第1の支持部材は、円筒形セラミックス成形体の円筒径中心から放射状に配置され、前記複数の凸条部は前記円筒形セラミックス成形体の外周の接線方向と平行に形成してもよい。   At this time, in one aspect of the present invention, the first support member is arranged radially from the center of the cylindrical diameter of the cylindrical ceramic molded body, and the plurality of ridges are tangential to the outer periphery of the cylindrical ceramic molded body. And may be formed in parallel.

第1の支持部材を放射状に配置することで円筒形セラミックス成形体を安定的に載置することができ、また、凸条部は筒形セラミックス成形体の外周の接線方向と平行に形成することで、第2の支持部材が滑りやすい向きとなる。   The cylindrical ceramic molded body can be stably placed by arranging the first support members radially, and the ridges are formed parallel to the tangential direction of the outer periphery of the cylindrical ceramic molded body. Thus, the second support member is in a slippery direction.

また、このとき、本発明の一態様では、凸条部は断面視が半円形状とすることができる。   Further, at this time, in one embodiment of the present invention, the protruding strip portion may have a semicircular shape in cross-sectional view.

第1の支持部材の凸条部が断面視で半円形状であることにより、第2の支持部材との接触面積がさらに少なくなり、第2の支持部材がより滑りやすくなる。   When the convex strip portion of the first support member is semicircular in cross-sectional view, the contact area with the second support member is further reduced, and the second support member is more slidable.

さらに、このとき、本発明の一態様では、半円形状の半径が0.5mm以上5mm以下としてもよい。   Further, at this time, in one embodiment of the present invention, the semicircular radius may be 0.5 mm or more and 5 mm or less.

後述する、本発明の一実施形態に係る円筒形セラミックス焼結体の製造方法では、半円形状の凸条部の半径を上記範囲とすることが焼結時における変形が少なく好ましい。   In the method for manufacturing a cylindrical ceramic sintered body according to an embodiment of the present invention, which will be described later, it is preferable that the radius of the semicircular ridges be in the above range because deformation during sintering is small.

また、本発明の一態様では、凸条部は断面視が三角形状とすることができる。   In one embodiment of the present invention, the protrusion may have a triangular shape in cross-sectional view.

第1の支持部材の凸条部が断面視で三角形状であれば、第2の支持部材との接触面積が少なくなり、第2の支持部材がより滑りやすくなる。   If the protrusions of the first support member are triangular in cross-sectional view, the contact area with the second support member is reduced, and the second support member is more slidable.

また、本発明の一態様では、第2の支持部材は、円柱形状で、円柱の中心軸が円筒形セラミックス成形体の円筒径中心を通るように放射状に配置することができる。   In one embodiment of the present invention, the second support member has a columnar shape, and can be arranged radially so that the central axis of the column passes through the center of the cylindrical diameter of the cylindrical ceramic molded body.

第2の支持部材が円柱形状であれば第1の支持部材との接触部がほぼ点接触となり、また、第2の支持部材を成形体の収縮方向に向けることで、より滑りやすくすることができる。   If the second support member is cylindrical, the contact portion with the first support member is almost point contact, and the second support member can be made more slippery by directing it in the contraction direction of the molded body. it can.

このとき、本発明の一態様では、第2の支持部材の円柱形状の円の直径が0.5mm以上であるとしてもよい。   At this time, in one embodiment of the present invention, the diameter of the columnar circle of the second support member may be 0.5 mm or more.

後述する、本発明の一実施形態に係る円筒形セラミックス焼結体の製造方法では、第2の支持部材の円柱形状の円の半径を上記範囲とすることが焼結時における変形が少なく好ましい。   In the method for manufacturing a cylindrical ceramic sintered body according to an embodiment of the present invention, which will be described later, it is preferable that the radius of the columnar circle of the second support member is in the above range because deformation during sintering is small.

本発明によれば、焼結時における変形を抑制可能な円筒形セラミックス焼結体の製造方法を提供することができる。また、このような製造方法により得られる円筒形セラミックス焼結体は、寸法精度が高く、研削量を低減することができるばかりでなく、バッキングチューブと接合して円筒形スパッタリングターゲットを作製する際に、割れや欠けなどが生じることを効果的に抑制することができる。したがって、本発明により円筒形スパッタリングターゲットを従来よりも収率よく低コストで提供することが可能となるため、その工業的意義は極めて高い。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the cylindrical ceramic sintered compact which can suppress the deformation | transformation at the time of sintering can be provided. Moreover, the cylindrical ceramic sintered body obtained by such a manufacturing method not only has high dimensional accuracy and can reduce the amount of grinding, but also when a cylindrical sputtering target is produced by joining with a backing tube. It is possible to effectively suppress the occurrence of cracks and chips. Therefore, according to the present invention, it is possible to provide a cylindrical sputtering target with a higher yield and lower cost than the conventional one, and its industrial significance is extremely high.

本発明の一実施形態に係る円筒形セラミックス焼結体の製造方法におけるプロセスの概略を示す工程図である。It is process drawing which shows the outline of the process in the manufacturing method of the cylindrical ceramic sintered compact concerning one Embodiment of this invention. 焼成炉内における円筒形セラミックス成形体の配置を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating arrangement | positioning of the cylindrical ceramic molded object in a baking furnace. 焼成炉内における円筒形セラミックス成形体の配置を説明するための平面図である。It is a top view for demonstrating arrangement | positioning of the cylindrical ceramic molded object in a firing furnace. 焼成工程において、円筒形セラミックス成形体が収縮する際の支持部材の作用を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an effect | action of a support member at the time of a baking process when a cylindrical ceramic molded object shrink | contracts. 本発明の一実施形態に係る第1の支持部材の形状を示す図であり、(A)は凸条部が断面視で半円形状の場合、(B)は凸条部が断面視で三角形状の場合である。It is a figure which shows the shape of the 1st supporting member which concerns on one Embodiment of this invention, (A) is a triangle when a protruding item | line part is a semicircle shape by sectional view, (B) is a triangle by sectional view. This is the case of shape.

以下、本発明に係る円筒形セラミックス焼結体の製造方法について図面を参照しながら以下の順序で説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。
1.円筒形セラミックス焼結体の製造方法
1−1.成形工程
1−2.配置工程
1−3.焼成工程
2.円筒形セラミックス焼結体
Hereinafter, the manufacturing method of the cylindrical ceramic sintered body according to the present invention will be described in the following order with reference to the drawings. In addition, this invention is not limited to the following examples, In the range which does not deviate from the summary of this invention, it can change arbitrarily.
1. 1. Manufacturing method of cylindrical ceramic sintered body 1-1. Molding process 1-2. Arrangement process 1-3. Firing step Cylindrical ceramic sintered body

<1.円筒形セラミックス焼結体の製造方法>
図1は、本発明の一実施形態に係る円筒形セラミックス焼結体の製造方法におけるプロセスの概略を示す工程図である。本発明の一実施形態は、焼成炉を用いて円筒形セラミックス成形体を焼成する円筒形セラミックス焼結体の製造方法であって、円筒形成形型のキャビティ内に原料粉末を充填し、加圧成形して円筒形セラミックス成形体を得る成形工程S1と、円筒形セラミックス成形体を焼成炉内に配置する配置工程S2と、配置した円筒形セラミックス成形体を焼成炉において焼成して円筒形セラミックス焼結体を得る焼成工程S3とを有し、配置工程S2では、焼成炉内の炉床あるいは炉床の上に設置した敷板に、上面に複数の凸条部を有する第1の支持部材を複数並べ、該第1の支持部材の上に柱状の第2の支持部材を載置し、該第2の支持部材上に円筒形セラミックス成形体を直立させた状態で載置する。
<1. Manufacturing method of cylindrical ceramic sintered body>
FIG. 1 is a process diagram showing an outline of a process in a method for producing a cylindrical ceramic sintered body according to an embodiment of the present invention. One embodiment of the present invention is a method for producing a cylindrical ceramic sintered body in which a cylindrical ceramic molded body is fired using a firing furnace, in which a raw material powder is filled in a cavity of a cylindrical forming mold and pressurized. A forming step S1 for forming a cylindrical ceramic formed body by molding, an arranging step S2 for disposing the cylindrical ceramic formed body in a firing furnace, and firing the cylindrical ceramic formed body in the firing furnace. A calcining step S3 for obtaining a bonded body, and in the disposing step S2, a plurality of first support members having a plurality of ridges on the upper surface are provided on the hearth in the calcining furnace or on the floor plate installed on the hearth. The columnar second support member is placed on the first support member, and the cylindrical ceramic molded body is placed on the second support member in an upright state.

