JPH0270404A - Conductive resin composition for molding and electromagnetic shield structure - Google Patents

Conductive resin composition for molding and electromagnetic shield structure

Info

Publication number
JPH0270404A
JPH0270404A JP22235288A JP22235288A JPH0270404A JP H0270404 A JPH0270404 A JP H0270404A JP 22235288 A JP22235288 A JP 22235288A JP 22235288 A JP22235288 A JP 22235288A JP H0270404 A JPH0270404 A JP H0270404A
Authority
JP
Japan
Prior art keywords
conductive
fiber
thermoplastic resin
fibers
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22235288A
Other languages
Japanese (ja)
Other versions
JP2633920B2 (en
Inventor
Masao Goto
後藤 昌生
Kenichi Waratani
藁谷 研一
Makoto Iida
誠 飯田
Akiichi Ota
太田 明一
Susumu Iwai
進 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22235288A priority Critical patent/JP2633920B2/en
Publication of JPH0270404A publication Critical patent/JPH0270404A/en
Application granted granted Critical
Publication of JP2633920B2 publication Critical patent/JP2633920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Abstract

PURPOSE:To manufacture a structure of superior electromagnetic function by coating a conductive fiber composition for giving electromagnetic shield function with thermoplastic resin or a filling material composite plastic resin of given heat deformation temperature range in one direction and using a conductive fiber composite resin composition of two kinds or more of pellet-shaped compositions of given length. CONSTITUTION:A conductive fiber is a metallic fiber or metal coated fiber and constituted at least of two kinds of thermoplastic resin of 80-210 deg.C heat deformation temperature are used. A continuous conductive material line constituted of metallic bundle fibers is manufactured by using said conductive fiber and thermoplastic resin or thermoplastic resin including the filler and setting a crosshead in an extruder and being constituted of said thermoplastic resin is cut into the given length of 3-10mm to manufacture column-shaped pellets. A casing for an electronic instrument can be molded by using said pellets of given length and an ordinary injection molding material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性せんい束を一方向に特定の熱変形温度
範囲の熱可塑a樹脂で被覆し,一足長さに切断した柱状
ペレットにおいて、少《とも2種t−混合した導電性せ
んい複合樹脂組成物及びそれを用いて成形した電磁波シ
ールド構造体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a columnar pellet in which a conductive fiber bundle is coated in one direction with a thermoplastic a resin having a specific heat distortion temperature range and cut into lengths. The present invention relates to a conductive fiber composite resin composition containing at least two types of t-mix and an electromagnetic shielding structure molded using the same.

〔従来の技術〕[Conventional technology]

電磁波シールドを目的として、プラスチック成形品にシ
ールド機能を賦与する方法として、従来種々の手段が講
じられており、金属被膜を設けるめっき法、金属溶射法
、導電塗膜を設ける導!塗装法および金属せんい一?7
レーク状導電性物質混合樹脂の成形法などが知られてい
る。
For the purpose of shielding electromagnetic waves, various methods have been used to impart a shielding function to plastic molded products, including plating with a metal coating, metal spraying, and conductive coating with a conductive coating. Painting method and metal fabric? 7
A method of molding a resin mixed with a lake-like conductive material is known.

これらに関連するものとして、特開昭59−22710
、特開昭59−49918 、特開昭6 2 −4 5
 6 5 9および特公昭62−56069等が挙げら
れる。
As related to these, Japanese Patent Application Laid-Open No. 59-22710
, JP 59-49918, JP 6 2-4 5
6 5 9 and Japanese Patent Publication No. 62-56069.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来技術は、大きく次の2つに分類される。一つ
は、プラスチック成形筺体に導電性被膜を付着する方法
であり、二つは、導電性素材を含有する樹脂を成形し筺
体とする方法である。
The above-mentioned conventional techniques are broadly classified into the following two types. One is a method of attaching a conductive film to a plastic molded casing, and the second is a method of molding a resin containing a conductive material to form the casing.

前者の導電性被膜付着法の問題点として、加工工程が多
く、手数を要すること、作業環境整備の設備費用と労力
f.要すること、加えて信頼性に関する不安要素をもつ
こと、即ち被膜の付着力の長期間にわたる維持と導電性
能劣化に関し、信頼性データの蓄積がな《、シールド機
能の変化が懸念されること等が挙げられる。
The problems with the former method of attaching a conductive film are that it involves many processing steps and is labor-intensive, and that it requires equipment costs and labor for preparing the working environment.f. In addition, there are concerns regarding reliability, such as the lack of reliability data regarding long-term maintenance of coating adhesion and deterioration of conductive performance, and concerns about changes in shielding function. Can be mentioned.

後者の感心性素材複合樹脂の成形筺体に関しては、特に
導成注能の低下の問題がある。その一つは、耐久性能を
評価する繰返し熱衝撃試験(ヒートサイクルテスト)で
は、繰返し数の増加と共に導電性能が劣化し、これに伴
ないシールド効果の低下の問題がある。さらに他の大キ
ナ問題として、導電性せんいを樹脂に混ぜて成形用ペレ
ットを造る際に、溶融樹脂との混練時のせん断力による
せんいの切断とその度合いに比例してシールド効果の低
下を招来する問題を待っていることである。
Regarding the latter molded casing made of sensitive material composite resin, there is a particular problem in that the casting ability is reduced. One problem is that in a repeated thermal shock test (heat cycle test) for evaluating durability performance, conductive performance deteriorates as the number of repetitions increases, resulting in a reduction in shielding effectiveness. Another major problem is that when mixing conductive fibers with resin to make pellets for molding, the fibers are cut due to the shear force when they are mixed with the molten resin, and the shielding effect decreases in proportion to the degree of breakage. The problem is waiting.

そのため、せんいの切断を見越して、予め充填する24
’lE注せんいの量金多くする必要があり、生産性の低
下と原形品重量の増大といプ二次的問題が発生する。
Therefore, in anticipation of the cutting of the fiber, it is necessary to fill it in advance for 24 hours.
It is necessary to increase the amount of injection molding, which causes secondary problems such as decreased productivity and increased weight of the original product.

