JPH0272560A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0272560A
JPH0272560A JP63222508A JP22250888A JPH0272560A JP H0272560 A JPH0272560 A JP H0272560A JP 63222508 A JP63222508 A JP 63222508A JP 22250888 A JP22250888 A JP 22250888A JP H0272560 A JPH0272560 A JP H0272560A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode catalyst
gas
electrolyte
pore size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63222508A
Other languages
Japanese (ja)
Other versions
JP2593199B2 (en
Inventor
Hiroshi Horiuchi
堀内 弘志
Tatsuo Mitsunaga
光永 達雄
Yoshiaki Sakamoto
阪本 芳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63222508A priority Critical patent/JP2593199B2/en
Publication of JPH0272560A publication Critical patent/JPH0272560A/en
Application granted granted Critical
Publication of JP2593199B2 publication Critical patent/JP2593199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To make the diffusion of gas produced in an electrode catalyst layer and reaction gases smooth by forming a gas passage having larger pore size than the mean pore size of a porous part in an electrolyte catalyst layer. CONSTITUTION:A gas passage having larger pore size than the mean pore size of a porous part is formed in an electrode catalyst layer 20. Fuel and an oxidizing agent gas are separately supplied to gas passages perpendicularly intersecting each other, and each gas is supplied to the whole area of the electrode catalyst layer 20 and reacts in an electrolyte suction part in the electrode catalyst layer 20 to generate electric power. Steam which is a reaction product is exhausted outside through the gas passage and a gas passing route. Gas produced in the electrode catalyst layer 20 and reaction gases are diffused smoothly.

Description

【発明の詳細な説明】 r産業上の利用分野] この発明は、電解質マトリックスを挾んで対向1−て配
設された電極触媒層に電解質を補足するために多孔部が
添設された燃料電池に関するものである。
[Detailed Description of the Invention] r Industrial Application Field] The present invention relates to a fuel cell in which a porous portion is attached to an electrode catalyst layer disposed facing each other with an electrolyte matrix sandwiched therebetween in order to supplement the electrolyte. It is related to.

[従来の技術] 第4図は本出願人が既に出願している特開昭63−24
561号公報に示された燃料電池の断面図であり、1は
電解質マトリックス、2および3は電極触媒層、4およ
び5は互いに直交する燃料および酸化剤ガスのガス流路
、6はガス分離板で緻密層7とその両面にリブ状に形成
された多孔部8.9により一体構成されている。
[Prior art] Figure 4 shows the patent application for Japanese Patent Application Laid-Open No. 1983-24, which the present applicant has already filed.
561 is a cross-sectional view of the fuel cell shown in Publication No. 561, in which 1 is an electrolyte matrix, 2 and 3 are electrode catalyst layers, 4 and 5 are mutually orthogonal gas flow paths for fuel and oxidant gas, and 6 is a gas separation plate. It is integrally constituted by the dense layer 7 and the porous portions 8.9 formed in the shape of ribs on both sides of the dense layer 7.

次に、上記構成の動作について説明する。互いに直交す
るガス流路4.5にそれぞれ燃料および酸fヒ剤ガスを
供給する。このとき、ガス分離板6の緻密部7は燃料ガ
スと酸化剤カスとが互いに交じるのを防いでおり、両ガ
スは電極触媒層2.3に達する。電極触媒層2.3に達
したガスはイオン化し電解質マトリッックス1を通して
反応し発電が行われる。ここで、反応に使われなかった
余剰ガズや反応生成物である水蒸気ガスはガス流路4.
5を通じて外部に排出される。この排出ガス中には電解
質マトリッックス1および電極触媒層2.3に含まれる
リン酸からなる電解質を蒸気として含み、したがって長
期の運転を行った場合には電解質マトリッックス1およ
び電極触媒N2゜3に含まれる電解質が不足してくるが
、多孔部8゜9に含浸された電解質が電解質マトリップ
クスl、電極触媒層2.3に移動しその不足分を補°う
Next, the operation of the above configuration will be explained. Fuel and acid and arsenic gas are respectively supplied to the mutually orthogonal gas passages 4.5. At this time, the dense portion 7 of the gas separation plate 6 prevents the fuel gas and the oxidizer residue from mixing with each other, and both gases reach the electrode catalyst layer 2.3. The gas that has reached the electrode catalyst layer 2.3 is ionized and reacts through the electrolyte matrix 1 to generate electricity. Here, excess gas not used in the reaction and water vapor gas which is a reaction product are removed from the gas flow path 4.
5 and is discharged to the outside. This exhaust gas contains the electrolyte made of phosphoric acid contained in the electrolyte matrix 1 and the electrode catalyst layer 2.3 in the form of vapor, and therefore, in the case of long-term operation, the electrolyte contained in the electrolyte matrix 1 and the electrode catalyst layer N2. However, the electrolyte impregnated in the porous portions 8.9 moves to the electrolyte matrix 1 and the electrode catalyst layer 2.3 to make up for the shortage.