このような支持部材構成にすることで第1及び第2の支持部材同士の接触面積が減少することにより摩擦力を低減しつつ、支持部材同士の固着影響を受けにくいものとなる。そして、これにより、焼結収縮に伴う変形を安定的に抑制することができるとの知見を得た。本発明はこれらの知見に基づき完成したものである。   By adopting such a support member configuration, the contact area between the first and second support members is reduced, so that the frictional force is reduced and it is difficult to be affected by the sticking between the support members. And the knowledge that the deformation | transformation accompanying sintering shrinkage can be suppressed stably by this was acquired. The present invention has been completed based on these findings.

以下、各工程について詳細に説明する。なお、本発明の一実施形態に係る円筒形セラミックス焼結体の製造方法は、製造する円筒形セラミックス焼結体のサイズによって制限されることはないが、以下では、主として、外径が80mm〜200mm、内径が40mm〜190mm、全長が50mm〜500mmの円筒形セラミックス焼結体を製造する場合を例に挙げて説明する。   Hereinafter, each step will be described in detail. In addition, although the manufacturing method of the cylindrical ceramic sintered compact which concerns on one Embodiment of this invention is not restrict | limited by the size of the cylindrical ceramic sintered compact to manufacture, below, mainly an outer diameter is 80 mm- A case where a cylindrical ceramic sintered body having a diameter of 200 mm, an inner diameter of 40 mm to 190 mm, and a total length of 50 mm to 500 mm is manufactured will be described as an example.

(1−1.成形工程)
成形工程S1は、円筒形成形型のキャビティ内に原料粉末を充填し、例えば、CIP法により加圧成形し、円筒形セラミックス成形体を得る工程である。
(1-1. Molding process)
The forming step S1 is a step in which the raw material powder is filled in the cavity of the cylinder forming mold and is pressure-formed by, for example, the CIP method to obtain a cylindrical ceramic formed body.

[原料粉末]
本発明において、原料粉末は特に制限されることなく、目的とする円筒形スパッタリングターゲットの組成に応じて適宜選択することができる。例えば、ITO(Indium Tin Oxide)からなる円筒形スパッタリングターゲットを得ようとする場合には、原料粉末として、酸化インジウム(In)粉末と酸化スズ(SnO)粉末を用いることができる。また、AZO(Aluminium Zinc Oxide)からなる円筒形スパッタリングターゲットを得ようとする場合には、原料粉末として、酸化アルミニウム(Al)粉末と酸化亜鉛(ZnO)粉末を用いることができる。
[Raw material powder]
In the present invention, the raw material powder is not particularly limited, and can be appropriately selected according to the composition of the target cylindrical sputtering target. For example, when obtaining a cylindrical sputtering target made of ITO (Indium Tin Oxide), indium oxide (In 2 O 3 ) powder and tin oxide (SnO) powder can be used as the raw material powder. Further, in order to obtain a cylindrical sputtering target made of AZO (Aluminium Zinc Oxide) as the raw material powder, aluminum oxide (Al 2 O 3) can be used powder and zinc oxide (ZnO) powder.

なお、原料粉末を所定の割合で混合した後、そのままの状態で成形することも可能であるが、純水、バインダおよび分散剤などと混合した後、噴霧乾燥し、造粒粉末としてからキャビティ内に充填することが好ましい。造粒粉末は、原料粉末と比べて高い流動性を有しており、充填性に優れている。このため、原料粉末の代わりに、造粒粉末を用いることで、工業規模の製造においても、高密度の円筒形セラミックス成形体を容易に得ることができる。   It is possible to mix the raw material powder at a predetermined ratio and then mold it as it is. However, after mixing with pure water, a binder, a dispersing agent, etc., spray-dried to form a granulated powder and then into the cavity It is preferable to fill. The granulated powder has higher fluidity than the raw material powder and is excellent in filling property. For this reason, by using the granulated powder instead of the raw material powder, a high-density cylindrical ceramic molded body can be easily obtained even in industrial scale production.

[成形]
成形はCIP(Cold Isostatic Pressing:冷間静水圧プレス)成形が一般的であるが高密度の円筒形成形体が得られるものであればCIP成形に限らない。CIP成形の場合、キャビティ内に原料粉末または造粒粉末を充填した後、円筒形成形型をCIP装置に投入し、加圧成形する。なお、水などの圧媒が成形型内に侵入することを防ぐために、円筒形成形型を真空包装した上で、CIP装置に投入してもよい。CIP成形における保持圧力は、98MPa〜294MPaとすることが好ましい。保持圧力が98MPa未満では、得られる円筒形セラミックス成形体の密度を十分に高いものとすることができない場合がある。一方、保持圧力が294MPaを超えると、CIP装置に対する負荷が過度に大きくなるばかりか、生産コストの上昇を招くこととなる。
[Molding]
Molding is generally CIP (Cold Isostatic Pressing) molding, but is not limited to CIP molding as long as a high-density cylindrical formed body can be obtained. In the case of CIP molding, a raw material powder or granulated powder is filled in a cavity, and then a cylinder forming mold is put into a CIP apparatus and pressure-molded. In order to prevent a pressure medium such as water from entering the mold, the cylinder forming mold may be vacuum-packed and put into the CIP apparatus. The holding pressure in CIP molding is preferably 98 MPa to 294 MPa. When the holding pressure is less than 98 MPa, the density of the obtained cylindrical ceramic molded body may not be sufficiently high. On the other hand, when the holding pressure exceeds 294 MPa, the load on the CIP device is excessively increased and the production cost is increased.

なお、保持圧力で保持する時間(保持時間)は、1分〜30分とすることが好ましく、3分〜10分とすることがより好ましい。保持時間が1分未満では、得られる円筒形セラミックス成形体の密度を十分に高いものとすることができない場合がある。一方、保持時間が30分を超えると、生産性が悪化することとなる。   In addition, it is preferable to set it as 1 minute-30 minutes, and, as for the time (holding time) hold | maintained by holding pressure, it is more preferable to set it as 3 minutes-10 minutes. If the holding time is less than 1 minute, the density of the obtained cylindrical ceramic molded body may not be sufficiently high. On the other hand, if the holding time exceeds 30 minutes, productivity will deteriorate.

(1−2.配置工程)
配置工程S2は、成形工程S1で得られた円筒形セラミックス成形体を、第1の支持部材及び第2の支持部材を用いて焼成炉内に配置する工程である。特に、本発明では、焼成炉内の炉床あるいは炉床の上に設置した敷板に、上面に複数の凸条部を有する第1の支持部材を複数並べ、該第1の支持部材の上に柱状の第2の支持部材を載置し、該第2の支持部材上に前記円筒形セラミックス成形体を直立させた状態で載置する。
(1-2. Arrangement process)
The placement step S2 is a step of placing the cylindrical ceramic molded body obtained in the forming step S1 in a firing furnace using the first support member and the second support member. In particular, in the present invention, a plurality of first support members having a plurality of protrusions on the upper surface are arranged on a hearth in a firing furnace or a floor plate installed on the hearth, and the first support member is placed on the first support member. A columnar second support member is placed, and the cylindrical ceramic molded body is placed in an upright state on the second support member.

[配置]
図2は、焼成炉内における円筒形セラミックス成形体の配置を説明するための概略断面図であり、図3は、焼成炉内における円筒形セラミックス成形体の配置を説明するための平面図である。本発明では、焼成炉内の炉床11あるいは炉床11の上に設置した敷板13に、上面に複数の凸条部16を有する第1の支持部材15を複数並べ、第1の支持部材15の上に第2の支持部材17を載置し、さらに第2の支持部材17の上に円筒形セラミックス成形体18を直立させた状態で載置して、その後、焼成する。また、炉床11等に通気口12を設ける場合は、複数の第1の支持部材15を炉床11の通気口12を中心として放射上に並べ、さらに第2の支持部材17も第1の支持部材15上で、放射状になるように載置し、第2の支持部材17上に炉床11の通気口12の中心と円筒軸が一致するように円筒形セラミックス成形体18を直立させた状態で載置し、焼成してもよい。なお、通気口12の中心と円筒軸の一致については、これらが実質的に一致していれば足り、そのズレ(例えば、円筒形セラミックス成形体の内径に対して10%〜30%程度)は、本発明の効果が十分に得られる範囲で許容される。
[Arrangement]
FIG. 2 is a schematic cross-sectional view for explaining the arrangement of the cylindrical ceramic compact in the firing furnace, and FIG. 3 is a plan view for explaining the arrangement of the cylindrical ceramic compact in the firing furnace. . In the present invention, a plurality of first support members 15 having a plurality of ridges 16 on the upper surface are arranged on the hearth 11 in the firing furnace or the floor plate 13 installed on the hearth 11, and the first support member 15. The second support member 17 is placed on the second support member 17, and the cylindrical ceramic molded body 18 is placed on the second support member 17 in an upright state, followed by firing. In addition, when the vent hole 12 is provided in the hearth 11 or the like, a plurality of first support members 15 are arranged radially around the vent hole 12 of the hearth 11, and the second support member 17 is also the first support member 17. The cylindrical ceramic molded body 18 was placed upright on the support member 15 so that the center of the vent 12 of the hearth 11 and the cylindrical axis coincided with each other on the second support member 17. It may be placed in a state and fired. In addition, about the coincidence of the center of the vent hole 12 and the cylindrical axis, it is sufficient that they substantially coincide with each other, and the deviation (for example, about 10% to 30% with respect to the inner diameter of the cylindrical ceramic molded body) is sufficient. In the range where the effect of the present invention is sufficiently obtained, it is allowed.