不発明の目的は、上記従来技術の諸問題ならびにシール
ド技術に関する新たな課題全解決するためになされたも
のである。すなわち、生産性、経済性に冨み、シールド
機能の長期間にわたる安定的維持を達成するために、゛
1磁波シールド機能に好適な導電性せんい複合樹脂組成
物の新規な製造法とこれを用いて成形した電磁波シール
ド構造体を提供することである。加えて、導電性樹脂組
成物に放熱性を新規に付与することによって、電子機器
の安定的動作機能の維持を強化したことである。
The object of the invention is to solve all the problems of the above-mentioned prior art as well as new problems related to shielding technology. In other words, in order to achieve high productivity and economy, and to maintain the shielding function stably over a long period of time, we developed a new manufacturing method for a conductive fiber composite resin composition suitable for the magnetic wave shielding function and the use of the same. It is an object of the present invention to provide an electromagnetic shielding structure formed by molding. In addition, by newly imparting heat dissipation properties to the conductive resin composition, maintenance of stable operating functions of electronic devices is strengthened.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、電磁波シールド機能を付与するための導電性
せんいを一方向に、特定の熱変形温度範囲の熱可塑性樹
脂または充填材複合可塑性樹脂で被覆し、一定長さにし
たペレット状組成物の2種以上の導電性せんい複合樹脂
組成物を用いて、射出成形、移送成形、圧m5X、形、
真空・圧空成形、押出波形などの成形手段により達成さ
れるもので、目的とする電磁波シールド機能に優れる構
造体が1生産性、経済性、信頼性に関し、高いレベルで
実現できる。
The present invention is a pellet-like composition in which a conductive fiber is coated in one direction with a thermoplastic resin having a specific heat deformation temperature range or a filler composite plastic resin to provide an electromagnetic wave shielding function, and is made into a fixed length. Using two or more types of conductive fiber composite resin compositions, injection molding, transfer molding, pressure m5X, shape,
This is achieved by forming methods such as vacuum/pressure forming and extrusion corrugation, and it is possible to realize a structure with excellent electromagnetic shielding function at a high level in terms of productivity, economy, and reliability.

電磁波シールド性能の向上には、導電性せんいのアスペ
クト比を太き(とり充填童画りの接点効果を太キ(シた
鉄系金属せんい(ステンレス系長さ/径比(アスペクト
比) : 400〜2000) ’に必須成分とし、こ
れに導電性に加え熱放散性ならびに経済性に優れる他の
材質の導電性せんいあるいは金属メツキ処理したせんい
を併用することによって、シールド性能とその安定的維
持のみならず、生産性、経済性に優れる工業的価値を付
7JOできる。
To improve the electromagnetic shielding performance, the aspect ratio of the conductive fiber should be made thicker (the contact effect of the filled children's picture should be thickened). 2000) ' is an essential component, and by using conductive fibers made of other materials that are not only conductive but also have excellent heat dissipation and economic efficiency, or metal-plated fibers, it is possible to maintain shielding performance and its stability. In addition, it can add industrial value with excellent productivity and economy.

また導電性せんい複合樹脂の成分とつ(り万に従来にみ
られない工夫を行なった。
In addition, we have made improvements to the components of the conductive fiber composite resin that have never been seen before.

導電性せんいは、樹脂との混合時に、通常の混線法では
切断し易く、・シールド性能の低下に繋がるため、これ
を防止する方法すなわち導電性せんいを一方向に連続的
に特定の熱変形温度範囲の熱可塑性樹脂または充填剤入
熱可塑性樹脂で被覆する新規な方法を構築した。
Conductive fibers are easy to break when mixed with resin using the normal cross-wire method, leading to a decline in shielding performance.Therefore, there is a method to prevent this: conductive fibers are continuously heated in one direction at a specific heat deformation temperature. A novel method for coating with a range of thermoplastics or filled thermoplastics has been developed.

この導電性せんいの該樹脂被覆組成物は成形用素材とな
るため成形し易いことが重要となる。
Since the resin coating composition of the conductive fiber is used as a molding material, it is important that it is easy to mold.

そこで、接点効果を阻わないレベルで成形性を保持する
適正長さの範囲を設定した。
Therefore, we set an appropriate length range that maintains formability at a level that does not impede the contact effect.

また成形品は、電磁波シールド構造体として用いるため
、シールド機能を長期にわたって保持する必要がある。
Furthermore, since the molded product is used as an electromagnetic shielding structure, it is necessary to maintain its shielding function over a long period of time.

すなわち使用環境における温度変化や輸送時の振動負荷
に耐えてシールド機能千強度の劣化を防ぐ必要がある。
In other words, it is necessary to withstand temperature changes in the usage environment and vibration loads during transportation to prevent deterioration of the shielding function strength.

そこで、この目的にそうため特定の熱変形温度範囲の熱
可塑性樹脂または充填付人樹脂を用いる工夫を行なった
。基材樹脂として、高い熱変形温度の樹脂または充填付
人樹脂を用いることにより、熱ストレスによる応力緩和
を少な(し、強度の高いレベルでの保持と寸度安定性を
向上させた。
Therefore, in order to achieve this purpose, we devised the use of a thermoplastic resin or filler resin having a specific heat distortion temperature range. By using a resin with a high heat distortion temperature or a filled resin as the base resin, stress relaxation due to thermal stress is reduced (and strength is maintained at a high level and dimensional stability is improved).

ここで特定範囲の高い熱変形温度を有する熱可塑性樹脂
と充填付人樹脂の作用効果を考察すると、前者は、いわ
ゆる冷熱サイクルなどの熱ストレスに対して応力緩和し
難く、樹脂中に存在する導電性せんい同士の接触点のズ
レを防止できるのみならず、寸法変化を小さ(抑える効
果を有する。
Considering the effects of thermoplastic resins and filling resins that have a high heat distortion temperature in a specific range, the former has difficulty relaxing stress due to thermal stress such as so-called cooling/heating cycles, and the conductive resin that exists in the resin It not only prevents misalignment of the contact points between the fibers, but also has the effect of minimizing dimensional changes.

後者の充填付人樹脂は、上述の効果に加え、導電性せん
いと樹脂間の熱膨張の差異金小さくするため導電性せん
い接触点のズレの防止に一層の効果を付加するのみなら
ず、放熱性に優れるため、電子機器の駆動に伴い発生す
る熱を積極的に放散できるため、電子機器の安定的駆動
に大きな効果をもたらすものである。
In addition to the above-mentioned effects, the latter filling resin not only reduces the difference in thermal expansion between the conductive fiber and the resin, so it not only has a further effect in preventing displacement of the contact point of the conductive fiber, but also improves heat dissipation. Because of its excellent properties, it can actively dissipate the heat generated when electronic devices are driven, which has a great effect on the stable operation of electronic devices.

〔作用〕[Effect]

従来の混線時のせんい切断の問題を解消する一定長さの
導電性せんいと特定の熱変形温度範囲の熱可塑性樹脂ま
たは充填材人高PA変形温度の樹脂の組合せにより、長
期にわたる電磁波シールに機能の保持効果の格段の向上
を達成した。
The combination of a certain length of conductive wire and a thermoplastic resin or filler material with a specific thermal deformation temperature range, which solves the problem of conventional wires breaking when cross-wired, functions as a long-term electromagnetic wave seal. A significant improvement in the retention effect was achieved.