第5図は電極触媒層2.3が特開昭60−133659
号公報に示された方法により製造されたときの模式的断
面図であり、10は電極における電気化学的反応を促進
させる活性物例えば白金などを担持した触媒担持炭素、
11はボリテI〜ラフロロエチレン(以下PTFEと略
称する。)粒子からなる結着剤、12は反応ガスあるい
は反応生成物が通過する空孔、13は電気化学的反応に
必要な反応ガスおよび電極内でti化学的反応により生
成される反応生成物がガス状で通過する通路となる、炭
素粒子とPTFE粒子とからなる大径の侃水性粒子群で
ある。
In Figure 5, the electrode catalyst layer 2.3 is
It is a schematic cross-sectional view when manufactured by the method shown in the publication, and 10 is catalyst-supported carbon supporting an active substance such as platinum that promotes the electrochemical reaction in the electrode;
11 is a binder made of Bolite I to Lafluoroethylene (hereinafter abbreviated as PTFE) particles, 12 is a hole through which a reaction gas or reaction product passes, and 13 is a reaction gas and an electrode necessary for the electrochemical reaction. This is a group of large-diameter hydrophobic particles consisting of carbon particles and PTFE particles that serve as a passage through which the reaction products produced by the Ti chemical reaction pass in gaseous form.

上記の燃料電池の電極は、炭素粒子とPTFE粒子とで
大径の攬水性粒子群13を作成し、その後この促水性粒
子群13と触媒担持炭素10とを結着剤11を添加して
混合して作られている。
In the electrode of the fuel cell described above, a large-diameter water-repellent particle group 13 is created using carbon particles and PTFE particles, and then the water-repellent particle group 13 and catalyst-supported carbon 10 are mixed by adding a binder 11. It is made by

[発明が解決しようとする課題] 上記の燃料電池の電極触媒層2.3では、触媒担持炭素
10が微粒子の状態で撓水性粒子群13と混合されるた
めに、空孔12に触媒担持炭素1oが詰まり、電極触媒
層2,3の細孔径は多孔部8.9の細孔径よりも小さく
なり、毛管吸引力により多孔部8.9からの電解質で電
極触媒層2,3の全域が満たされてしまい、電極触媒層
2,3での反応ガス、生成ガスの拡散が妨げられるとい
う問題点があった。
[Problems to be Solved by the Invention] In the electrode catalyst layer 2.3 of the fuel cell described above, since the catalyst-supported carbon 10 is mixed with the water-repellent particle group 13 in the form of fine particles, the catalyst-supported carbon is formed in the pores 12. 1o is clogged, the pore diameter of the electrode catalyst layers 2 and 3 becomes smaller than the pore diameter of the porous portion 8.9, and the entire area of the electrode catalyst layers 2 and 3 is filled with electrolyte from the porous portion 8.9 due to capillary suction force. This poses a problem in that diffusion of the reaction gas and generated gas in the electrode catalyst layers 2 and 3 is hindered.