より具体的には、はじめに、通気口12を有する炉床11を用意する。この際、通気口12は雰囲気ガス供給口を兼ねる。次に第1の支持部材15を、通気口12を中心として放射状に配置する。この際、例えば図3に示すように、複数の第1の支持部材15を周方向に等間隔で配置することが好ましい。また、この第1の支持部材15は、上面に複数の凸条部16を有する。ここで、凸条部16は、細長く平面方向に延びる突出部であり、第2の支持部材17との接触面積を減少させるものであればその形状は特に限定はされないが、例えば、上面形状が半円柱状または三角柱状の形状が好ましい。また、凸条部16同士の間隔は、第2の支持部材17が間に落ち込まない間隔であれば特に限定はされないが、後述する図5に示すように連続して形成されていることが好ましい。また、第1の支持部材15の凸条部16の中心軸L1方向が、設置する予定の円筒形セラミックス成形体18の円周方向の接線T方向と一致するように配置することが好ましい。すなわち、複数の凸条部16は円筒形セラミックス成形体18の外周の接線T方向と平行に形成されることが好ましい。なお、円筒形セラミックス成形体18の外周の接線Tは、第1の支持部材15の幅方向(凸条部16の中心軸L1方向)の中心線と円筒形セラミックス成形体18の外周との交点における接線とする。   More specifically, first, a hearth 11 having a vent 12 is prepared. At this time, the vent 12 also serves as an atmosphere gas supply port. Next, the first support members 15 are arranged radially around the vent hole 12. At this time, for example, as shown in FIG. 3, it is preferable to arrange the plurality of first support members 15 at equal intervals in the circumferential direction. The first support member 15 has a plurality of ridges 16 on the upper surface. Here, the protrusion 16 is an elongated protrusion extending in the plane direction, and the shape thereof is not particularly limited as long as the contact area with the second support member 17 is reduced. A semi-cylindrical or triangular prism shape is preferred. Further, the interval between the protrusions 16 is not particularly limited as long as the second support member 17 does not fall in between, but it is preferably formed continuously as shown in FIG. 5 described later. . Moreover, it is preferable to arrange | position so that the center axis | shaft L1 direction of the protruding item | line part 16 of the 1st supporting member 15 may correspond with the tangent T direction of the circumferential direction of the cylindrical ceramic molded object 18 to be installed. In other words, the plurality of ridges 16 are preferably formed in parallel to the tangential T direction of the outer periphery of the cylindrical ceramic molded body 18. The tangent T on the outer periphery of the cylindrical ceramic molded body 18 is the intersection of the center line in the width direction of the first support member 15 (in the direction of the central axis L1 of the ridge 16) and the outer periphery of the cylindrical ceramic molded body 18. The tangent at.

第2の支持部材17は、柱状であり、円筒形セラミックス成形体18の側壁の厚みに跨ぐように、第2の支持部材17の中心軸L2が通気口12(又は円筒形セラミックス成形体18)の中心Cを通るように放射状に配置する。第2の支持部材17は、例えば円柱状である。そして、その上に通気口12の中心と円筒形セラミックス成形体18の円筒軸が一致するように円筒形セラミックス成形体18を直立させた状態で載置し焼成する。なお、焼成炉の大きさに応じて、円筒形セラミックス成形体18を1つ以上配置することが可能であり、この場合、炉床11に複数の通気口12(雰囲気ガス供給口)を設け、それぞれの通気口を中心に第1及び第2の支持部材15、17を配置する。この際、通気口12は成形体18同士が干渉しないだけの間隔があればよい。   The second support member 17 has a columnar shape, and the central axis L2 of the second support member 17 extends through the vent 12 (or the cylindrical ceramic molded body 18) so as to straddle the thickness of the side wall of the cylindrical ceramic molded body 18. It arranges radially so that it may pass through the center C. The second support member 17 has a cylindrical shape, for example. Then, the cylindrical ceramic molded body 18 is placed upright and fired so that the center of the vent 12 and the cylindrical axis of the cylindrical ceramic molded body 18 coincide with each other. Depending on the size of the firing furnace, it is possible to arrange one or more cylindrical ceramic molded bodies 18. In this case, a plurality of vent holes 12 (atmosphere gas supply ports) are provided in the hearth 11. The first and second support members 15 and 17 are disposed around the respective vent holes. At this time, it is sufficient that the vent hole 12 has a space that does not allow the molded bodies 18 to interfere with each other.

なお、形状の違う複数の種類の成形体を焼成する場合は、炉床11の上に敷板13を設置してもよい。敷板13は、高温耐久性を備え、その表面状態が容易に変化せず、かつ、焼成時に円筒形セラミックス成形体18と反応しないことが必要である。このため、その材質は円筒形セラミックス成形体18の焼成温度などにより適宜選択されるが、その代表的な材料としては、アルミナ(Al)やジルコニア(ZrO)などのセラミックス焼結体を用いることができる。また、敷板13には、通気口14を設ける。この通気口14は、敷板13の上面は成形体を配置する位置に形成し、敷板13の下面は、炉床11の通気口12の位置として、雰囲気ガスが敷板13の通気口14を通り供給できるように形成する。これにより、成形体の種類により、これに対応した敷板13を用いることで簡単に通気口14の中心位置と円筒形セラミックス成形体18との中心位置を合わせることができる。また、通気口が無い場合は、焼成炉の大きさに応じて、等間隔に円筒形セラミックス成形体18を配置できるように適宜配置する。 In addition, when baking the several types of molded object from which a shape differs, you may install the base plate 13 on the hearth 11. The floor plate 13 is required to have high-temperature durability, its surface state does not easily change, and does not react with the cylindrical ceramic molded body 18 during firing. For this reason, the material is appropriately selected depending on the firing temperature of the cylindrical ceramic molded body 18, etc., and typical materials thereof are ceramic sintered bodies such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ). Can be used. Further, the floor plate 13 is provided with a vent hole 14. The vent 14 is formed so that the upper surface of the floor plate 13 is disposed at the position where the molded body is disposed. Form as you can. Thereby, the center position of the vent hole 14 and the center position of the cylindrical ceramic molded body 18 can be easily matched by using the floor plate 13 corresponding to the type of the molded body. Further, when there is no vent hole, the cylindrical ceramic molded bodies 18 are appropriately arranged so as to be arranged at equal intervals according to the size of the firing furnace.

図4は、後述する焼成工程S3において、円筒形セラミックス成形体18が収縮する際の支持部材の作用を説明するための概略断面図である。上述の通り、上面に複数の凸条部16を有する第1の支持部材15と柱状の第2の支持部材17を載置し、その上に円筒形セラミックス成形体18を配置して焼成する。第1の支持部材15は、炉床11または敷板13と第1の支持部材15の平面形状で接触している。第1の支持部材15と第2の支持部材17は、第1の支持部材15の上面形状が凸条部16、例えば、半円柱または三角柱が連続した形状で第2の支持部材17が、例えば、円柱状である。そして、第1の支持部材15の上面形状の半円柱または三角柱の中心軸L1方向が、設置する予定の円筒形セラミックス成形体18の円周方向の接線T方向と一致するように配置され、第2の支持部材17は、円筒形セラミックス成形体18の側壁の厚みに跨ぐように、円柱の中心軸L2が通気口12(又は円筒形セラミックス成形体18)の中心Cを通るように放射状に配置する。   FIG. 4 is a schematic cross-sectional view for explaining the operation of the support member when the cylindrical ceramic formed body 18 contracts in the firing step S3 described later. As described above, the first support member 15 having the plurality of ridges 16 on the upper surface and the columnar second support member 17 are placed, and the cylindrical ceramic molded body 18 is placed thereon and fired. The first support member 15 is in contact with the hearth 11 or the floor plate 13 in the planar shape of the first support member 15. The first support member 15 and the second support member 17 are configured such that the upper surface shape of the first support member 15 is a shape in which convex strips 16, for example, a semi-cylindrical column or a triangular column are continuous, and the second support member 17 is, for example, It is cylindrical. The central axis L1 direction of the semicircular cylinder or triangular prism of the upper surface shape of the first support member 15 is arranged so as to coincide with the circumferential tangent T direction of the cylindrical ceramic molded body 18 to be installed, The support members 17 of 2 are arranged radially so that the central axis L2 of the column passes through the center C of the vent 12 (or the cylindrical ceramic molded body 18) so as to straddle the thickness of the side wall of the cylindrical ceramic molded body 18. To do.

このため、第1の支持部材15の上面形状の半円柱または三角柱の中心軸L1方向と、第2の支持部材17の円柱状の中心軸L2とは直角に近い値でする交差する。第1の支持部材15と第2の支持部材17は、この交差する箇所で点接触している。第2の支持部材17と円筒形セラミックス成形体18は、第2の支持部材17が円柱状であり、円筒形セラミックス成形体18の側壁の厚みに跨ぐように、円柱の中心軸L2が通気口12(又は円筒形セラミックス成形体18)の中心Cを通るように放射状に配置しているため線接触となる。なお、第2の支持部材17は、例えば円柱状であり、円筒形セラミックス成形体18の重みで第2の支持部材17は円筒形セラミックス成形体18の底面に食込んでおり実質は面上で接触している。   For this reason, the center axis L1 direction of the semicircular cylinder or the triangular prism of the upper surface shape of the first support member 15 and the columnar center axis L2 of the second support member 17 intersect each other at a value close to a right angle. The first support member 15 and the second support member 17 are in point contact at the intersection. The second support member 17 and the cylindrical ceramic molded body 18 are such that the second support member 17 has a columnar shape, and the central axis L2 of the column is a vent so as to straddle the thickness of the side wall of the cylindrical ceramic molded body 18. 12 (or cylindrical ceramic molded body 18) is arranged in a radial manner so as to pass through the center C of the cylindrical ceramic molded body 18, so that line contact occurs. The second support member 17 has, for example, a columnar shape, and the second support member 17 bites into the bottom surface of the cylindrical ceramic molded body 18 by the weight of the cylindrical ceramic molded body 18 and is substantially on the surface. In contact.

後述する焼成工程S3においては、円筒形セラミックス成形体18が収縮する際、円筒形セラミックス成形体18と第2の支持部材17及び、炉床11または敷板13と第1の支持部材15は各々面接触で抵抗が高く、この間に作用する摩擦力に比べて、第1の支持部材15と第2の支持部材17とは点接触であり、この間に作用する摩擦力が極めて小さくなる。このため、円筒形セラミックス成形体18の焼結収縮時に第1の支持部材15と第2の支持部材17の間で円筒形セラミックス成形体18を載置したまま、滑り移動することが可能となり、焼結収縮に伴う変形を大幅に抑制することができる。また、第1の支持部材の上面形状の凸条部16(例えば半円柱または三角柱が連続した形状)のピッチを替えることで抵抗値を調整することができ、円筒形セラミックス成形体18の大きさ等に合わせ適宜設定することができる。   In the firing step S3 to be described later, when the cylindrical ceramic molded body 18 contracts, the cylindrical ceramic molded body 18 and the second support member 17, and the hearth 11 or the floor plate 13 and the first support member 15 are respectively surfaces. The first contact member 15 and the second support member 17 are in point contact with each other, and the friction force acting between them is extremely small compared to the friction force acting during the contact. For this reason, it becomes possible to slide and move while the cylindrical ceramic molded body 18 is placed between the first support member 15 and the second support member 17 at the time of sintering shrinkage of the cylindrical ceramic molded body 18. Deformation associated with sintering shrinkage can be greatly suppressed. In addition, the resistance value can be adjusted by changing the pitch of the top surface-shaped convex strips 16 (for example, a shape in which a semi-cylindrical column or a triangular column is continuous) of the first support member. It can be set appropriately according to the above.

なお、通気口12は、雰囲気ガスの供給量を十分に確保することができ、かつ、焼成中に滑り移動してきた支持部材が落下しない程度の大きさであることが必要とされる。このため、通気孔の開口面積を3cm〜30cmの範囲で調整することが好ましい。 The vent hole 12 is required to have a size that can ensure a sufficient supply amount of the atmospheric gas and that does not drop the support member that has been slid during firing. Therefore, it is preferable to adjust the range of the open area rate of the vent holes of 3cm 2 ~30cm 2.

第2の支持部材17の移動方向は、原則として、円筒形セラミックス成形体18の径方向外側から中心に向かう方向(図4の矢印方向)に制限されるため、炉床11のわずかな傾きや焼成時に生じた気流の影響により、円筒形セラミックス成形体18が移動し、炉壁や隣接する円筒形セラミックス成形体と接触してしまうことを防止できる。   Since the moving direction of the second support member 17 is limited in principle to the direction from the radially outer side to the center of the cylindrical ceramic molded body 18 (the arrow direction in FIG. 4), the slight inclination of the hearth 11 It is possible to prevent the cylindrical ceramic molded body 18 from moving and coming into contact with the furnace wall or the adjacent cylindrical ceramic molded body due to the influence of the airflow generated during firing.

[支持部材]
第1の支持部材15及び第2の支持部材17は、高温耐久性を備え、その表面状態が容易に変化せず、かつ、焼成時に円筒形セラミックス成形体18と反応しないことが必要である。このため、その材質は円筒形セラミックス成形体18の焼成温度などにより適宜選択されるが、その代表的な材料としては、アルミナ(Al)やジルコニア(ZrO)などのセラミックス焼結体を用いることができる。
[Support member]
The first support member 15 and the second support member 17 are required to have high-temperature durability, their surface states do not easily change, and do not react with the cylindrical ceramic formed body 18 during firing. For this reason, the material is appropriately selected depending on the firing temperature of the cylindrical ceramic molded body 18, etc., and typical materials thereof are ceramic sintered bodies such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ). Can be used.

第1の支持部材15は第2の支持部材17を介して円筒形セラミックス成形体18を載置し、安定して支持することが必要とされる。このため、第1の支持部材15は3箇所以上に配置することが必要となる。4箇所以上がさらに好ましく、6箇所以上とすることがより好ましい。ただし、第1の支持部材15の設置場所があまりに多いと、滑り移動した際に互いに干渉するため10箇所以下程度に抑えるのが好ましい。   The first support member 15 is required to mount and stably support the cylindrical ceramic molded body 18 via the second support member 17. For this reason, it is necessary to arrange the first support member 15 at three or more locations. 4 or more are more preferable, and 6 or more are more preferable. However, if there are too many installation places of the first support member 15, they interfere with each other when they are slid and are preferably suppressed to about 10 places or less.

図5は、本発明の一実施形態に係る第1の支持部材15の形状を示す図である。第1の支持部材15の上面形状は、例えば、半円柱または三角柱が連続した形状である。半円柱が連続した形状とは、例えば、図5(A)に示すように断面が半円形の繰り返し形状でもよい。半円形状の繰り返し構造は半円形の半径が0.5mm以上5mm以下であることが好ましい。半円形の半径が0.5mm未満であると焼成中の固着を防ぐ効果が得られづらい。半径が5mmを超えると、第1の支持部材15と第2の支持部材17の点接点間が長くなり第2の支持部材17が変形してしまう可能性がありその際には、円筒形セラミックス成形体18の焼結収縮時に第2の支持部材17が円筒形セラミックス成形体18を載置したまま、スムーズな滑り移動することができなくなる。   FIG. 5 is a view showing the shape of the first support member 15 according to the embodiment of the present invention. The upper surface shape of the first support member 15 is, for example, a shape in which a semi-cylindrical column or a triangular column is continuous. For example, as shown in FIG. 5A, the shape in which the semicylindrical portions are continuous may be a repetitive shape having a semicircular cross section. The semicircular repeating structure preferably has a semicircular radius of 0.5 mm or more and 5 mm or less. If the semicircular radius is less than 0.5 mm, it is difficult to obtain the effect of preventing sticking during firing. If the radius exceeds 5 mm, the distance between the point contacts of the first support member 15 and the second support member 17 may become long, and the second support member 17 may be deformed. When the compact 18 is sintered and contracted, the second support member 17 cannot move smoothly while the cylindrical ceramic compact 18 is placed.