鉄系金属せんい(ステンレス)の極細線を用いることを
必須成分としたことは、多くの接点の形IEl能を利用
して、他の導′屯注せんいとの併用による導゛成注能の
向上の効果に加え、銅系せんいとの併用では、銅の優れ
た導電性を利用して、少ない配合率で導電性能を向上で
き、その少なさによる成形性の低下の防止と、成形品の
比重の小さ(できることが、最終製品の筺体を軽(する
効果を奏した。
The use of ultra-fine iron-based metal wire (stainless steel) as an essential component makes it possible to utilize many contact shapes and IEL capabilities, and to increase the ability to conduct injecting by combining it with other conductive injectors. In addition to the improvement effect, when used in combination with copper-based steel, the excellent conductivity of copper can be used to improve conductivity with a small blending ratio. Its low specific gravity had the effect of making the final product's casing lighter.

また金属被覆カーボンせんい等の他の導電性せんいを用
いることにより本来比重が小さいため。
In addition, by using other conductive fibers such as metal-coated carbon fibers, the specific gravity is originally low.

成形性、軽量構造体の点で、従来にない効果を生じた。This produced unprecedented effects in terms of formability and lightweight structure.

また本発明の基材樹脂は、MK形温度が高(、応力緩和
の少ない材料を用いたことにより、熱衝撃試験に対する
変化の度合を小さく抑制でき、最終製品の筺体の電磁波
シールド性能を長期にわたって維持できる効果を奏する
ものである。
In addition, the base resin of the present invention has a high MK type temperature (low stress relaxation), so the degree of change in response to thermal shock tests can be suppressed to a small level, and the electromagnetic shielding performance of the final product housing can be maintained for a long time. It has a sustainable effect.

また充填材は、氏形品の寸法安定性を増大し、放熱性を
促進し易いことから、電子機器においては、稼動の安定
性と信頼性を増大する効果がある。
In addition, the filler increases the dimensional stability of the angle-shaped product and tends to promote heat dissipation, so it has the effect of increasing the operational stability and reliability of electronic equipment.

〔実施例」 本発明の構成は、導電性せんい素材、特定の熱変形温度
範囲の熱可塑性樹脂または光填付人熱町塑社樹脂とこれ
らを複合するベレットの製造法、ベレットを用いて成形
する方法および成形された電磁波シールド機能構造体で
ある。
[Example] The structure of the present invention includes a conductive fiber material, a thermoplastic resin having a specific heat deformation temperature range, or a light-loading resin, and a method for manufacturing a pellet in which these are combined, and a method for manufacturing a pellet using the pellet. and a molded electromagnetic shielding function structure.

これらの材料、プロセス、構造体について詳述する。These materials, processes, and structures will be described in detail.

本発明で用いられる導゛域注せんいは、金属せんいある
いは金属被覆せんいである。即ち更に詳細に述べると、
下記1群、3群、C′#、D群から選ばれた少なくとも
2種類からW成されるもので、Anを必須成分とすると
2〜5種類のせんいから成ることを特徴とする。
The conductive area wire used in the present invention is a metal wire or a metal coated wire. That is, to explain in more detail,
It is made up of at least two types selected from the following groups 1, 3, C'#, and D, and is characterized by consisting of 2 to 5 types of fibers when An is an essential component.

7群:鉄系金属せんい(ステンレスせんい〕断面径5〜
15βm 3群:銅系金属せんい(真鍮、洋白) 断面径15〜60z+g 0群ニアルミニウム系金属せンイ(As2S3.断面径
15〜60/1種 D群:金属被覆せんいにッケルめっき炭素せんい、ニッ
ケルー銅めりきガラスせんい、ニッケルー銅めつき高分
子せんい。
Group 7: Iron-based metal fibers (stainless steel fibers) cross-sectional diameter 5~
15βm Group 3: Copper-based metal fiber (brass, nickel silver) Cross-sectional diameter 15-60z+g Group 0 Nialuminum-based metal fiber (As2S3. Cross-sectional diameter 15-60/Class 1 D group: Metal-coated steel, nickel-plated carbon fiber, Nickel-copper plated glass fiber, nickel-copper plated polymer fiber.

次に本発明の構改要素である熱可塑性樹脂について示す
。特徴的なことは、熱変形温度が80〜210℃の熱可
塑性樹脂を用いることである。この理由は、最終目的と
する電子機器用筺体の電磁波シールド機能の発現とその
長期的維持をはかるためには、導電性せんい同士が3次
元的にからみ合い接触点をもつことにより、いわゆる網
目構造の導電回路が形成され、その接点の接触圧を維持
するために樹脂の応力緩和特注があるレベル以上を持つ
必要性から規定されたからである。
Next, the thermoplastic resin which is the structural modification element of the present invention will be described. A characteristic feature is that a thermoplastic resin having a heat distortion temperature of 80 to 210°C is used. The reason for this is that in order to develop and maintain the electromagnetic wave shielding function of the electronic device housing, which is the ultimate goal, it is necessary to create a so-called network structure by intertwining the conductive fibers three-dimensionally with each other and having contact points. This is because a conductive circuit is formed and the resin needs to have at least a certain level of stress relief in order to maintain the contact pressure of the contacts.

この点から熱変形温度は、高い万が望ましいが、210
℃を越えると成形性が悪くなるため上限温度として制約
される。従ってより好ましい熱変形温度範囲は100〜
150℃、特に好ましくは、110〜130℃である。
From this point of view, it is desirable that the heat distortion temperature be as high as 210
If it exceeds ℃, the moldability deteriorates, so it is restricted as an upper limit temperature. Therefore, the more preferable heat distortion temperature range is 100~
The temperature is 150°C, particularly preferably 110 to 130°C.

本発明で用いられる熱可塑性樹脂は、下記の中から選ば
れるいずれか一種を用いることができろ。
As the thermoplastic resin used in the present invention, any one selected from the following may be used.

これらの材料は、最終的に用いられる各種の電子機器に
要求される強度レベルに合せて選ぶことができる。
These materials can be selected according to the strength level required for the various electronic devices that will ultimately be used.

熱可塑性樹脂:ボリフエニレンエーテル、ポリエーテル
スルホン、ポリブチレンテレフタレート。
Thermoplastic resins: polyphenylene ether, polyether sulfone, polybutylene terephthalate.

AES樹脂、耐衝撃性ポリスチレン、ポリカーボネート
、ナイロン、ポリプロピレン及びポリマーアロイのポリ
フェニレンエーテル/ポリスチレン、ポリブチレンテレ
フタレート/ポリカーボネート、AES樹脂/ポリカー
ボネート、耐衝撃注ボリスチレン/ポリカーボネート。
AES resin, high impact polystyrene, polycarbonate, polyphenylene ether/polystyrene of nylon, polypropylene and polymer alloys, polybutylene terephthalate/polycarbonate, AES resin/polycarbonate, high impact polystyrene/polycarbonate.

充填材は、下記の中から選ばれた少くとも1種類を上記
熱可塑性樹脂を配合して用いられる。これは放熱性と寸
法安定性をねらったものである。
The filler is used by blending at least one type selected from the following with the above thermoplastic resin. This is aimed at heat dissipation and dimensional stability.