この発明は、上記のような問題点を解決するためになさ
れたもので、電極触媒層での生成ガス、反応ガスの拡散
がスムースに行われ、また電極触媒層に多孔部からの電
解質が十分に供給される燃料電池を得ることを目的とす
る。
This invention was made in order to solve the above-mentioned problems, and it is possible to smoothly diffuse the generated gas and reaction gas in the electrode catalyst layer, and to ensure that the electrolyte from the porous portions is sufficiently absorbed into the electrode catalyst layer. The aim is to obtain fuel cells that will be supplied to

[課題を解決するための手段] この発明に係る燃料電池は、電極触媒層に、多孔部の平
均細孔径よりも大きな細孔径を有し、ガスの通路となる
ガス通路部を設けたものである。
[Means for Solving the Problems] The fuel cell according to the present invention is one in which the electrode catalyst layer is provided with a gas passage portion having a pore diameter larger than the average pore diameter of the porous portion and serving as a gas passage. be.

[iF用コ この発明においては、ガス通路部を通してガスが電極触
媒層全域にスムースに供給される。
[For iF] In this invention, gas is smoothly supplied to the entire area of the electrode catalyst layer through the gas passage section.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の実施例を示す電極触媒120の模式
的断面図であり、第4図および第5図と同一または相当
部分は同一符号を付し、その説明は省略する。
FIG. 1 is a schematic cross-sectional view of an electrode catalyst 120 showing an embodiment of the present invention, and the same or corresponding parts as in FIGS. 4 and 5 are given the same reference numerals, and the explanation thereof will be omitted.

図において、21は電極における電気化学的反応を促進
させる活性物例えば白金などを担持した触媒担持炭素、
22はポリテトラフロロエチレン(以下PTFEと略称
する。)粒子からなる結着剤、23は反応ガスあるいは
反応生成物が通過する空孔である。
In the figure, 21 is catalyst-supported carbon supporting an active substance such as platinum that promotes electrochemical reactions in the electrode;
22 is a binder made of polytetrafluoroethylene (hereinafter abbreviated as PTFE) particles, and 23 is a hole through which a reaction gas or a reaction product passes.

上記の電極触媒yIzoを製造するには、■タブレット
法、■直接ff粒化法、■噴霧乾燥法の三方法がある。
There are three methods for producing the above electrode catalyst yIzo: (1) tablet method, (2) direct FF granulation method, and (2) spray drying method.

このうち、タブレット法、直接顆粒化法では結着剤とし
てPTFEを用いた場きにPTFEが繊維化してしまい
所定の粒径が得られないので、噴霧乾燥法によって製造
する。
Among these methods, when PTFE is used as a binder in the tablet method and direct granulation method, the PTFE becomes fibrous and a predetermined particle size cannot be obtained, so the spray drying method is used.

噴霧乾燥法では触媒担持炭素21を150℃の窒素気流
中で浮上させ、ここに80’Cで加熱したP丁FEディ
スバージョンを30倍に希釈した溶液を噴霧すると、P
TFEG、1mよッテ結着し、大きさが1−1001J
I11<7)粒子が造粒される。この造粒された触媒担
持炭素微粒子はふるいにかけられて50μmo程度に分
級される。
In the spray drying method, catalyst-supported carbon 21 is floated in a nitrogen stream at 150°C, and a 30-fold diluted solution of PTFE dispersion heated at 80°C is sprayed onto it.
TFEG, 1m long, size 1-1001J
I11<7) Particles are granulated. The granulated catalyst-supported carbon fine particles are sieved and classified into particles of about 50 μm.

分級された粉体は、50Kg/cm2.300℃の条件
下でホットプレスされ、第1図に示すように空孔23を
有する所定の厚みの電極触媒層20が成形される。
The classified powder is hot-pressed at 50 kg/cm2 at a temperature of 300°C to form an electrode catalyst layer 20 having a predetermined thickness and having pores 23 as shown in FIG.

第2図はこの電極触媒層20と多孔部8,9との細孔分
布を比較した図であり、多孔部8.9の平均細孔径より
も大きな細孔が電極触媒層2oに設けられていることが
わかる。
FIG. 2 is a diagram comparing the pore distribution of this electrode catalyst layer 20 and the porous portions 8 and 9, and shows that pores larger than the average pore diameter of the porous portions 8.9 are provided in the electrode catalyst layer 2o. I know that there is.