また、第1の支持部材15の半円柱の連続した形状は、完全な半円でなくともよく、楕円形状でもよい。または、円形の円周長さに対して10%〜80%の長さの円弧が繰り返されている形状でよい。   Further, the continuous shape of the semicylindrical body of the first support member 15 may not be a complete semicircle, but may be an elliptical shape. Alternatively, it may be a shape in which an arc having a length of 10% to 80% is repeated with respect to a circular circumferential length.

三角柱の連続した形状の場合は、例えば、図5(B)に示すように断面の上面が頂点となる三角形状とする。頂点の角度θは特に限定はないが、60°〜120°に設定することで、第1の支持部材15を作製する時の加工が容易になる。連続する三角形状のピッチは、半円形と同様、0.5mm以上5mm以内である。また、頂点部は、取扱い時の接触等で頂点近辺部の欠けを防止するため、R加工やC面加工を行ってもよい。   In the case of a continuous shape of triangular prisms, for example, as shown in FIG. The angle θ of the apex is not particularly limited, but by setting it to 60 ° to 120 °, processing when the first support member 15 is manufactured becomes easy. The continuous triangular pitch is not less than 0.5 mm and not more than 5 mm, as in the semicircular shape. Further, the vertex portion may be subjected to R processing or C surface processing in order to prevent chipping in the vicinity of the vertex due to contact during handling or the like.

第1の支持部材15の平面方向の形状は特に制限はないが、焼結収縮にともない円筒径方向に滑り移動したときに第2の支持部材17が、ずれ落ちないような大きさがあればよい。例えば、幅50mm、長さ60mmの四角形状の部材が使用できる。また、第1の支持部材15を複数配置した時、内側の先端部が干渉にないように内側部が短い台形形状でもよい。   The shape of the first support member 15 in the planar direction is not particularly limited, but if the second support member 17 has such a size that the second support member 17 does not slip off when sliding in the cylindrical diameter direction due to sintering shrinkage. Good. For example, a rectangular member having a width of 50 mm and a length of 60 mm can be used. Further, when a plurality of the first support members 15 are arranged, a trapezoidal shape with a short inner portion may be used so that the inner tip portion is not interfered.

このような、第1の支持部材15の凸条部16は、例えば、板状部材の上面部を研削加工することにより形成することができる。あるいは、所定の型枠内に上面が半円柱又は三角柱となるような部材を配置又は埋設しても良いし、上面形状が半円柱状の場合、例えば、複数の円柱状の部材を連続して並べ、各円柱状の部材同士を耐熱テープ等で連結したものを第1の支持部材15として用いても良い。   Such ridges 16 of the first support member 15 can be formed, for example, by grinding the upper surface of the plate-like member. Alternatively, a member whose upper surface is a semi-cylindrical or triangular prism may be arranged or embedded in a predetermined formwork. When the upper surface shape is a semi-cylindrical shape, for example, a plurality of cylindrical members are continuously arranged. A first support member 15 may be used in which the cylindrical members are connected to each other with a heat-resistant tape or the like.

第2の支持部材17は第1の支持部材15の上に1〜5本、通気孔を中心として放射状に並べられる。第2の支持部材17の形状は第1の支持部材15との接触面積が減少するような形状であれば特に限定されず、角柱、多角柱などでもよいが、点接触する円柱状の丸棒などが特に好ましい。   The second support members 17 are arranged on the first support member 15 in a radial pattern around the vent hole. The shape of the second support member 17 is not particularly limited as long as the contact area with the first support member 15 is reduced, and may be a prism, a polygonal column, etc. Etc. are particularly preferred.

第2の支持部材17の長さはセラミックス成形体を支えられる長さ以上があり、焼結収縮したときに互いに干渉しない程度の長さであればよい。第2の支持部材17の径は円筒形セラミックス成形体18への焼成時の食い込みを考慮して直径0.5mm以上あればよく上限は第1の支持部材15の大きさに制約される。例えば、直径3mm、長さ50mmの丸棒が適用できる。   The length of the second support member 17 is longer than the length that can support the ceramic molded body, and may be a length that does not interfere with each other when sintered and contracted. The diameter of the second support member 17 may be 0.5 mm or more in consideration of the biting into the cylindrical ceramic molded body 18 when firing, and the upper limit is limited by the size of the first support member 15. For example, a round bar having a diameter of 3 mm and a length of 50 mm can be applied.

(1−3.焼成工程)
焼成工程S3は、上述のようにして配置した円筒形セラミックス成形体を、焼成炉を用いて焼成し、円筒形セラミックス焼結体を得る工程である。
(1-3. Firing step)
The firing step S3 is a step of firing the cylindrical ceramic formed body arranged as described above using a firing furnace to obtain a cylindrical ceramic sintered body.

[焼成条件]
円筒形セラミックス成形体の焼成条件は、その組成や大きさ、焼成炉の特性などに応じて適宜選択すべきものであり、特に制限されることはないが、概ね、以下の条件で焼成することができる。
[Baking conditions]
The firing conditions of the cylindrical ceramic molded body should be appropriately selected according to the composition and size thereof, the characteristics of the firing furnace, etc., and are not particularly limited. In general, firing can be performed under the following conditions. it can.

a)脱バインダ段階
焼成工程では、はじめに、室温から特定の温度(脱バインダ温度)まで、一定の時間(脱バインダ時間)をかけて昇温することにより、円筒形セラミックス成形体に含まれる有機成分を除去することが必要となる。
a) Debinding step In the firing step, first, the organic components contained in the cylindrical ceramic molded body are heated from room temperature to a specific temperature (debinding temperature) over a certain period of time (debinding time). Need to be removed.

この際の脱バインダ温度は、300℃〜600℃とすることが好ましく、400℃〜500℃とすることがより好ましい。また、脱バインダ時間は、50時間〜300時間とすることが好ましく、100時間〜300時間とすることがより好ましい。このような脱バインダ温度および脱バインダ時間であれば、円筒形セラミックス成形体に含まれる有機成分を十分に除去することができる。   The binder removal temperature at this time is preferably 300 ° C. to 600 ° C., more preferably 400 ° C. to 500 ° C. The binder removal time is preferably 50 hours to 300 hours, more preferably 100 hours to 300 hours. With such a binder removal temperature and binder removal time, the organic components contained in the cylindrical ceramic molded body can be sufficiently removed.

なお、脱バインダ段階中は雰囲気ガスを炉内容積1mあたり100L/分〜600L/分、好ましくは200L/分〜400L/分で供給することが必要となる。雰囲気は、大気または酸素またはそれらの任意の混合ガスであればよい。 During the binder removal step, it is necessary to supply the atmospheric gas at a rate of 100 L / min to 600 L / min, preferably 200 L / min to 400 L / min per 1 m 3 of the furnace volume. The atmosphere may be air, oxygen, or any mixed gas thereof.

b)焼結段階
脱バインダ段階後、炉内温度を焼成温度まで昇温し、この温度で一定時間保持することにより、円筒形セラミックス成形体を焼結させる。
b) Sintering Step After the binder removal step, the furnace temperature is raised to the firing temperature, and this temperature is held for a certain period of time to sinter the cylindrical ceramic molded body.

焼成温度は、円筒形セラミックス成形体の組成によって異なるが、例えば、酸化インジウムを主成分とする場合には1200℃〜1600℃とすることが好ましく、高密度の円筒形セラミックス焼結体を得る観点から、1300℃〜1600℃とすることがより好ましい。一方、酸化亜鉛を主成分とする場合には1000℃〜1400℃とすることが好ましく、同様の観点から、1250℃〜1350℃とすることがより好ましい。また、焼成温度での保持時間は、5時間〜40時間とすることが好ましく、10時間〜30時間とすることがより好ましい。   The firing temperature varies depending on the composition of the cylindrical ceramic molded body. For example, when indium oxide is the main component, the firing temperature is preferably set to 1200 ° C. to 1600 ° C., to obtain a high-density cylindrical ceramic sintered body. Therefore, it is more preferable to set it as 1300 to 1600 degreeC. On the other hand, when zinc oxide is the main component, it is preferably 1000 ° C. to 1400 ° C., and more preferably 1250 ° C. to 1350 ° C. from the same viewpoint. The holding time at the firing temperature is preferably 5 hours to 40 hours, more preferably 10 hours to 30 hours.

なお、焼結段階における雰囲気は、円筒形セラミックス成形体の組成によって異なるが、組成に応じて大気や酸素、またはこれらの混合ガスを、炉内容積1mあたり100L/分〜600L/分、好ましくは200L/分〜400L/分供給する。 The atmosphere in the sintering stage varies depending on the composition of the cylindrical ceramic formed body, but depending on the composition, air, oxygen, or a mixed gas thereof is preferably 100 L / min to 600 L / min per 1 m 3 of furnace volume. Supplies 200 L / min to 400 L / min.

<2.円筒形セラミック焼結体>
本発明の一実施形態に係る製造方法によって得られた円筒形セラミックス焼結体は、円筒形セラミックス成形体の変形を抑制しつつ、均一に焼成することによって得られるものである。このような円筒形セラミックス焼結体は、寸法精度が優れていることを特徴とする。詳細には、支持部材を複数使用することで焼結時、焼結収縮を固定されることなく自由に収縮されるため、円筒形の変形量が1.5mm以内になる。このように本発明の一実施形態に係る製造方法により得られた円筒形セラミックス焼結体は、寸法精度の優れた焼結体となる。
<2. Cylindrical Ceramic Sintered Body>
The cylindrical ceramic sintered body obtained by the manufacturing method according to one embodiment of the present invention is obtained by firing uniformly while suppressing deformation of the cylindrical ceramic molded body. Such a cylindrical ceramic sintered body is characterized by excellent dimensional accuracy. More specifically, when a plurality of supporting members are used, the sintering shrinkage is freely contracted without being fixed at the time of sintering, so that the amount of deformation of the cylindrical shape is within 1.5 mm. Thus, the cylindrical ceramic sintered body obtained by the manufacturing method according to an embodiment of the present invention is a sintered body with excellent dimensional accuracy.

なお、上記変形量は、以下の測定による。本発明によって得られた円筒形セラミックス焼結体は、接地側の端面の周方向4箇所以上の位置で測定した内径dの最大値dmaxと最小値dminの差によって定義される、変形量Δd(=dmax−dmin)が1.5mm以下である。ここで、周方向4箇所の位置は、円筒形セラミックス焼結体の中心を通る直線で最初の内径を決定し、当該直線を45°ずつその位相がずれた位置にある直線上の内径を順次測定すればよく、測定箇所を多くする場合には、その位相がずれる角度をその数に応じて決定すればよい。   The amount of deformation is based on the following measurement. The cylindrical ceramic sintered body obtained by the present invention has a deformation amount Δd (defined by the difference between the maximum value dmax and the minimum value dmin of the inner diameter d measured at four or more positions in the circumferential direction of the end surface on the ground side. = Dmax−dmin) is 1.5 mm or less. Here, the four positions in the circumferential direction determine the first inner diameter by a straight line passing through the center of the cylindrical ceramic sintered body, and sequentially determine the inner diameter on the straight line at the position where the phase is shifted by 45 °. What is necessary is just to measure, and when there are many measurement locations, the angle from which the phase shifts may be determined according to the number.

以下、本発明について、実施例および比較例により、本発明をさらに詳細に説明するが、本発明は、以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to a following example at all.

なお、以下の実施例および比較例では、得られた円筒形セラミックス焼結体の特性について評価し、その結果を表1にまとめた。評価方法としては1焼成バッチあたり8個の円筒形セラミックス成形体を焼成したものを5回製作(計40個)し、変形量が1.5mmを超えたものを数えている。なお、表1に示した原料、組成について、2AZOと記したものはAlが2wt%、ZnOが98wt%を意味し、10ITOではSnOが10wt%、Inが90wt%を意味する。また、比較例の第1の支持部材の平板については、円筒径中心から放射状に断面を見たとき長方形に見える板である。 In the following Examples and Comparative Examples, the characteristics of the obtained cylindrical ceramic sintered body were evaluated, and the results are summarized in Table 1. As an evaluation method, a product obtained by firing 8 cylindrical ceramic compacts per fired batch was manufactured 5 times (40 in total), and the number of deformations exceeding 1.5 mm was counted. Regarding the raw materials and compositions shown in Table 1, 2AZO means that Al 2 O 3 is 2 wt%, ZnO is 98 wt%, and 10 ITO is SnO 2 is 10 wt% and In 2 O 3 is 90 wt%. means. In addition, the flat plate of the first support member of the comparative example is a plate that looks rectangular when the cross section is viewed radially from the center of the cylindrical diameter.

(実施例1)
[造粒粉末]
実施例1では、はじめに、酸化亜鉛粉末と酸化アルミニウム粉末を、酸化アルミニウム粉末の割合が2質量%となるように秤量した。これらの原料粉末の濃度が60質量%となるように純水と、バインダとしてのポリビニルアルコール(PVA)と、分散剤とを加えて、ビーズミル(アシザワ・ファインテック株式会社製)により混合および解砕することで、スラリーを形成した。
Example 1
[Granulated powder]
In Example 1, first, the zinc oxide powder and the aluminum oxide powder were weighed so that the ratio of the aluminum oxide powder was 2% by mass. Pure water, polyvinyl alcohol (PVA) as a binder, and a dispersant are added so that the concentration of these raw material powders is 60% by mass, and they are mixed and crushed by a bead mill (manufactured by Ashizawa Finetech Co., Ltd.). As a result, a slurry was formed.

次に、このスラリーをスプレードライヤ(大川原化工機株式会社製、ODL−20型)で噴霧乾燥することにより、球状の造粒粉末を得た。この造粒粉末のタップ密度を振とう比重測定器(蔵持科学器械製作所製KRS−409)を用いて測定したところ、1.5g/cmであることが確認された。 Next, this granulated powder was obtained by spray-drying this slurry with a spray dryer (made by Okawahara Kako Co., Ltd., ODL-20 type). When the tap density of this granulated powder was measured using a shaking specific gravity measuring device (KRS-409, manufactured by Kuramochi Scientific Instruments), it was confirmed to be 1.5 g / cm 3 .

[成形工程]
この造粒粉末を円筒形ゴム型に充填した後、冷間静水圧プレス装置に投入し、保持圧力
を294MPa、保持時間を10分として加圧成形することにより、外径が180mm、内径が150mm、全長が350mmの円筒形セラミックス成形体を8個作製した。
[Molding process]
After filling this granulated powder into a cylindrical rubber mold, it is put into a cold isostatic press, and is molded by pressing with a holding pressure of 294 MPa and a holding time of 10 minutes, so that the outer diameter is 180 mm and the inner diameter is 150 mm. Eight cylindrical ceramic compacts having a total length of 350 mm were produced.

[配置・焼成工程]
成形工程で得られた8個の円筒形セラミックス成形体を、内径40mm(開口面積:12.6cm)の8個の雰囲気ガス供給口を有する炉内容積が0.5mの常圧焼成炉(丸祥電器株式会社製)内に載置し、焼成した。
[Arrangement and firing process]
A normal pressure firing furnace having eight cylindrical ceramic compacts obtained in the molding step and having an inner diameter of 40 mm (opening area: 12.6 cm 2 ) and eight atmosphere gas supply ports and a furnace volume of 0.5 m 3 It was placed in (Marusho Denki Co., Ltd.) and baked.