1群:石英粉(平均粒径20〜50jwm)1群:金属
フレークCMy、At)1〜2F+1ffi角10〜I
QQJm厚の切片 0群:めりきマイカ、  1〜2myh角、10〜10
C1xyx厚の切片 1群:炭素せんい、径7〜25μm、長さ1〜5nam
上記、熱可塑性樹脂中には、必要に応じて、着色顔料、
難燃剤、内部離型剤、酸化防止剤等の添加剤をα5〜5
wt%含むことが望ましい。
Group 1: Quartz powder (average particle size 20-50jwm) Group 1: Metal flakes CMy, At) 1-2F + 1ffi angle 10-I
Section 0 group with QQJm thickness: Meriki mica, 1-2 myh square, 10-10
Group 1 of sections with C1xyx thickness: carbon fiber, diameter 7-25 μm, length 1-5 nm
In the above thermoplastic resin, color pigments,
Additives such as flame retardants, internal mold release agents, and antioxidants to α5~5
It is desirable to include wt%.

上記導電性せんいと特定の熱変形温度範囲の熱可塑性樹
脂または充填材入り熱可塑性樹脂を用いて、第1図に示
すクロスヘッドを押出機にセットし製造した金属束せん
いを当該熱可塑性樹脂で被覆した連続導体線を5〜10
rxmの一定長さに切断した柱状ペレットの断面を第2
図に示す。
Using the above-mentioned conductive fibers and a thermoplastic resin with a specific thermal deformation temperature range or a filled thermoplastic resin, a metal bundle fiber is manufactured by setting the crosshead shown in Fig. 1 in an extruder. 5 to 10 coated continuous conductor wires
The cross section of the columnar pellet cut to a certain length of rxm is
As shown in the figure.

この場合、導゛1注せんいの当該熱可塑性樹脂中への配
合率は、不要電磁波のシールド能力のレベルによって決
められるが、米国連邦通信委員会(FCC)の規制およ
び我国電気業界の自主規制(VCCI)等を満足するこ
とが必要であり、種々検討した結果、充填剤を除く熱可
塑性樹脂に対する導′1注せんいの配合比率の適正範囲
は次の通りである。
In this case, the blending ratio of the conductive material in the thermoplastic resin is determined by the level of shielding ability of unnecessary electromagnetic waves, but it is determined by the regulations of the Federal Communications Commission (FCC) and the voluntary regulations of the Japanese electrical industry. VCCI) etc., and as a result of various studies, the appropriate range of the blending ratio of the conductive resin to the thermoplastic resin excluding the filler is as follows.

A群:鉄系金属せんい1〜10wtチ B群:銅系金属せんい20〜5QwtチC群ニアルミニ
ウム系金属せんい2〜15wt%D群:金属被覆せんい
5〜15wt% 本発明では、鉄系金属せんいを必須成分とするところに
一つの特徴がある。鉄のみでも充分なシールド効果を得
ることは可能であるが、導電性は他の材料に比べてレベ
ルが下がること、経済性が他の材料に比べて大巾に不利
であることの欠点をもつが、熱衝撃%−に著しく優れる
長所がある故に欠点部分を少な(し、長所を生かすため
他の材料との組合せが最適であることを見出したことに
よる。各種の導′成注せんいの組合せは、最終製品の要
求レベルに合うように選択されるが、トータルの重量分
率は7〜40wtt4が好ましい。
Group A: 1 to 10 wt% of iron-based metal wire, Group B: 20 to 5 Qwt of copper-based metal wire, and 2-15 wt% of aluminum-based metal wire, group C: 5 to 15 wt% of metal-coated fiber. One of its characteristics is that fiber is an essential ingredient. Although it is possible to obtain a sufficient shielding effect with iron alone, it has the drawbacks that its conductivity is lower than that of other materials, and its economic efficiency is significantly lower than that of other materials. However, since it has the advantage of being extremely superior in terms of thermal shock %-, it has been found that the disadvantages are small (and that it is optimal to combine it with other materials to make the most of its advantages. Combinations of various types of lead-poured fibers) is selected to meet the required level of the final product, but a total weight fraction of 7 to 40 wtt4 is preferred.

本発明で得られろ一定長さのベレツIt用いて、電子機
器用筺体を成形するには、通常の射出成形材を用いて容
易に成形できる。なぜなら、本発明の導;性せんいの容
積分率は高々7uo1%程度と小さいからである。筺体
を射出成形するときに導電性せんいの切断が起り得る可
能性は皆無とは云えないが、ペレットヲ造るときの樹脂
との溶融混線時の切断の起υ得ろ度合に比べればはるか
に小さ(ゝO 本発明は、この点を工夫し、溶融混線時の切断の問題を
解消するため一定長さのペレットが得られるようにした
処に大きな特徴がある。
In order to mold a housing for an electronic device using the fixed length of the mold obtained in the present invention, it can be easily molded using an ordinary injection molding material. This is because the volume fraction of the fiber according to the present invention is as small as about 7 uo 1% at most. Although it cannot be said that there is a possibility that the conductive fibers will be cut when injection molding the housing, it is much smaller than the possibility of cutting when the conductive fibers are melted and mixed with the resin when making pellets. O The present invention has a major feature in that it is designed to solve this problem and to obtain pellets of a constant length in order to solve the problem of cutting during melting and cross-wiring.

以下実施例により、さらに詳細に説明する。The present invention will be explained in more detail below using examples.

実施例を述べるに当り、代表的な素材およびペレットの
製造方法、特性の評価法について示す。
In describing Examples, typical materials, pellet manufacturing methods, and characteristics evaluation methods will be described.

〔導電性せんいJ 鉄系金属せんい(ステンレススチール、SUSと略記=
8μm 銅系金属せんい(Cuと略記〕:50μ購ニッケルめっ
き炭素せんい(Ni−カーボンと略記):12μm ニッケルー銅めっきアクリルせんい(Ni−アクリルと
略記) : 15am 〔熱可塑性樹脂(代表例)〕 ポリカーボネート樹脂、熱変形温度 150℃ポリフェ
ニレンエーテル樹脂、熱変形温度120℃〔充填剤〕 
石英粉(平均粒径 25μm11、7v−り(ixlx
o、1種切片)上記導電性せんいと熱可塑性樹脂による
芯状ペレットの製造法は、本発明のダイスを搭載したク
ロスヘッド(第1図)をもり2軸スクリー押出様(混疎
押出用スクリュー径32鱈φ、3条ねじ、L/D−28
)に設置し、導電性せんい束全連続的に供給し、当該溶
融樹脂で被aEした単芯状連続体を冷却工程金経て適正
長さ(7−”)カッティングした。
[Conductive Fiber J Iron-based metal fiber (stainless steel, abbreviated as SUS =
8μm Copper-based metal fiber (abbreviated as Cu): 50μ nickel-plated carbon fiber (abbreviated as Ni-carbon): 12μm Nickel-copper-plated acrylic fiber (abbreviated as Ni-acrylic): 15am [Thermoplastic resin (typical example)] Polycarbonate Resin, heat distortion temperature 150℃ Polyphenylene ether resin, heat distortion temperature 120℃ [filler]
Quartz powder (average particle size 25μm11, 7V-ri (ixlx
o, type 1 section) The method for producing core pellets using the conductive fibers and thermoplastic resin described above uses a twin-screw extrusion method (mixed spacing extrusion screw Diameter 32 cod φ, 3 thread thread, L/D-28
), a conductive fiber bundle was completely continuously supplied, and the single-core continuous body coated with aE with the molten resin was cut to an appropriate length (7-'') after a cooling process.

ここで得られた単芯状ペレットを2種類から収る導電性
せんい複合熱可塑注樹jWの成形条件で試駒片(200
m口x5 t )および成子機器筺体t−i形した。後
者の筺体について’II、5図、第4図および第5図に
示す。なお必要に応じて、導電性せんい濃度全調節用に
通常行われている基材熱可塑性樹脂を混ぜて稀釈するこ
とも可能である。
The single-core pellets obtained here were molded into test pieces (200
M opening x 5 t) and Naruko equipment housing t-i type. The latter case is shown in Figures II, 5, 4 and 5. Note that, if necessary, it is also possible to mix and dilute the base thermoplastic resin, which is usually used for controlling the entire conductive fiber concentration.

電子機器屠体の電磁波シールド機能に関しては。Regarding the electromagnetic shielding function of electronic device carcasses.

電子機器の最も過酷な稼動状態下で発生する不要電磁波
に対するシールド能力fir:業界自主規制(VCCI
)内容に則して実測し九。
Shielding ability fir against unnecessary electromagnetic waves generated under the harshest operating conditions of electronic equipment: industry voluntary regulation (VCCI)
)Actually measured according to the contents9.

導電性せんい複合樹脂の耐久性の評価尺度の一つとして
行なった熱衝撃試験は、試験片および電子機器筺体ヲー
20℃恒温槽中に2時間放置し、すぐに次の70℃恒温
槽中に2時間放置することを1サイクルとして、30サ
イクル繰返した。
The thermal shock test was conducted as one of the evaluation measures of the durability of conductive fiber composite resin.The test piece and the electronic device housing were left in a constant temperature bath at 20℃ for 2 hours, and then immediately placed in the next constant temperature bath at 70℃. Thirty cycles were repeated, with one cycle being 2 hours of standing.

実施例 第1表に、本発明に基づき製造した導電性せんい複合熱
可塑性樹脂の柱状ベレット’に用いて波形した試験片の
体積固有抵抗ならびに電子機器筺体の放射電界強さ金示
す。いずれの値も満足するレベル((ある。比較に用い
た従来法の特注値は第2表に既述した通りである。比較
例NIL 2の試料と上記実施例5とを比べろと、少な
い配合比で同等の効果が示されており、本発明の有効さ
を裏付けるものである。こ\で比較例について、第2表
の初期特性値および算6図の熱衝撃試験結果について詳
述する。。
Table 1 of Examples shows the volume resistivity of a corrugated test piece used in a columnar pellet of a conductive fiber composite thermoplastic resin manufactured according to the present invention and the radiated electric field strength of an electronic device housing. All values are at a satisfactory level ((). The custom-made values of the conventional method used for comparison are as described in Table 2. Equivalent effects were shown at different blending ratios, which supports the effectiveness of the present invention.Here, regarding the comparative example, the initial characteristic values in Table 2 and the thermal shock test results in Figure 6 will be explained in detail. ..

第す図は従来の導電性せんい単体系として、銅せんい、
0!径50srm、長さ7mのものを押出機により15
wt%  を樹脂で溶融混練したポリフェニレンエーテ
ル樹脂50(比較例1)、同様にして得た銅せんい(4
0wt%)複合ポリフェニレンエーテル樹脂51(比較
例2)および鉄系金属せんいとL テ5US504、直
径8μm、長さ7■のもノ15u+t%複合ポリフー二
しンエーテル樹脂52(比較例3)のベレツ)1用い射
出成形した平板(200a口x50−)に関する体積固
有抵抗の熱衝撃試験サイクル数による変化を示す。
Figure 2 shows conventional conductive fiber single systems such as copper fiber,
0! 15 pieces with a diameter of 50srm and a length of 7m are produced using an extruder.
Polyphenylene ether resin 50 (comparative example 1) obtained by melt-kneading wt% with resin, copper fiber obtained in the same manner (4
0wt%) Composite Polyphenylene Ether Resin 51 (Comparative Example 2) and Iron-based Metal Fiber L Te5US504, Diameter 8μm, Length 7mm) 1 shows the change in volume resistivity of a flat plate (200a x 50-) injection-molded using No. 1 according to the number of thermal shock test cycles.

導゛1注せんいの配合比率が一定(15wt%)のとき
は、鉄系金属せんい<5Us504)複合材が銅系せん
い複合材に比べ体積固有抵抗は小さく、導電性に優れて
いる。このことは、鉄系金属せんいの直径が小さく、接
点の形成数が銅系に比べ、はるかに多いことおよび混練
時に銅せんいが切断され易いことによるものと考えられ
る。
When the blending ratio of the conductive fiber is constant (15 wt%), the iron-based metal fiber <5Us504) composite has a smaller volume resistivity and superior electrical conductivity than the copper-based fiber composite. This is thought to be due to the fact that iron-based metal fibers have a smaller diameter and form a much larger number of contacts than copper-based metal fibers, and that copper fibers are more likely to break during kneading.

銅系せんいて体積固有抵抗を下げるには、第6図51お
よび第2表に示されるように、配合比率を増やす必要が
ある。たX(−1複合材料として比重の増大、成形性と
強度の低下を招くため得策でない。
In order to lower the volume resistivity using copper-based materials, it is necessary to increase the blending ratio, as shown in FIG. 6, 51 and Table 2. X(-1) This is not a good idea as it will increase the specific gravity and decrease the formability and strength of the composite material.

また上記複合材料の成形平板を熱衝撃試験(−20’C
x2A+70℃×2ル)したあとの体積固有抵抗の変化
率は、鉄系せんいに比べ、銅系せんいの万がはるかに大
きい。従って、銅系せんい複合材は耐久性の点で実用的
には使えない。
In addition, a molded flat plate of the above composite material was subjected to a thermal shock test (-20'C
The rate of change in volume resistivity after heating (x2A + 70°C x 2L) is much larger for copper-based fibers than for iron-based fibers. Therefore, copper-based fiber composite materials cannot be used practically in terms of durability.

銅系せんい複合材の体積固有抵抗の変化率が大きい理由
は、熱伝導率が大きく、基材樹脂の応力緩和を促進し、
接点の接触圧力の低下を促進する効果に基づくものと考
えられる。
The reason for the large rate of change in volume resistivity of copper-based fiber composites is that their thermal conductivity is large, which promotes stress relaxation in the base resin.
This is thought to be based on the effect of promoting a reduction in the contact pressure at the contact point.

従って、基材樹脂としては、応力緩和し難い、すなわち
熱変形温度の高いものが望まれろ。
Therefore, it is desirable that the base resin be one that is difficult to relax stress, that is, has a high heat deformation temperature.

鉄系金属せんい複合材は、熱衝撃試験に対する変化率が
小さく、この点では大変有利な材料であるが、極細せん
いを得る過程で、多くの工程を要する上、銅系せんいに
比べ価格は数倍と高価で、特性と経済性の点で、単独系
で用いることは問題である。
Iron-based metal fiber composites have a small rate of change in thermal shock tests, and are very advantageous in this respect, but they require many steps to obtain ultra-fine fibers and are considerably more expensive than copper-based fibers. It is twice as expensive, and it is problematic to use it alone in terms of properties and economy.

この観点から銅系せんい複合樹脂の導電性の初期値が優
れる点を生かし、鉄系金属せんいの熱衝撃に対する変化
の少ない利点を生かした併用系の複合金属せんいが有効
でおることを見出した。鉄系せんいは線径か細い故に、
接点数を増やす効果を利用したものである。鉄系せんい
の代ジにニッケル被覆炭素せんいも利用できるが、裏造
工叙、体積固有抵抗、価格の点でや一問題があり、鉄系
せんいを凌賀り得ない。また銅系せんいの代りに、アル
ミニウム系金属せんい、ニッケルー鋼めっき・高分子せ
んい、ニッケルー銅めりきガラスせんい金用いろことが
でき、総合的にみて鉄系金属せんいを必須成分とする他
の金属せんいまたは金属被覆せんいとの組合せが有効で
ある。
From this point of view, we have found that a combined composite metal fiber is effective, taking advantage of the excellent initial conductivity of copper-based metal composite resin, and taking advantage of the small change in thermal shock of iron-based metal fiber. Iron-based fibers have a small wire diameter, so
This takes advantage of the effect of increasing the number of points of contact. Nickel-coated carbon fibers can be used as a substitute for iron-based fibers, but they have some problems in terms of lining construction, volume resistivity, and price, and cannot outperform iron-based fibers. In addition, instead of copper-based metal fiber, aluminum-based metal fiber, nickel-steel plated/polymer fiber, nickel-copper-plated glass fiber can be used, and overall, other metals that have iron-based metal fiber as an essential component can be used. Combination with fiber or metal coated fiber is effective.

本発明により製造した導電性せんい併用系材料72(第
1表記載の実施例5)K関し、体積固有抵抗を第6図に
併載した。
Regarding the conductive fiber combination material 72 (Example 5 listed in Table 1) K manufactured according to the present invention, the volume resistivity is also shown in FIG.

熱衝撃試験による体積固有抵抗の変化は比較的少ない。Changes in volume resistivity due to thermal shock tests are relatively small.

なお、実施例5は、他の実施例と同様とPPEの熱変形
温度120℃の樹脂を用いているものであるが、参考ま
でに熱変形温度70℃のPPEを用いた場合(71で示
す。)は、体積固有抵抗の変化率は著しく大きくなる。
Note that Example 5 uses a resin with a heat distortion temperature of 120°C for PPE, as in the other Examples, but for reference, when PPE with a heat distortion temperature of 70°C is used (as shown in 71). ), the rate of change in volume resistivity becomes significantly large.

これは、応力緩和の促進作用が大きいことによる。This is due to the large effect of promoting stress relaxation.

次に第1表の実施例およびl!2表の比較例に示す導電
性せんい組成物の代表例について、熱衝撃試験した結果
t−第3表および第7図に示す。一部体積固有抵抗に関
しては、第6図に併記した。
Next, the examples in Table 1 and l! Table 3 and FIG. 7 show the results of a thermal shock test for representative examples of conductive fiber compositions shown in Comparative Examples in Table 2. Part of the volume resistivity is also shown in FIG.

第5表に示されろように、従来技術による比較例1およ
び比較例2は、体積固有抵抗の変化が急激に大きくなり
、電子機器筺体の60回熱衝撃試験後の1磁波シ一ルド
機能は、著しく低下し、実用に全く供し得ないまでに至
る。
As shown in Table 5, in Comparative Example 1 and Comparative Example 2 according to the prior art, the change in volume resistivity was suddenly large, and the magnetic wave shielding function after 60 thermal shock tests of the electronic device housing was decreases significantly to the point where it cannot be put to practical use at all.

実施例1の初期値(73で示す)および熱衝撃試験30
回後(73′で示す)の電子機器筺体の放射電界強さは
第7図に示すように、極めて安定して優れていることが
わかる。実施例5についても同様に優れたレベルにある
Initial value of Example 1 (indicated by 73) and thermal shock test 30
As shown in FIG. 7, it can be seen that the radiation electric field strength of the electronic device housing after rotation (indicated by 73') is extremely stable and excellent. Example 5 is also at an excellent level.

本1石英粉2Qwt%光填PPE、*2 At7レ一ク
1Qwt%光填pc〔発明の効果〕 本発明は、導電性せんいを複合した熱可塑性樹脂組成物
による成形体が、電子機器から発生する不要電磁波ta
蔽する機能を付与する最も有効な方法を具現したもので
、その特有の効果を要素技術対応で述べる。
Book 1: Quartz powder: 2Qwt% light-loaded PPE, *2: At7: 1Qwt% light-loaded pc unnecessary electromagnetic waves ta
It embodies the most effective method of providing a shielding function, and its unique effects will be described in terms of elemental technology.

導電性せんい複合ペレットを製造する方法において、せ
んい切断が全くない一定長さの単芯線ベレットが得られ
、導電機能が充分に発揮できることに加え、鉄系極細せ
んいを必須成分としたことにより接点効果が大きく、他
の導電性せんいとの併用による少ない配合率で導電性の
向上すなわちシールド機能の向上が計れること、それ故
に成形性が良(、比重の増加を小さ(抑制できることの
効果を生んだ。加えて充填材を用いたことにより、成形
品全体としての寸法安定性を維持し、放熱性を向上した
ことによる電子機器の稼動安定性を向上できる効果を生
んだ。また熱変形温度の高い基材樹脂により、耐熱衝撃
性を大巾に向上した。
In the method of manufacturing conductive fiber composite pellets, single-core wire pellets of a certain length are obtained without any fiber cutting, and in addition to fully exhibiting the conductive function, the contact effect is achieved by using iron-based ultrafine fibers as an essential component. It is possible to improve the conductivity, that is, the shielding function, with a small blending ratio when used in combination with other conductive fibers, and therefore has good formability (and suppresses the increase in specific gravity). In addition, the use of fillers maintains the dimensional stability of the molded product as a whole and improves heat dissipation, which has the effect of improving the operational stability of electronic devices.Also, the molded product has a high heat distortion temperature. The base resin greatly improves thermal shock resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明において使用される単芯状線の製造用
クロスヘッドを示す断面図、$2図は、一定長さにカッ
トしたペレットを示す斜視図、第3図は、電子機器のC
RTユニット、第4図は、第3図のA−A断面図、第5
図はCRTユニットの分解斜視図、第6図は体積固有抵
抗と熱衝撃サイクルとの関係図、第7図は、電子機器の
放射電界強さの周波数特性を示す特性図である。 1・・・導電性せんい導入孔、6・・・充填材入熱可塑
性樹脂。 //−−−ホ)ムリ二ス /3−・・cy;7ユニV) 第 目 第20 晃7 7θ /θθ 間液教、(、MHx) 3117θ
Fig. 1 is a cross-sectional view showing a crosshead for manufacturing a single core wire used in the present invention, Fig. 2 is a perspective view showing a pellet cut to a certain length, and Fig. 3 is a cross-head for manufacturing a single-core wire used in the present invention. C
RT unit, Fig. 4 is a sectional view taken along line A-A in Fig. 3, Fig. 5
The figure is an exploded perspective view of a CRT unit, FIG. 6 is a relationship diagram between volume resistivity and thermal shock cycle, and FIG. 7 is a characteristic diagram showing frequency characteristics of radiated electric field strength of electronic equipment. 1... Conductive fiber introduction hole, 6... Filler filled thermoplastic resin. //---E) Mulinis/3-...cy;7UniV) 20th Akira 7 7θ /θθ Intermediate teaching, (, MHx) 3117θ

Claims (1)

【特許請求の範囲】 1、鉄系金属せんいを必須成分とし、これと材質、径の
異なる導電性せんいを少くとも1種、それぞれ独立束と
して長さ、方向に連続的に、特定の熱変形温度範囲の熱
可塑性樹脂充填材複合熱可塑性樹脂で被覆し、一定長さ
の柱状ペレットの混合系から構成される導電性を有する
成形用樹脂組成物。 2、導電性せんいとして鉄系金属せんい束を押出機のク
ロスヘッド部に連続的に供給し、本体部で可塑化溶融し
た特定の熱変形温度範囲の熱可塑性樹脂または充填材複
合熱可塑性樹脂で被覆し、冷却工程を経たのち、6〜1
0mmの範囲で一足の長さに切断した単芯性柱状ペレッ
トを必須成分とし、これと材質、径の異なる導電性せん
い束を用いて、同様の方法で、長さ方向に連続的に、特
定の熱変形温度範囲の熱可塑性樹脂で被覆し、3〜9m
mの範囲で一定長さに切断した柱状ペレットの中から選
ばれた少くとも1種から混合して構成される導電性成形
用樹脂組成物。 3、導電性せんいとして、鉄系金属せんいを必須成分と
し、これと材質、径の異なる導電性せんいの少くとも1
種を、それぞれ束状の独立コアとして並列配置し、長さ
方向に連続的に充填材複合熱可塑性樹脂で、同時に被覆
し、長さ6〜10mmの範囲内で一定長さに切断した多
芯状柱状ペレットとした導電性成形用樹脂組成物。 4、鉄系金属せんいは、アスペクト比が400〜200
0で、径が5〜15μmであり、これと材質、径の異な
る導電性せんいは、アスペクト比が50〜600で、径
が15〜60μmの銅系金属せんい、アルミニウム系金
属せんい、金属膜被覆無機せんい、金属膜被覆有機せん
いの少くとも1種から選ばれたものであることを特徴と
する請求項1、2または5記載の導電性成形用樹脂組成
物。 5、導電性せんいの熱可塑性樹脂に対する配合率は、下
記の通りであることを特徴とする請求項4記載の導電性
成形用樹脂組成物。 鉄系金属せんい:1〜10wt% 銅系金属せんい:20〜30wt% アルミニウム系金属せんい:2〜15wt%金属膜被覆
無機せんい:5〜15wt% 金属膜被覆有機せんい:5〜15wt% 6、鉄系金属せんいは、ステンレス・スチールせんいで
あり、銅系金属せんいは、銅、真鍮または洋白せんいの
少くとも1種であり、アルミニウム系金属せんいはアル
ミニウムせんいであり、金属膜被覆無機せんいは、ニッ
ケルめっき炭素せんい、銅・ニッケルめっきガラスせん
いの少くとも1種、金属膜被覆有機せんいは、鋼・ニッ
ルめっき有機高分子せんいの少くとも1種であることを
特徴とする請求項4記載の導電性成形用樹脂組成物。 7、熱可塑性樹脂の熱変形温度範囲が80〜210℃で
あることを特徴とする請求項1、2または3記載の導電
性樹脂組成物。 8、熱可塑性樹脂が、ABS樹脂、耐衝撃性ポリスチレ
ン、ポリカーボネート、ポリフェニレンエーテル、ポリ
エーテルスルホン、ポリブチレンテレフタレート、ナイ
ロン、ポリプロピレンおよびポリマーアロイとしてのA
BS樹脂/ポリカーボネート、耐衝撃性ポリスチレン/
ポリカーボネート、ポリフェニレンエーテル/ポリカー
ボネート、ポリブチレンテレフタレート/ポリカーボネ
ートのいずれか一種であることを特徴とする請求項1、
2または5記載の導電性樹脂組成物。 9 熱可塑性樹脂は、充填材を熱可塑性樹脂に対して5
〜20重量%含有していることを特徴とする請求項1、
2または3記載の導電性樹脂組成物。 10、充填材は平均粒径20〜30μmの石英粉、2m
m角以下の金属フレーク、2mm角以下のめっきマイカ
切片、径7〜25μm、長さ2〜5mmの炭素せんいの
うち少くとも1種類であることを特徴とする請求項9記
載の導電性樹脂組成物。 11、請求項1、2または3記載の導電性樹脂組成物を
用いて成形した電磁波シールド構造体。 12、電磁波シールド構造体が電子機器筺体、帯電防止
用電子部品容器であり、その成形を射出成形、移送成形
あるいは真空・圧空成形で行うことを特徴とする請求項
11記載の電磁波シールド構造体。 13、電磁波シールド構造体が電磁波シールド用壁、電
子黒板保護枝、標示用保護枝であり、その成形を押出シ
ート成形により行うことを特徴とする請求項11記載の
電磁波シールド構造体。
[Scope of Claims] 1. Iron-based metal fibers are an essential component, and at least one kind of conductive fibers of different materials and diameters are formed into independent bundles, continuously in length and direction, and subjected to specific thermal deformation. A molding resin composition having electrical conductivity and consisting of a mixed system of columnar pellets of a certain length coated with a thermoplastic resin filler composite thermoplastic resin having a temperature range. 2. Continuously feed a bundle of ferrous metal fibers as conductive fibers to the crosshead of the extruder, and use thermoplastic resin or filler composite thermoplastic resin in a specific heat deformation temperature range that is plasticized and melted in the main body. After coating and cooling process, 6-1
Using a monocore columnar pellet cut into lengths of 0 mm as an essential component, and a bundle of conductive fibers of different materials and diameters, the same method was used to continuously identify the properties in the length direction. coated with thermoplastic resin with a heat deformation temperature range of 3 to 9 m.
An electrically conductive molding resin composition composed of at least one selected from columnar pellets cut into a certain length within a range of m. 3. As a conductive fiber, iron-based metal fiber is an essential component, and at least one conductive fiber of different material and diameter.
A multi-core product in which seeds are arranged in parallel as bundle-shaped independent cores, simultaneously coated continuously in the length direction with filler composite thermoplastic resin, and cut into constant lengths within the range of 6 to 10 mm. A conductive molding resin composition in the form of columnar pellets. 4. Iron-based metal fibers have an aspect ratio of 400 to 200.
0 and a diameter of 5 to 15 μm, and conductive fibers of different materials and diameters include copper-based metal fibers, aluminum-based metal fibers, and metal film-coated fibers with an aspect ratio of 50 to 600 and a diameter of 15 to 60 μm. 6. The conductive molding resin composition according to claim 1, wherein the resin composition is selected from at least one of inorganic fibers and metal film-coated organic fibers. 5. The conductive molding resin composition according to claim 4, wherein the blending ratio of the conductive fiber to the thermoplastic resin is as follows. Iron-based metal fiber: 1-10 wt% Copper-based metal fiber: 20-30 wt% Aluminum-based metal fiber: 2-15 wt% Metal film-coated inorganic fiber: 5-15 wt% Metal film-coated organic fiber: 5-15 wt% 6. Iron The copper-based metal fiber is at least one of copper, brass, or nickel silver fiber, the aluminum-based metal fiber is aluminum fiber, and the metal film-coated inorganic fiber is 5. The conductive conductive material according to claim 4, wherein the at least one kind of nickel-plated carbon fiber or copper/nickel-plated glass fiber is used, and the metal film-coated organic fiber is at least one kind of steel or nickel-plated organic polymer fiber. Resin composition for molding. 7. The conductive resin composition according to claim 1, 2 or 3, wherein the thermoplastic resin has a heat deformation temperature range of 80 to 210°C. 8. A where the thermoplastic resin is ABS resin, high impact polystyrene, polycarbonate, polyphenylene ether, polyether sulfone, polybutylene terephthalate, nylon, polypropylene and polymer alloys.
BS resin/polycarbonate, impact-resistant polystyrene/
Claim 1, characterized in that it is one of polycarbonate, polyphenylene ether/polycarbonate, and polybutylene terephthalate/polycarbonate.
6. The conductive resin composition according to 2 or 5. 9 For thermoplastic resin, filler is 5% for thermoplastic resin.
Claim 1, characterized in that it contains ~20% by weight,
3. The conductive resin composition according to 2 or 3. 10. The filler is quartz powder with an average particle size of 20 to 30 μm, 2 m
The conductive resin composition according to claim 9, characterized in that the conductive resin composition is at least one of metal flakes of m square or less, plated mica pieces of 2 mm or less square, and carbon fibers of 7 to 25 μm in diameter and 2 to 5 mm in length. thing. 11. An electromagnetic shielding structure molded using the conductive resin composition according to claim 1, 2 or 3. 12. The electromagnetic shielding structure according to claim 11, wherein the electromagnetic shielding structure is an electronic device housing or an antistatic electronic component container, and is molded by injection molding, transfer molding, or vacuum/pressure molding. 13. The electromagnetic shielding structure according to claim 11, wherein the electromagnetic shielding structure is an electromagnetic shielding wall, an electronic blackboard protection branch, and a sign protection branch, and is formed by extrusion sheet molding.
JP22235288A 1988-09-07 1988-09-07 Molding resin composition having conductivity and electromagnetic wave shielding structure Expired - Lifetime JP2633920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22235288A JP2633920B2 (en) 1988-09-07 1988-09-07 Molding resin composition having conductivity and electromagnetic wave shielding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22235288A JP2633920B2 (en) 1988-09-07 1988-09-07 Molding resin composition having conductivity and electromagnetic wave shielding structure

Publications (2)

Publication Number Publication Date
JPH0270404A true JPH0270404A (en) 1990-03-09
JP2633920B2 JP2633920B2 (en) 1997-07-23

Family

ID=16780996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22235288A Expired - Lifetime JP2633920B2 (en) 1988-09-07 1988-09-07 Molding resin composition having conductivity and electromagnetic wave shielding structure

Country Status (1)

Country Link
JP (1) JP2633920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004714A1 (en) * 2003-07-01 2005-01-20 The Regents Of The University Of Michigan Method and apparatus for diagnosing bone tissue conditions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004714A1 (en) * 2003-07-01 2005-01-20 The Regents Of The University Of Michigan Method and apparatus for diagnosing bone tissue conditions

Also Published As

Publication number Publication date
JP2633920B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US4816184A (en) Electrically conductive material for molding
DE60220938T2 (en) Process for the preparation of electrically conductive thermoplastic polymer compositions
CN101747619B (en) High performance emi/rfi shielding polymer composite and molded article therefrom
KR20160006677A (en) Moldable capsule and method of manufacture
KR910007665B1 (en) Electroconductive resin composition for moulding and shield moulded there from
US20120321836A1 (en) Variable-thickness elecriplast moldable capsule and method of manufacture
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
US20140322532A1 (en) Variable-thickness elecriplast moldable capsule and method of manufacture
JPH0270404A (en) Conductive resin composition for molding and electromagnetic shield structure
EP0304435B1 (en) Electrically conductive material for molding
JPH0757489B2 (en) Method for producing conductive fiber composite resin
JPH03505649A (en) Conductive composites doped with metals by developer
JPS6013516A (en) Manufacture of multilayer injection molded product with electromagnetic shielding property
JPS6129083B2 (en)
JPS624749A (en) Blend type electrically conductive composite material
JP2005307186A (en) Thermoplastic resin coating electrically conductive composition
JPS6392672A (en) Conductive thermoplastic resin composition
JP2015033845A (en) Bichrome molding including multilayer carbon nanotube-added foam and method for manufacturing the same
JPS63297459A (en) Electrically conductive polymer blend
JPH027977B2 (en)
JPH02155724A (en) Manufacture of molded electromagnetic shield product
WO2006069140A2 (en) Electriplast moldable capsule and method of manufacture
JP2004027097A (en) Thermoplastic resin composition
JPH0763971B2 (en) Conductive resin molding
JPH039956A (en) Highly conductive resin composition