第3図は電極触媒層20および多孔部8,9における細
孔径の分布状態を示す分布図であり、電極触媒層2Gは
、多孔部8.9の細孔径よりも大きな細孔径を有しガス
の通路となるガス通路部24と、多孔部8.9の細孔径
よりも小さな細孔径を有し毛管吸引力により多孔部8,
9の電解質を吸引する電解質吸引部25とを含んでいる
FIG. 3 is a distribution diagram showing the distribution of pore diameters in the electrode catalyst layer 20 and the porous portions 8 and 9, and the electrode catalyst layer 2G has a pore diameter larger than that of the porous portions 8. The gas passage part 24 serves as a passage for the gas passage part 24, and the porous part 8.9 has a pore diameter smaller than that of the porous part 8.9.
and an electrolyte suction section 25 that suctions the electrolyte No. 9.

電極触媒層20のガス通路部24は、多孔部8,9より
も毛管吸引力が小さく電解質を引き込む力が弱くなり、
多孔部8,9が電解質で満たされない限り、ガス拡散孔
としての空孔23が存在することになる。また、電極触
媒層20の細孔におけるリン酸からなる電解質の占有率
が20%以下では触媒に接する電解質が少なく十分な反
応面積が得られず電池特性が低くなり、また、占有率が
80%以上ではガス通路部24まで電解質で占めること
になり、電極触媒層20、電解質マトリックス1へのガ
スの供給が減り、電池特性が低くなり、電極触媒層20
の細孔においてリン酸からなる電解質の占有率が20%
−80%に保たれることが望ましい。そのため、電極触
媒層20の細孔に占めるガス通路部24の占める割きは
20−80%になることが望ましい。
The gas passage portion 24 of the electrode catalyst layer 20 has a smaller capillary suction force than the porous portions 8 and 9, and has a weaker ability to draw in the electrolyte.
As long as the porous portions 8 and 9 are not filled with electrolyte, pores 23 will exist as gas diffusion holes. Furthermore, if the occupancy rate of the electrolyte made of phosphoric acid in the pores of the electrode catalyst layer 20 is less than 20%, there is less electrolyte in contact with the catalyst and a sufficient reaction area cannot be obtained, resulting in poor battery characteristics. In the above case, the gas passage section 24 is occupied by the electrolyte, and the supply of gas to the electrode catalyst layer 20 and the electrolyte matrix 1 is reduced, resulting in poor battery characteristics and the electrode catalyst layer 24.
The occupancy rate of electrolyte consisting of phosphoric acid in the pores of is 20%.
It is desirable to keep it at -80%. Therefore, it is desirable that the gas passage portion 24 occupy 20-80% of the pores of the electrode catalyst layer 20.

次に、上記構成の1ヤ用について詳細に述べると、電解
質の電極触媒JIF20中での保有量は電極触媒層20
が有する毛管吸引力によって決まり、その力は、p =
 46cosθ/d P・毛管吸引力、6・表面張力、θ・接触角、d・細孔
径、d /cosθ・等価直径 で示され、これより細孔径、接触角が小さいほど、つま
り等価直径が小さいほど毛管吸引力が大きくなる、すな
わち電解質を電極触媒層20に引き込む力が大きくなる
ことが判る。
Next, to describe in detail the 1st layer of the above configuration, the amount of electrolyte held in the electrode catalyst JIF20 is
is determined by the capillary suction force that p =
46cosθ/d P・capillary attraction force, 6・surface tension, θ・contact angle, d・pore diameter, d/cosθ・equivalent diameter, the smaller the pore diameter and contact angle, that is, the smaller the equivalent diameter. It can be seen that the capillary suction force becomes larger, that is, the force that draws the electrolyte into the electrode catalyst layer 20 becomes larger.