はじめに、円筒形セラミックス成形体のそれぞれに対して、内径30mm(開口面積:7.1cm)の通気孔を有する、縦250mm、横250mm、厚さ5mmのアルミナ製の敷板を用意し、この敷板を炉床上に、それぞれ設置した。次に、通気孔の周囲に、幅50mm、全長60mm、上面形状が半径0.5mmの半円柱が連続した形状のアルミナ製の第1の支持部材を、通気孔を中心として、その長手方向が、通気孔を中心とする円の径方向と一致するように、6ヶ所に、放射状に配置した。この際、第1の支持部材の上面形状の半円柱の中心軸方向が、円筒形セラミックス成形体の周方向の接線方向になるように、概ね等間隔に配置した。第2の支持部材は、φ3mm長さ50mmのアルミナ製の丸棒とし、1つの第1の支持部材に対して第2の支持部材を2本ずつ、計12本、通気孔を中心として、丸棒の中心軸が、通気孔を中心とする円の径方向と一致するように、かつ、放射状に配置した。続いて、第2の支持部時の上に、円筒形セラミックス成形体を、円筒軸が通気孔の中心と一致するように支持部材上に直立させた状態で載置した。 First, for each cylindrical ceramic molded body, an alumina flooring plate having an inner diameter of 30 mm (opening area: 7.1 cm 2 ) and having a ventilation hole of 250 mm length, 250 mm width, and 5 mm thickness is prepared. Were installed on the hearth. Next, a first support member made of alumina having a shape in which a semi-cylinder having a width of 50 mm, a total length of 60 mm, and a top surface having a radius of 0.5 mm is continuously formed around the vent hole, the longitudinal direction of the first support member centered on the vent hole These were arranged radially at six locations so as to coincide with the radial direction of the circle centered on the vent hole. At this time, the first support member was arranged at approximately equal intervals so that the central axis direction of the semicircular column of the upper surface shape of the first support member was tangential to the circumferential direction of the cylindrical ceramic molded body. The second support member is a round rod made of alumina having a diameter of 3 mm and a length of 50 mm. Two second support members are provided for each first support member, 12 in total, with the vent hole as the center. The rods were arranged radially so that the central axis of the rod coincided with the radial direction of the circle centered on the vent hole. Subsequently, the cylindrical ceramic molded body was placed on the support member in an upright state so that the cylindrical axis coincided with the center of the vent hole on the second support portion.

この状態で、雰囲気ガス供給口を介して、常圧焼成炉内に、炉内容積1mあたり300L/分で空気を流通させながら450℃(脱バインダ温度)まで160時間かけて昇温することによりバインダを除去した。その後、炉内容積1mあたり300L/分で酸素を流通させながら、1350℃まで昇温して、この温度(焼成温度)で20時間保持し、円筒形セラミックス成形体を焼結させることにより、8個の円筒形セラミックス焼結体を作製した。これらの円筒形セラミックス焼結体を炉内から取り出し、その変形量を測定した。 In this state, the temperature is raised to 450 ° C. (debinder temperature) over 160 hours while circulating air at 300 L / min per 1 m 3 of the furnace volume through the atmospheric gas supply port. The binder was removed by Then, while circulating oxygen at a volume of 300 L / min per 1 m 3 in the furnace, the temperature was raised to 1350 ° C., held at this temperature (firing temperature) for 20 hours, and the cylindrical ceramic compact was sintered, Eight cylindrical ceramic sintered bodies were produced. These cylindrical ceramic sintered bodies were taken out from the furnace, and the amount of deformation was measured.

上記手順で、5回繰り返し、計40個の円筒形セラミックス焼結体を作製した。この時の1.5mm以上の変形量の個数を数えた。   The above procedure was repeated 5 times to produce a total of 40 cylindrical ceramic sintered bodies. The number of deformation amounts of 1.5 mm or more at this time was counted.

(実施例2)
実施例2では、第1の支持部材の上面形状を半径1.0mmの半円柱が連続した形状とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Example 2)
In Example 2, the shape of the upper surface of the first support member was a shape in which semicircular cylinders having a radius of 1.0 mm were continuous. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(実施例3)
実施例3では、第1の支持部材の上面形状を半径1.5mmの半円柱が連続した形状とし、材質をジルコニアにした。また、第2の支持部材の材質もジルコニアにした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
Example 3
In Example 3, the shape of the upper surface of the first support member was a shape in which a half cylinder with a radius of 1.5 mm was continuous, and the material was zirconia. The material of the second support member was also zirconia. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(実施例4)
実施例4では、原料粉末を、酸化インジウム粉末と酸化スズ粉末との混合粉末とし、酸化スズ粉末の割合を10質量%としたこと、および、原料粉末の濃度を65質量%としてスラリーを形成した。また、円筒形セラミックス成形体の形状を、外径が200mm、内径が160mm、全長が330mmとしたこと以外は、実施例1と同様にして、球状の造粒粉末を得た。この造粒粉末のタップ密度は、1.5g/cmであった。円筒形セラミックス成形体はそれぞれに対して、内径30mm(開口面積:7.1cm)の通気孔を有する炉床の上にそれぞれ支持部材を介して設置した。また、脱バインダ温度を500℃としたこと、および、焼成温度を1550℃とした。また、第1の支持部材の上面形状を半径5.0mmの半円柱が連続した形状とした。第2の支持部材は、φ0.5mm長さ50mmのアルミナ製の丸棒とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Example 4)
In Example 4, the raw material powder was a mixed powder of indium oxide powder and tin oxide powder, the ratio of the tin oxide powder was 10% by mass, and the concentration of the raw material powder was 65% by mass to form a slurry. . A spherical granulated powder was obtained in the same manner as in Example 1 except that the cylindrical ceramic molded body had an outer diameter of 200 mm, an inner diameter of 160 mm, and a total length of 330 mm. The tap density of this granulated powder was 1.5 g / cm 3 . The cylindrical ceramic compacts were respectively installed on a hearth having a vent hole with an inner diameter of 30 mm (opening area: 7.1 cm 2 ) via a support member. The binder removal temperature was 500 ° C., and the firing temperature was 1550 ° C. In addition, the upper surface shape of the first support member was a shape in which a half cylinder with a radius of 5.0 mm was continuous. The second supporting member was an alumina round bar having a diameter of 0.5 mm and a length of 50 mm. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(実施例5)
実施例5では、第1の支持部材の上面形状を頂点が90°の二等辺三角形で二等辺の一辺が2.0mmの三角柱が連続した形状とした。第2の支持部材は、φ3.0mm長さ50mmのアルミナ製の丸棒とした。その他は実施例4と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Example 5)
In Example 5, the shape of the upper surface of the first support member was a shape in which triangular prisms having isosceles triangles with apexes of 90 ° and isosceles sides of 2.0 mm were continuous. The second support member was an alumina round bar having a diameter of φ3.0 mm and a length of 50 mm. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 4.

(比較例1)
比較例1では、第1の支持部材の上面形状を平面形状とし、材質はアルミナ製とした。第2の支持部材は一辺が3.0mmの四角で長さが50mmのアルミナ製の角棒とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 1)
In Comparative Example 1, the top surface shape of the first support member was a planar shape, and the material was made of alumina. The second support member was an alumina square bar with a side of 3.0 mm and a length of 50 mm. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例2)
比較例2では、第1の支持部材の上面形状を平面形状とし、材質はジルコニア製とした。第2の支持部材は一辺が3.0mmの四角で長さが50mmのジルコニア製の角棒とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 2)
In Comparative Example 2, the upper surface shape of the first support member was a planar shape, and the material was made of zirconia. The second support member was a square bar made of zirconia with a side of 3.0 mm and a length of 50 mm. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例3)
比較例3では、第1の支持部材の上面形状を平面形状とし、材質はアルミナ製とした。第2の支持部材は一辺が3.0mmの四角で長さが50mmのアルミナ製とした。その他は実施例4と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 3)
In Comparative Example 3, the upper surface shape of the first support member was a planar shape, and the material was made of alumina. The second support member was made of alumina having a square of 3.0 mm on one side and a length of 50 mm. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 4.

上記実施例と比較例について、それぞれ40個の円筒形セラミックス焼結体の変形量を測定し、その時の1.5mm以上の変形量の個数を数えた。その結果を表1に示す。   About the said Example and the comparative example, the deformation amount of 40 cylindrical ceramic sintered compacts was measured, respectively, and the number of the deformation amount of 1.5 mm or more at that time was counted. The results are shown in Table 1.

Figure 2018193281
Figure 2018193281

表1より、実施例においては変形量が1.5mmを超える個数が0であり焼結体の形状寸法が良好であり、繰り返し5回行っても寸法精度が維持されていることが判る。比較例においては、支持部材間で、摩擦抵抗が大きく、変形量が大きくなる場合があることが判る。   From Table 1, it can be seen that in the examples, the number of deformation exceeding 1.5 mm is 0, the shape of the sintered body is good, and the dimensional accuracy is maintained even after repeated 5 times. In the comparative example, it can be seen that the frictional resistance is large and the amount of deformation may be large between the support members.

なお、上記のように本発明の一実施形態および各実施例について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。   Although one embodiment and each example of the present invention have been described in detail as described above, those skilled in the art will appreciate that many modifications can be made without departing from the novel matters and effects of the present invention. It will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書または図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書または図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、円筒形セラミックス焼結体の製造方法の構成も本発明の一実施形態および各実施例で説明したものに限定されず、種々の変形実施が可能である。   For example, a term described at least once together with a different term having a broader meaning or the same meaning in the specification or the drawings can be replaced with the different term anywhere in the specification or the drawings. Moreover, the structure of the manufacturing method of a cylindrical ceramic sintered compact is not limited to what was demonstrated in one Embodiment and each Example of this invention, A various deformation | transformation implementation is possible.

11 炉床、12 (炉床の)通気口、13 敷板、14 (敷板の)通気口、15,15A,15B 第1の支持部材、16,16A,16B 凸条部、17 第2の支持部材、18 円筒形セラミックス成形体 DESCRIPTION OF SYMBOLS 11 Hearth, 12 (furnace floor) vent, 13 laying board, 14 (sill board) vent, 15, 15A, 15B 1st support member, 16, 16A, 16B Convex section, 17 2nd support member , 18 Cylindrical ceramic molded body

Claims (7)

焼成炉を用いて円筒形セラミックス成形体を焼成する円筒形セラミックス焼結体の製造方法であって、
円筒形成形型のキャビティ内に原料粉末を充填し、加圧成形して円筒形セラミックス成形体を得る成形工程と、
前記円筒形セラミックス成形体を前記焼成炉内に配置する配置工程と、
前記配置した円筒形セラミックス成形体を前記焼成炉において焼成して円筒形セラミックス焼結体を得る焼成工程とを有し、
前記配置工程では、前記焼成炉内の炉床あるいは炉床の上に設置した敷板に、上面に複数の凸条部を有する第1の支持部材を複数並べ、該第1の支持部材の上に柱状の第2の支持部材を載置し、該第2の支持部材上に前記円筒形セラミックス成形体を直立させた状態で載置する円筒形セラミックス焼結体の製造方法。
A method for producing a cylindrical ceramic sintered body by firing a cylindrical ceramic molded body using a firing furnace,
A forming step of filling a raw material powder into a cavity of a cylindrical forming mold and press-molding to obtain a cylindrical ceramic molded body,
An arranging step of arranging the cylindrical ceramic molded body in the firing furnace;
A firing step of firing the arranged cylindrical ceramic compact in the firing furnace to obtain a cylindrical ceramic sintered body;
In the arranging step, a plurality of first support members having a plurality of convex portions on the upper surface are arranged on a hearth in the firing furnace or a floor plate installed on the hearth, and the first support member is placed on the first support member. A method for producing a cylindrical ceramic sintered body, wherein a columnar second support member is placed, and the cylindrical ceramic molded body is placed in an upright state on the second support member.
前記第1の支持部材は、円筒形セラミックス成形体の円筒径中心から放射状に配置され、前記複数の凸条部は前記円筒形セラミックス成形体の外周の接線方向と平行に形成される請求項1記載の円筒形セラミックス焼結体の製造方法。   The first support member is arranged radially from the center of the cylindrical diameter of the cylindrical ceramic molded body, and the plurality of ridges are formed in parallel to the tangential direction of the outer periphery of the cylindrical ceramic molded body. The manufacturing method of the cylindrical ceramic sintered compact of description. 前記凸条部は断面視が半円形状である請求項1又は請求項2記載の円筒形セラミックス焼結体の製造方法。   The method for manufacturing a cylindrical ceramic sintered body according to claim 1, wherein the protruding portion has a semicircular shape in cross-sectional view. 前記半円形状の半径が0.5mm以上5mm以下である請求項3記載の円筒形セラミックス焼結体の製造方法。   The method for producing a cylindrical ceramic sintered body according to claim 3, wherein the semicircular radius is 0.5 mm or more and 5 mm or less. 前記凸条部は断面視が三角形状である請求項1又は請求項2記載の円筒形セラミックス焼結体の製造方法。   The method for manufacturing a cylindrical ceramic sintered body according to claim 1, wherein the protruding portion has a triangular shape in cross-sectional view. 前記第2の支持部材は、円柱形状で、該円柱の中心軸が前記円筒形セラミックス成形体の円筒径中心を通るように放射状に配置する請求項1乃至請求項5のいずれか1項記載の円筒形セラミックス焼結体の製造方法。   The said 2nd support member is a column shape, and arrange | positions radially so that the center axis | shaft of this column may pass the cylindrical diameter center of the said cylindrical ceramic molded object. Manufacturing method of cylindrical ceramic sintered body. 前記第2の支持部材の円柱形状の円の直径が0.5mm以上である請求項6記載の円筒形セラミックス焼結体の製造方法。   The method for producing a cylindrical ceramic sintered body according to claim 6, wherein a diameter of a columnar circle of the second support member is 0.5 mm or more.
JP2017099562A 2017-05-19 2017-05-19 Manufacturing method of cylindrical ceramic sintered body Active JP6842369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099562A JP6842369B2 (en) 2017-05-19 2017-05-19 Manufacturing method of cylindrical ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099562A JP6842369B2 (en) 2017-05-19 2017-05-19 Manufacturing method of cylindrical ceramic sintered body

Publications (2)

Publication Number Publication Date
JP2018193281A true JP2018193281A (en) 2018-12-06
JP6842369B2 JP6842369B2 (en) 2021-03-17

Family

ID=64569622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099562A Active JP6842369B2 (en) 2017-05-19 2017-05-19 Manufacturing method of cylindrical ceramic sintered body

Country Status (1)

Country Link
JP (1) JP6842369B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119083A (en) * 2001-10-10 2003-04-23 Shin Etsu Chem Co Ltd Heat resistant tool
JP2005274121A (en) * 2004-02-24 2005-10-06 Kyocera Corp Formed body burning tool
JP2008184337A (en) * 2007-01-26 2008-08-14 Tosoh Corp Method of manufacturing ceramic sintered compact
JP2011052906A (en) * 2009-09-02 2011-03-17 Ngk Insulators Ltd Kiln tool plate for ceramic firing
JP2016088831A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Cylindrical ceramic sintered compact and method for production thereof
JP2016147778A (en) * 2015-02-12 2016-08-18 日立金属株式会社 Method for producing inorganic powder sintered compact

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119083A (en) * 2001-10-10 2003-04-23 Shin Etsu Chem Co Ltd Heat resistant tool
JP2005274121A (en) * 2004-02-24 2005-10-06 Kyocera Corp Formed body burning tool
JP2008184337A (en) * 2007-01-26 2008-08-14 Tosoh Corp Method of manufacturing ceramic sintered compact
JP2011052906A (en) * 2009-09-02 2011-03-17 Ngk Insulators Ltd Kiln tool plate for ceramic firing
JP2016088831A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Cylindrical ceramic sintered compact and method for production thereof
JP2016147778A (en) * 2015-02-12 2016-08-18 日立金属株式会社 Method for producing inorganic powder sintered compact

Also Published As

Publication number Publication date
JP6842369B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6464776B2 (en) Cylindrical ceramic sintered body and manufacturing method thereof
JP2006225186A (en) Firing setter and method of manufacturing the same
KR20140069146A (en) Ceramic cylindrical sputtering target and method for producing same
JP4748071B2 (en) Manufacturing method of ceramic sintered body
KR102336966B1 (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
JP6281437B2 (en) Oxide sintered body, manufacturing method thereof, and sputtering target using this oxide sintered body
JP2018193281A (en) Production method of cylindrical ceramic sintered body
JP6148845B2 (en) Method for manufacturing electrode-embedded ceramic sintered body
JP6032903B2 (en) Setter for firing
KR100546452B1 (en) Setter for ceramic electronic parts
JP6842293B2 (en) Manufacturing method of cylindrical ceramic sintered body
JP6875890B2 (en) Manufacturing method of cylindrical oxide sintered body and floor plate
CN211575892U (en) Positioning tool
TWI723974B (en) Method for manufacturing cylindrical target material, cylindrical sputtering target and firing jig
CN101655330A (en) Ceramic tube for isothermal gradient heat exchanger and preparation method thereof
CN111023838A (en) Sintering method of tubular rotary ceramic target
CN113277835B (en) Positioning tool and sintering method of planar target
JP2016147778A (en) Method for producing inorganic powder sintered compact
JP4460815B2 (en) Setter for firing
JP4031578B2 (en) Manufacturing method of bottomed cylindrical ceramic sintered body
JP6343234B2 (en) Silicon carbide sintered body, method for manufacturing silicon carbide sintered body, firing jig, firing furnace, and molten metal holding furnace
KR101270471B1 (en) Method for producing the rotatable target sintered article and Rotatable target sintered article produced by the method
JPH05226176A (en) Method for burning ferrite core
JP5169969B2 (en) Method for producing sintered body for transparent conductive film
JP2022091255A (en) Setter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210219

R150 Certificate of patent or registration of utility model

Ref document number: 6842369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250