上記のように構成された燃料電池においては、互いに直
交するガス流路4,5にそれぞれ燃料および酸化剤ガス
を供給すると、それらガスはガス通路部24を通して電
極触媒層20の全域に供給される。そして、電極触媒N
20に達したガスは、電解質吸引部25において反応し
発電が行われる°。ここで、反応生成物である水蒸気ガ
スはガス通路部24、ガス流路4,5を通じて外部に排
出される。
In the fuel cell configured as described above, when fuel and oxidant gas are supplied to the mutually orthogonal gas passages 4 and 5, respectively, these gases are supplied to the entire area of the electrode catalyst layer 20 through the gas passage section 24. . And the electrode catalyst N
The gas that has reached 20° reacts in the electrolyte suction section 25 to generate electricity. Here, water vapor gas, which is a reaction product, is discharged to the outside through the gas passage section 24 and the gas channels 4 and 5.

なお、電極触媒層20に撓水性を持たせることにより接
触角を小さくし、電極触媒層の毛管吸引力を小さくする
こともできる。すなわち、等価直径を大にして第3図に
示す分布を作ることができる。
Note that by imparting water repellency to the electrode catalyst layer 20, the contact angle can be reduced, and the capillary suction force of the electrode catalyst layer can also be reduced. That is, the distribution shown in FIG. 3 can be created by increasing the equivalent diameter.

[発明の効果コ 以上説明したように、この発明の燃料電池は、電極触媒
層に、多孔部の平均細孔径よりも大きな細孔径を有する
ガスの通路となるガス通路部を設けなことにより、電極
触媒層での生成ガス、反応ガスの拡散がスムースに行わ
れ、また電極触媒層に多孔部からの電解質が十分に供給
され、長期間に互って安定した電池特性を維持すること
ができるという効果がある。
[Effects of the Invention] As explained above, the fuel cell of the present invention has the following advantages: Produced gas and reaction gas diffuse smoothly in the electrode catalyst layer, and electrolyte is sufficiently supplied from the porous portion to the electrode catalyst layer, making it possible to maintain stable battery characteristics over a long period of time. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す電極触媒層の模式的断
面図、第2図および第3図は第1図の電極触媒層と多孔
部との細孔径分布をそれぞれ示す分布図、第4図は従来
の燃料電池の一例を示す断面図、第5図は従来の燃料電
池の電極触媒層の模式的断面図である。 1:電解質マトリックス、8.9:多孔部、20:電極
触媒層、24:ガス通路部、25:電解質吸引部。 なお、各図中、同一符号は同一または相当部分を示す゛
。 ち1図 20:Q独晒Δ1 形2図 kJ礼径しm] 25:電解質吠51押 氾4図 沸5図
FIG. 1 is a schematic cross-sectional view of an electrode catalyst layer showing an example of the present invention, and FIGS. 2 and 3 are distribution diagrams showing the pore size distribution of the electrode catalyst layer and porous portion shown in FIG. FIG. 4 is a sectional view showing an example of a conventional fuel cell, and FIG. 5 is a schematic sectional view of an electrode catalyst layer of the conventional fuel cell. 1: Electrolyte matrix, 8.9: Porous section, 20: Electrode catalyst layer, 24: Gas passage section, 25: Electrolyte suction section. In each figure, the same reference numerals indicate the same or corresponding parts. Chi 1 Figure 20: Q German exposure Δ1 Form 2 Figure kJ Rise diameter m] 25: Electrolyte 51 Pressure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 電解質マトリックスを挟んで対向して配設された電極触
媒層と、この電極触媒層に添設され電解質が含浸された
多孔部とを備え、この多孔部の電解質が多孔部の細孔径
よりも小さな細孔径を有し毛管吸引力により吸引する前
記電極触媒層の電解質吸引部により電解質マトリッック
ス、電極触媒層に補給される燃料電池において、前記電
極触媒層には、前記多孔部の平均細孔径よりも大きな細
孔径を有しガスの通路となるガス通路部が設けられたこ
とを特徴とする燃料電池。
Comprising an electrode catalyst layer disposed facing each other with an electrolyte matrix in between, and a porous portion attached to the electrode catalyst layer and impregnated with an electrolyte, the electrolyte in the porous portion is smaller than the pore diameter of the porous portion. In a fuel cell in which an electrolyte matrix and an electrode catalyst layer are replenished by an electrolyte suction part of the electrode catalyst layer having a pore diameter and sucked by capillary suction force, the electrode catalyst layer has a pore size larger than the average pore diameter of the porous part. A fuel cell characterized in that a gas passage portion having a large pore diameter and serving as a gas passage is provided.
JP63222508A 1988-09-07 1988-09-07 Fuel cell Expired - Fee Related JP2593199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222508A JP2593199B2 (en) 1988-09-07 1988-09-07 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222508A JP2593199B2 (en) 1988-09-07 1988-09-07 Fuel cell

Publications (2)

Publication Number Publication Date
JPH0272560A true JPH0272560A (en) 1990-03-12
JP2593199B2 JP2593199B2 (en) 1997-03-26

Family

ID=16783530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222508A Expired - Fee Related JP2593199B2 (en) 1988-09-07 1988-09-07 Fuel cell

Country Status (1)

Country Link
JP (1) JP2593199B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032249A (en) * 2004-07-21 2006-02-02 Sony Corp Fuel cell
JP2007209980A (en) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd Metal catalyst and its manufacturing method, electrode and its manufacturing method, and fuel cell
JP2010080369A (en) * 2008-09-29 2010-04-08 Toppan Printing Co Ltd Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330747A (en) * 1976-09-01 1978-03-23 United Technologies Corp Fuel cell
JPS6324561A (en) * 1986-07-16 1988-02-01 Mitsubishi Electric Corp Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330747A (en) * 1976-09-01 1978-03-23 United Technologies Corp Fuel cell
JPS6324561A (en) * 1986-07-16 1988-02-01 Mitsubishi Electric Corp Fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032249A (en) * 2004-07-21 2006-02-02 Sony Corp Fuel cell
JP2007209980A (en) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd Metal catalyst and its manufacturing method, electrode and its manufacturing method, and fuel cell
JP4695612B2 (en) * 2006-02-07 2011-06-08 三星エスディアイ株式会社 Method for producing metal catalyst and method for producing electrode
US8029945B2 (en) 2006-02-07 2011-10-04 Samsung Sdi Co., Ltd. Method of preparing metal catalyst and electrode including the same
JP2010080369A (en) * 2008-09-29 2010-04-08 Toppan Printing Co Ltd Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2593199B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
JP2007149694A (en) Electrochemical fuel cell with electrode substrate having in-plane ununiform structure for control of transport of reactant and product
US20050069754A1 (en) Diffusion electrode for fuel cell
JPH06231793A (en) Solid high polymer electrolytic type fuel cell
US7820334B2 (en) Fuel cell and oxidant distribution plate for fuel cell
US20040058218A1 (en) Flow fields with capillarity for solid polymer electrolyte fuel cells
JP2010176948A (en) Method for manufacturing gas diffusion layer for electrochemical device and mixture used for the same
JP5153159B2 (en) Fuel cell
JP2004200153A (en) Fuel cell and material for fuel cell gas diffusion layer
KR100730197B1 (en) Structure of cathode electrode for fuel cell
JPH07320753A (en) Solid polymer electrolyte membrane type fuel cell
US20060269825A1 (en) Fuel cell system comprising vapor-phase fuel supplying system
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JPH0272560A (en) Fuel cell
JP2012532426A (en) Reduction of liquid electrolyte loss in high temperature polymer electrolyte membrane fuel cells
US10593957B2 (en) Gas diffusion layer for fuel cells and method of manufacturing the same
JP2008027810A (en) Fuel cell, membrane-electrode assembly for fuel cell, and manufacturing method of fuel cell
JP2003197203A (en) Fuel cell
JPH08106915A (en) Electrode of solid polymer fuel cell and manufacture of fuel cell
JP3423241B2 (en) Cell unit for fuel cell and fuel cell
JPH08138697A (en) Fuel cell
JP3706624B2 (en) Fuel cell system
JP2007323939A (en) Fuel cell
JPS58166636A (en) Fuel cell
JP4923386B2 (en) Fuel cell with porous separator
JP2012234742A (en) Method for manufacturing fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees