JPH0270042A - Cobalt-base amorphous alloy reduced in magnetostriction and having high magnetic permeability - Google Patents
Cobalt-base amorphous alloy reduced in magnetostriction and having high magnetic permeabilityInfo
- Publication number
- JPH0270042A JPH0270042A JP1132826A JP13282689A JPH0270042A JP H0270042 A JPH0270042 A JP H0270042A JP 1132826 A JP1132826 A JP 1132826A JP 13282689 A JP13282689 A JP 13282689A JP H0270042 A JPH0270042 A JP H0270042A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetic
- elements
- amorphous
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title claims abstract description 35
- 230000035699 permeability Effects 0.000 title claims abstract description 34
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 5
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 5
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 5
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 5
- 229910052718 tin Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 3
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052713 technetium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 abstract description 67
- 229910045601 alloy Inorganic materials 0.000 abstract description 65
- 239000000203 mixture Substances 0.000 abstract description 11
- 229910052726 zirconium Inorganic materials 0.000 abstract description 5
- 229910052796 boron Inorganic materials 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 229910020641 Co Zr Inorganic materials 0.000 abstract 1
- 229910020520 Co—Zr Inorganic materials 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 16
- 239000011162 core material Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 229910000889 permalloy Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052752 metalloid Inorganic materials 0.000 description 6
- 238000004080 punching Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910001017 Alperm Inorganic materials 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000005280 amorphization Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910000702 sendust Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910002674 PdO Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、コバルト基非晶質合金に関し、特に磁歪が小
さく透磁率の高い磁心用非晶質合金に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cobalt-based amorphous alloy, and particularly to an amorphous alloy for magnetic cores having low magnetostriction and high magnetic permeability.
従来、弱電用小型磁心、例えば捲鉄心、磁気ヘッド等の
材料としては、Moパーマロイ (JTS−PC級パー
マロイ)が主として用いられているが、これらの合金は
その特性を得るためには極めて厳しい条件下での熱処理
が必要であり、特に捲鉄心として使用する際の鉄損をで
きるだけ少なくするために100〜50μmという薄帯
にしなければならず、そのための圧延および熱処理の工
程が複雑である。又、磁気ヘッドとして長時間使用する
と磁気テープによる摩耗のために録音特性が著しく劣化
する点に問題があり、そのために現在では磁気ヘッド用
磁性合金としては前述のパーマロイ系合金のほかにフェ
ライトアルパームあるいはセンダストのような高硬度の
材料も用いられている。Conventionally, Mo permalloy (JTS-PC grade permalloy) has been mainly used as a material for small magnetic cores for weak electric currents, such as wound cores and magnetic heads, but these alloys must undergo extremely strict conditions to obtain their properties. In particular, in order to minimize iron loss when used as a wound core, it must be made into a thin ribbon of 100 to 50 μm, and the rolling and heat treatment steps for this purpose are complicated. Another problem is that when used as a magnetic head for a long time, the recording characteristics deteriorate significantly due to wear caused by the magnetic tape.As a result, in addition to the above-mentioned permalloy alloy, ferrite-alperm is currently used as a magnetic alloy for magnetic heads. Alternatively, a highly hard material such as sendust is also used.
これらのうちフェライトは高周波において優れた電磁気
特性を示し、かつ摩耗および変形は小さいが、一方飽和
磁化が低く記録歪みを生じやすい上に摺動ノイズが多く
信号対雑音比(S/N)を大きくすることができないこ
とが木質的欠陥となっている。またアルパームやセンダ
ストは磁気特性の点では優れているが、これらの材料は
展延性及び機械加工性に乏しいという欠点を有している
。Among these, ferrite exhibits excellent electromagnetic properties at high frequencies, and has low wear and deformation, but has low saturation magnetization and is prone to recording distortion, as well as high sliding noise and a high signal-to-noise ratio (S/N). The inability to do so is a wood defect. Although Alperm and Sendust have excellent magnetic properties, these materials have the disadvantage of poor malleability and machinability.
以上述べたように、従来用いられている小型磁心用材料
は種々の欠点があり、十分満足しろる材料は得られてい
ない。As described above, the conventionally used materials for small magnetic cores have various drawbacks, and a fully satisfactory material has not been obtained.
C発明が解決しようとする課題〕
これに対し、最近、非晶質金属磁性材料が着目されてき
た。この材料は、高い磁気特性に加え電気抵抗の抵抗率
が高く、さらに製法上から本質的に薄帯状で得られるた
めに、交流磁心材料として注目されているものである。Problems to be Solved by the Invention C] In response to this problem, amorphous metal magnetic materials have recently attracted attention. This material has attracted attention as an alternating current magnetic core material because it has high electrical resistance in addition to high magnetic properties, and because it can be obtained essentially in the form of a ribbon due to its manufacturing process.
すなわち、Fe、 Co、 Niとその他にP、C,B
、Siなどの非晶質化元素を約20原子%含む成分組成
の非晶質合金は、上記の各種結晶質高透磁率金属材料に
比べ、保磁力が小さく、透磁率が大きい等価れた磁気特
性が得られることが知られている。That is, Fe, Co, Ni and others P, C, B
, an amorphous alloy with a composition containing approximately 20 at. It is known that properties can be obtained.
しかしながら、これらの非晶質合金は、磁気特性改善の
ために一般に結晶化温度以下の温度で熱処理を施す必要
があるが、前記熱処理によれば脆性は逆に大きくなり、
機械的性質、特に耐摩耗性は硬度が高い割には低いとい
う欠点がある。さらに、例えばFe(o N1to P
+a B6非晶質合金に見られるように磁性の熱的
安定性が悪いという欠点もある。However, these amorphous alloys generally need to be heat-treated at a temperature below their crystallization temperature in order to improve their magnetic properties, but this heat treatment actually increases their brittleness.
The mechanical properties, especially the abrasion resistance, are low despite the high hardness. Furthermore, for example, Fe(o N1to P
+a It also has the disadvantage of poor magnetic thermal stability, as seen in the B6 amorphous alloy.
しかも、P、C,B、Si等の半金属元素を約20原子
%も多量に含む非晶質合金は、硬度が800〜1100
Hvと高いために所望の形状に打ち抜くためのダイスの
寿命が極めて短いことが問題となっている。Moreover, amorphous alloys containing approximately 20 atomic percent of metalloid elements such as P, C, B, and Si have a hardness of 800 to 1100.
Due to the high Hv, there is a problem that the life of the die used to punch out the desired shape is extremely short.
本発明は、従来実用されている結晶質の小型磁心用高透
磁率金属材料が有する前記諸欠点がなく、しかも既知の
非晶質合金が有する前記欠点をも同時に解消し、保磁力
および磁歪が小さく、透磁率が大きく、かつこれらの磁
気特性の熱的安定性に優れていることに加え、打ち抜き
あるいは切断等の機械加工性が良く、熱処理による脆化
が少ないという特長を備えた小型磁心用非晶質合金を提
供することを目的とするものである。The present invention does not have the above-mentioned drawbacks of crystalline high permeability metal materials for small magnetic cores that have been in practical use, and also eliminates the above-mentioned drawbacks of known amorphous alloys, and has a high coercive force and magnetostriction. For small magnetic cores, it is small, has high magnetic permeability, and has excellent thermal stability of these magnetic properties, as well as good machinability such as punching or cutting, and less embrittlement due to heat treatment. The purpose is to provide an amorphous alloy.
このような目的によく適合する非晶質合金として、本発
明は、原子比率で、Zrを7〜15%、Cr。As an amorphous alloy well suited for such purposes, the present invention has an atomic ratio of 7 to 15% Zr and Cr.
Mo、 W、 V、 NbおよびTaの中から選ばれ
る何れか1種または2種以上を5〜20%、下記(イ)
、’(U)(ハ)、(ニ)、(ホ)および(へ)の群の
中から選ばれる何れか1種または2種以上を20%以下
、残部★質的にCoよりなる磁歪が小さく透磁率の高い
コバルト基非晶質合金。5 to 20% of one or more selected from Mo, W, V, Nb and Ta, the following (a)
, '(U) (C), (D), (E) and (F) Any one or more selected from the group of 20% or less, the remainder ★ magnetostriction qualitatively consisting of Co. A cobalt-based amorphous alloy that is small and has high magnetic permeability.
(イ) Fe : 10%以下
(ロ) Ni : 20%以下
(ハ) Mn Cu、の中から選ばれる何れか1種ま
たは2種:10%以下
(=) Tc、 Ru、 Rh、 Pdの中から選ばれ
る何れか1種または2種以上:10%以下
(ネ) Ti、 Hf、 Sc、 Y、 ランタニド
元素の中から選ばれる何れか1種または2種以上:5%
以下(へ’) B、 C,P、 Be、 A
I、 St、 Ge、 Sn、 Sb、 I
nの中から選ばれる何れか1種または2種以上:4%未
満
を提案する。(a) Fe: 10% or less (b) Ni: 20% or less (c) Any one or two selected from Mn, Cu: 10% or less (=) Among Tc, Ru, Rh, and Pd. Any one or two or more selected from: 10% or less (N) Any one or two or more selected from Ti, Hf, Sc, Y, and lanthanide elements: 5%
Below (to') B, C, P, Be, A
I, St, Ge, Sn, Sb, I
We suggest any one or two or more selected from n: less than 4%.
通常、固体の金属2合金は結晶構造を有するが、適当な
組成をもつ合金を液体状態から急速に冷却するか、ある
いは蒸着法、スパッタ法、メツキ法等の種々の技術を用
いることにより液体に類似した周期的原子配列を持たな
い非結晶構造の固体が得られる。このような金属は、非
晶質金属あるいは非晶質合金と呼ばれる(以下、「非晶
質金属」あるいは「非晶質合金」を合わせて“非晶質合
金”と称す)。この非晶質合金は、前述のように種々の
技術を適当に用いても得られることがよく知られており
(例えば特開昭49−91014号)、中でも気相か
ら超急冷するスパッタ法によれば液体急冷法により得ら
れる非晶質合金の組成範囲よりも広い組成範囲で非晶質
合金が得られることが知られている。Normally, solid metal 2 alloys have a crystalline structure, but they can be turned into liquids by rapidly cooling an alloy with an appropriate composition from a liquid state, or by using various techniques such as vapor deposition, sputtering, and plating. A solid with an amorphous structure without a similar periodic atomic arrangement is obtained. Such metals are called amorphous metals or amorphous alloys (hereinafter, "amorphous metals" or "amorphous alloys" are collectively referred to as "amorphous alloys"). It is well known that this amorphous alloy can be obtained by appropriately using various techniques as mentioned above (for example, Japanese Patent Application Laid-Open No. 49-91014). It is known that an amorphous alloy can be obtained in a wider composition range than that obtained by a liquid quenching method.
なお、液体急冷法の例としては、第1図(alに示す如
く高速回転する1つの円板の外周面上または第1図(b
lに示す如く高速に互いに逆回転する2つのロールの間
に液体金属を連続的に噴出させ、回転円板または双ロー
ルの表面上で104〜b程度の冷却速度で急冷凝固させ
る方法がある。In addition, as an example of the liquid quenching method, it is possible to cool the liquid on the outer circumferential surface of one disk rotating at high speed as shown in Fig.
As shown in Fig. 1, there is a method in which liquid metal is continuously jetted between two rolls that rotate in opposite directions at high speed, and is rapidly solidified on the surface of a rotating disk or twin rolls at a cooling rate of about 104-b.
この非晶質合金を組成的に見ると、遷移金属元素と半金
属元素とを組み合わせた合金系(半金属量は約10〜3
0原子%)と、原子半径が異なる2種又は3種以上の遷
移金属元素を組み合わせた合金系との2種の合金系が知
られている。Looking at the composition of this amorphous alloy, it is an alloy system that combines transition metal elements and metalloid elements (the amount of metalloids is approximately 10 to 3
Two types of alloy systems are known: 0 atomic %) and an alloy system in which two or more transition metal elements having different atomic radii are combined.
後者の合金系の一例としては、遷移金属元素である鉄族
元素とジルコニウムからなる非晶質合金が知られており
、本発明者らは上記鉄族元素とジルコニウムを含む各種
非晶質合金の中に強磁性を有する合金があることを新規
に知見し、特願昭5443838号(特公昭60−30
734号;特許第1314339号)として、先に特許
出願した。As an example of the latter alloy system, an amorphous alloy consisting of an iron group element, which is a transition metal element, and zirconium is known. It was newly discovered that some alloys have ferromagnetism, and patent application No. 5443838 (Japanese Patent Publication No.
734; Patent No. 1314339).
本発明者らは、上記鉄族元素とジルコニウムを含む非晶
質合金のうち特にCoを主成分とする非晶質合金につき
、主として小型磁心材料として用いるために、さらに詳
細な研究を行なった結果、所定成分組成を有する合金を
液相、気相から超急冷して得た非晶質合金、又はこれに
所定の熱処理を磁場中あるいは応力下で施した合金は、
保磁力および磁歪が小さく、透磁率が高く、熱的ならび
に経時的に安定した磁気特性を具え耐摩耗性に冨み、さ
らに半金属元素を多量に含む従来の非晶質合金に比べ脆
化し難く、かつ打ち抜き、研磨あるいは切断等の機械加
工性が良好であるということを、新規に知見して本発明
に想到した。The present inventors have conducted more detailed research on amorphous alloys containing Co as a main component among the above-mentioned amorphous alloys containing iron group elements and zirconium, in order to mainly use them as small magnetic core materials. , an amorphous alloy obtained by ultra-quenching an alloy having a predetermined composition from the liquid phase or gas phase, or an alloy obtained by subjecting it to a predetermined heat treatment in a magnetic field or under stress,
It has low coercive force and magnetostriction, high magnetic permeability, thermally and temporally stable magnetic properties, high wear resistance, and is less susceptible to embrittlement than conventional amorphous alloys containing large amounts of metalloid elements. The present invention was conceived based on the new finding that the material has good machinability in punching, polishing, cutting, etc.
本発明の非晶質合金は、前記特長の他に次のような特長
をも有する。機械加工によってその上記特性がほとんど
変化しない。例えば透磁率、保磁力、残留磁束密度など
は合金に張力を加えても殆んど一定で変わらず、外部応
力に対して不感である。したがって、本発明の合金が、
切断、打ち抜きあるいは研磨等の機械加工によって磁気
特性が殆んど劣化しないので、合金を所定の寸法、形状
に打ち抜き、研磨あるいは切断して得られる薄片を使用
する際に非常に有利である。さらに本発明合金は、電気
抵抗が 120〜140μΩcmと高く、しかも20〜
40μm程度の薄帯状にも製造できるので、高周波特性
の良い小型磁心材料として非常に好適な合金である。In addition to the above features, the amorphous alloy of the present invention also has the following features. The above properties hardly change due to machining. For example, magnetic permeability, coercive force, residual magnetic flux density, etc. remain almost constant even when tension is applied to the alloy, and are insensitive to external stress. Therefore, the alloy of the present invention
Since the magnetic properties are hardly degraded by machining such as cutting, punching, or polishing, it is very advantageous to use thin pieces obtained by punching, polishing, or cutting the alloy into predetermined dimensions and shapes. Furthermore, the alloy of the present invention has a high electrical resistance of 120 to 140 μΩcm, and also has a high electrical resistance of 20 to 140 μΩcm.
Since it can be manufactured into a ribbon shape of about 40 μm, it is an extremely suitable alloy as a small magnetic core material with good high frequency characteristics.
次に本発明の非晶質合金を実験データに基いて説明する
。Next, the amorphous alloy of the present invention will be explained based on experimental data.
本実験において用いた非晶質合金は軸釣2fl、厚さ約
20μmの薄帯試料である。該試料は本発明の成分組成
を有する合金溶湯を、第1図(alに示す如く高速回転
する1つの円板の外周面上に連続的に噴出させて、回転
円板の表面上で105〜bさらに前記超急冷してなる非
晶質合金を約、350〜500°Cの温度範囲でかつそ
の合金の結晶化温度未満の温度において焼鈍した後、室
温まで冷却し磁気特性を測定した。The amorphous alloy used in this experiment was a thin strip sample with a 2fl shaft and a thickness of about 20 μm. The sample was prepared by continuously jetting a molten alloy having the composition of the present invention onto the outer peripheral surface of one disk rotating at high speed as shown in FIG. (b) The super-quenched amorphous alloy was annealed in a temperature range of about 350 to 500°C and below the crystallization temperature of the alloy, and then cooled to room temperature and its magnetic properties were measured.
第1表に本発明の非晶質合金、既知の金属−半金属系非
晶質合金の一部ならびに従来一般に用いられている各種
結晶質高透磁率金属材料について、それらの成分組成お
よび磁気特性を示した。Table 1 shows the component composition and magnetic properties of the amorphous alloy of the present invention, some known metal-metalloid amorphous alloys, and various crystalline high magnetic permeability metal materials commonly used in the past. showed that.
(以下余白)
第1表において階1〜6は本発明合金、Na7゜8は既
知のFe−N1−P−B系およびCo−Fe−5tB系
非晶質合金、11に9,1.0はそれぞれ市販の高硬度
パーマロイおよびフェライトである。(Leaves below) In Table 1, grades 1 to 6 are the alloys of the present invention, Na7°8 is the known Fe-N1-P-B and Co-Fe-5tB amorphous alloys, and 11 is 9, 1.0. are commercially available high hardness permalloy and ferrite, respectively.
第1表から判るように、本発明合金は市販の高透磁率金
属材料に比べて優れた磁気特性を有している。例えば、
第1表階2の合金は、比較例隘9の高硬度パーマロイに
比べて保磁力は小さく、最大透磁率、実効透磁率も高く
、しかも飽和磁束密度もほぼ同等である。As can be seen from Table 1, the alloy of the present invention has superior magnetic properties compared to commercially available high permeability metal materials. for example,
The alloy of Grade 2 in Table 1 has a smaller coercive force, higher maximum magnetic permeability and higher effective magnetic permeability, and almost the same saturation magnetic flux density as compared to the high hardness permalloy of Comparative Example No. 9.
また、上記本発明合金(第1表中、陽2)は、既知の非
晶質合金の一例である第1表嵐7の合金に比べても保磁
力は小さく、飽和磁束密度はほぼ同等であり、実効透磁
率は9倍であり、しかも磁歪は10分の1以下であるよ
うな優れた磁気特性を有することが判る。Furthermore, the above-mentioned alloy of the present invention (positive 2 in Table 1) has a smaller coercive force and almost the same saturation magnetic flux density than the alloy Arashi 7 in Table 1, which is an example of a known amorphous alloy. It can be seen that it has excellent magnetic properties such that the effective magnetic permeability is 9 times higher and the magnetostriction is less than 1/10.
さらにまた、第1表階4の合金を第1表階8の非晶質合
金と比較すると、保磁力、最大透磁率は若干劣るものの
、実効透磁率はほぼ同等であり、飽和磁束密度は約20
00 Gも高く、磁心材料としてより有利に使用するこ
とができる。Furthermore, when comparing the alloy of Grade 4 in Table 1 with the amorphous alloy of Grade 8 in Table 1, although the coercive force and maximum magnetic permeability are slightly inferior, the effective magnetic permeability is almost the same, and the saturation magnetic flux density is approximately 20
00G is also high and can be used more advantageously as a magnetic core material.
′本発明合金は、何れも硬度が高硬度パーマロイの約1
.7〜2倍と高く、またフェライトと比較するとほぼ同
等であることが判る。例えば、第1表階5あるいは階6
の合金のビッカース硬度はそれぞれ669 716であ
り、これらの値はフェライトの硬度とほぼ同等あるいは
それ以上である。'All of the alloys of the present invention have a hardness of about 1 that of high-hardness permalloy.
.. It is found that it is 7 to 2 times higher, and is almost equivalent to ferrite. For example, floor 5 or floor 6 in Table 1
The Vickers hardness of these alloys is 669 and 716, respectively, and these values are approximately equal to or higher than the hardness of ferrite.
本発明合金であるCo76Mo、。B 、Zr、の非晶
質合金の薄帯試料をトロイダル状に巻き、150〜49
0℃間の範囲で20分間焼なました際のI KHzにお
ける実効透磁率の変化を第2図に示す。Co76Mo, which is an alloy of the present invention. A thin strip sample of an amorphous alloy of B and Zr was wound into a toroidal shape and
Figure 2 shows the change in effective magnetic permeability at I KHz when annealed for 20 minutes at a temperature between 0°C.
熱処理を施さない急冷材の実効透磁率は1500〜50
00程度であるが、この合金を非酸化性雰囲気あるいは
真空中において結晶化温度以下の温度範囲内で焼なまし
を施すことにより、磁気特性が大きく改善され、例えば
450〜500℃で焼なましだ試料の実効透磁率は30
、000〜40 、000程度にまで上昇することが
判る。The effective permeability of quenched material without heat treatment is 1500-50
However, by annealing this alloy at a temperature below the crystallization temperature in a non-oxidizing atmosphere or in vacuum, the magnetic properties can be greatly improved. The effective permeability of the sample is 30
,000 to about 40,000.
第3図に、本発明と共通する合金系であるCOsIMC
05ロo非晶質合金の急冷材について、保磁力および残
留磁束密度に対する張力の影響を調べた結果を示す。Figure 3 shows COsIMC, which is an alloy system common to the present invention.
The results of investigating the influence of tension on the coercive force and residual magnetic flux density of the 05RO amorphous alloy quenched material are shown below.
この結果によれば、前記類似合金系では張力の影響はほ
とんど認められず、したがって、本発明合金の場合も、
切断、打ち抜きなどの機械加工によって磁気特性が殆ん
ど劣化しないことが予測でき、本発明合金を磁心材料と
して使用する点で極めて有利である。According to this result, almost no effect of tension was observed in the similar alloy system, and therefore, in the case of the alloy of the present invention,
It can be predicted that the magnetic properties will hardly deteriorate due to machining such as cutting and punching, which is extremely advantageous in using the alloy of the present invention as a magnetic core material.
第4図に示すように、Moパーマロイの実効透磁率は周
波数10 KHzを超えると急激に低下するが、本発明
合金、例えばC076W8 B 、、Zr+。非晶質合
金の実効透磁率は、周波数20 KHz付近までは変化
せず、可聴周波数範囲内で優秀な性質を有することカ判
った。一方、アルパームに比べても、広い周波数範囲で
はるかに高い実効透磁率を有することが判る。このこと
から本発明合金は、磁気ヘッドあるいは家電用小型トラ
ンス等に適した材料であることが判る。As shown in FIG. 4, the effective magnetic permeability of Mo permalloy decreases rapidly when the frequency exceeds 10 KHz, but the effective magnetic permeability of Mo permalloy decreases rapidly when the frequency exceeds 10 KHz, whereas the effective permeability of Mo permalloy decreases rapidly when the frequency exceeds 10 KHz. It was found that the effective magnetic permeability of the amorphous alloy does not change up to a frequency of around 20 KHz and has excellent properties within the audible frequency range. On the other hand, it can be seen that it has a much higher effective magnetic permeability over a wide frequency range than Alperm. This indicates that the alloy of the present invention is a material suitable for magnetic heads, small transformers for home appliances, and the like.
次に本発明の合金の成分組成を限定する理由を説明する
。Next, the reason for limiting the composition of the alloy of the present invention will be explained.
本発明合金において、Zrは、7%より少ないと、超急
冷しても高い透磁率を有する良好な非晶質合金を得るこ
とが困難であり、15%より多いと、飽和磁束密度が著
しく低下するので、7〜15%の範囲内にする必要があ
る。とくに、8〜13%の範囲内で保磁力がより小さ(
飽和磁束密度が比較的大きい優れた磁気特性が得られる
。In the alloy of the present invention, when Zr is less than 7%, it is difficult to obtain a good amorphous alloy with high magnetic permeability even after ultra-quenching, and when it is more than 15%, the saturation magnetic flux density is significantly reduced. Therefore, it is necessary to keep it within the range of 7 to 15%. In particular, the coercive force is smaller within the range of 8 to 13% (
Excellent magnetic properties with relatively high saturation magnetic flux density can be obtained.
Cr、 Mo、 W、 V、 Nb、 Ta (V族あ
るいは■族元素)は、非晶質化を助成し、キューリー温
度を下げる効果を有するために熱処理を容易にし、さら
に磁歪の低減効果をも有する。その量が5%以下である
とその効果は小さく、20%よりも多いと飽和磁束密度
が著しく低下するので、これらの元素は5を超え20%
以下の範囲内にする必要がある。Cr, Mo, W, V, Nb, and Ta (group V or group II elements) facilitate amorphization and have the effect of lowering the Curie temperature, making heat treatment easier, and they also have the effect of reducing magnetostriction. have If the amount is less than 5%, the effect will be small, and if it is more than 20%, the saturation magnetic flux density will decrease significantly.
Must be within the following range.
望ましくは、7〜17%の範囲内にすることがより好適
である。More preferably, it is within the range of 7 to 17%.
さて、本発明合金は、さらに次の成分
(イ) Fe : 10%以下
(ロ) Ni : 20%以下
(+1) Mn CuO中から選ばれる何れか1種ま
たは2種:10%以下
(=) Tc、 Ru、 Rh、 PdO中から選ばれ
る何れか1種または2種以上=10%以下
(ネ) Ti、 Hf、 Sc、 Y、 ランタニド
元素の中から選ばれる何れか1種または2種以上:5%
以下
(へ) B、 C,P、 Be、 AI、
Si、 Ge、 Sn、 Sb、 Inの中
から選ばれる何れか1種または2種以上: 4%未満
の1種または2種以上を選択的に含有させる。Now, the alloy of the present invention further contains the following components (a) Fe: 10% or less (b) Ni: 20% or less (+1) Mn Any one or two selected from CuO: 10% or less (=) One or more selected from Tc, Ru, Rh, and PdO = 10% or less (N) One or more selected from Ti, Hf, Sc, Y, and lanthanide elements: 5%
Below (to) B, C, P, Be, AI,
Any one or more selected from Si, Ge, Sn, Sb, and In: Selectively contains less than 4% of one or more.
これら各元素の限定理由を以下に述べる。The reason for limiting each of these elements will be described below.
(イ)群に属するFeは、磁束密度を上昇させる効果を
有するが、磁歪も同時に上げるので10%以下にするこ
とが好適であり、より好ましくは5%以下が良い。Fe belonging to group (a) has the effect of increasing the magnetic flux density, but it also increases magnetostriction at the same time, so it is preferably kept at 10% or less, more preferably 5% or less.
(n)群に属するNi は、磁歪を低減させるが、同時
に結晶化温度および磁束密度をも低下させてしまうので
20%以下にすることが好適であり、より好ましくは1
0%以下が良い。Ni belonging to group (n) reduces magnetostriction, but at the same time it also lowers crystallization temperature and magnetic flux density, so it is preferable to keep it at 20% or less, more preferably 1
0% or less is good.
(ハ)群に属するMnは□、電気抵抗を高め、保磁力を
減少させる効果があり、又、Cuは、透磁率保磁力を害
せず耐摩耗性を向上させる元素であるが、ともに10%
より多くすると飽和磁束密度が低下し、合金が脆化する
ので10%以下にすることが好ましい。Mn, which belongs to group (c), has the effect of increasing electrical resistance and decreasing coercive force, and Cu is an element that improves wear resistance without impairing magnetic permeability and coercive force. %
If the amount is too large, the saturation magnetic flux density will decrease and the alloy will become brittle, so it is preferably 10% or less.
(=)群に属するTc Ru、 Rh Pdは、そ
のいずれか少なくとも1種を10%より多くすると、透
磁率は高くなるが、磁束密度が低下するので10%以下
にすることを特徴とするが好ましい。(=) Tc Ru, Rh Pd, which belong to the group, are characterized in that if at least one of them exceeds 10%, the magnetic permeability increases, but the magnetic flux density decreases, so it should be kept at 10% or less. preferable.
また、(*)群に属するTi、 If、 Sc、 Yお
よびランタニド元素は、非晶質化を助成し硬度を上昇さ
せる元素であるが、これらの元素の何れか少なくとも1
種が5%を超えると合金が脆化するので5%以下にする
ことを特徴とするが好ましい。In addition, Ti, If, Sc, Y, and lanthanide elements belonging to the group (*) are elements that promote amorphization and increase hardness, but at least one of these elements
If the content of seeds exceeds 5%, the alloy becomes brittle, so it is preferable to keep the content to 5% or less.
(へ)群に属するB、 C,P、 Be、 AI、
St、 Ge。(to) B, C, P, Be, AI, belonging to the group
St, Ge.
Sn、 Sb、Inの各元素は、非晶質化を助ける元素
であるが、特に脆化温度が高く耐摩耗性に優れた合金を
得るために、この(へ)群から選ばれる少なくとも1種
又は2種以上の元素は、4%未満にすることが好ましい
。Each element of Sn, Sb, and In is an element that helps to make it amorphous, but in order to obtain an alloy with particularly high embrittlement temperature and excellent wear resistance, at least one element selected from this group is used. Alternatively, the content of two or more elements is preferably less than 4%.
そして、本発明においては、上記(イ)、(0)、(ハ
)(=)、(ネ)、(へ)群の中から選ばれる何れか1
種または2種以上の元素は、合計で20%より多くする
と磁束密度または透磁率が著しく低下するので、20%
以下にする必要がある。In the present invention, any one selected from the above groups (a), (0), (c) (=), (ne), and (f).
If the total amount of a species or two or more elements exceeds 20%, the magnetic flux density or magnetic permeability will decrease significantly.
It is necessary to do the following.
この合計量は、望ましくは15%以下、さらに高い磁束
密度を得るためには10%以下が好適であると言える。This total amount is desirably 15% or less, and in order to obtain even higher magnetic flux density, 10% or less is suitable.
なお、本発明非晶質合金は、前述の種々の技術を用いて
得た非晶質合金素材を、その合金素材の結晶化温度未満
の温度で焼鈍した後、急冷あるいは徐冷することによっ
て得ることができる。この場合、焼鈍雰囲気は非酸化性
あるいは真空中で行うことは有利である。ただし、若干
の酸素によって非晶質合金の表面が酸化されても磁気特
性をそこなうことがない場合には、むしろそれによって
形成される酸化被膜が絶縁被膜としての効果を有する。The amorphous alloy of the present invention is obtained by annealing an amorphous alloy material obtained using the various techniques described above at a temperature below the crystallization temperature of the alloy material, and then rapidly or slowly cooling it. be able to. In this case, it is advantageous that the annealing atmosphere is non-oxidizing or that the annealing is carried out in a vacuum. However, if the magnetic properties are not impaired even if the surface of the amorphous alloy is oxidized by a small amount of oxygen, the oxide film formed thereby has an effect as an insulating film.
本発明の非晶質合金を150℃〜結晶化温度未満の範囲
内で焼鈍した後、急冷あるいは徐冷すると非晶質合金に
ついて、軸釣15鰭、厚さ約30μmの薄帯から10f
iφX6wmφのリング試料を打ち抜き、無磁界中にて
各合金の結晶化温度より50℃低い温度で20分間加熱
後、水冷した後その磁気特性を調べた。When the amorphous alloy of the present invention is annealed within the range of 150°C to less than the crystallization temperature and then rapidly or slowly cooled, the amorphous alloy has a diameter of 10 f from a thin strip with a shaft fishing 15 fins and a thickness of about 30 μm.
A ring sample of iφX6wmφ was punched out, heated for 20 minutes at a temperature 50° C. lower than the crystallization temperature of each alloy in the absence of a magnetic field, and then cooled with water, and its magnetic properties were investigated.
いずれも高い実効透磁率と低い保磁力が得られた。In both cases, high effective permeability and low coercive force were obtained.
本発明合金のうち、第3表に示す組成からなる非晶質合
金について、軸釣10Mm、厚さ約30μmの加工歪が
除去され、磁気特性を向上させることができる。Among the alloys of the present invention, for the amorphous alloy having the composition shown in Table 3, the processing strain caused by the shaft opening of 10 mm and the thickness of about 30 μm can be removed, and the magnetic properties can be improved.
また本発明の非晶質合金を磁場あるいは応力の少なくと
も1つの作用下において、結晶化温度以下の温度で焼鈍
した後、急冷あるいは徐冷すると、より優れた磁気特性
を有する合金を得ることができる。Furthermore, when the amorphous alloy of the present invention is annealed at a temperature below the crystallization temperature under the action of at least one of a magnetic field or stress, and then rapidly or slowly cooled, an alloy with better magnetic properties can be obtained. .
なお、前記磁場生焼なましによる磁気特性改善方法とし
て本発明者の一人が発明し、特開昭5173923号公
報により開示された方法を用いることができる。As a method for improving magnetic properties by magnetic field annealing, a method invented by one of the inventors of the present invention and disclosed in Japanese Patent Application Laid-Open No. 5173923 can be used.
実施桝よ
本発明合金中Co77Mo、。B2Zr++非晶質合金
を420℃×30分間磁場中焼なましを施して、保磁力
10m0e、実効透磁率(IKHz ) 27,000
を得たが、その後に150°Cで10,000分間時効
させたところ、保磁力、実効透磁率共に全く変化はなか
った。Co77Mo in the alloy of the present invention. B2Zr++ amorphous alloy was annealed in a magnetic field at 420°C for 30 minutes to obtain a coercive force of 10 m0e and effective permeability (IKHz) of 27,000.
However, when it was then aged at 150°C for 10,000 minutes, there was no change in coercive force or effective permeability.
尖施拠I
本発明合金のうち、第2表に示す組成からなる薄帯を長
平方向に2000eの磁界を印加しながら、各合金の結
晶化温度より50℃低い温度で20分間加熱し冷却した
後、薄帯を巻いてトロイダル状試料となし、磁気特性を
調べた。何れの合金も8000 G以上の高い飽和磁束
密度と低い保磁力及び高い最大透磁率が得られ、巻磁心
として有用である事がわかった。Tip Application I Among the alloys of the present invention, ribbons having the compositions shown in Table 2 were heated for 20 minutes at a temperature 50°C lower than the crystallization temperature of each alloy while applying a magnetic field of 2000e in the longitudinal direction, and then cooled. After that, a thin ribbon was wound to form a toroidal sample, and the magnetic properties were investigated. It was found that all the alloys had a high saturation magnetic flux density of 8000 G or more, a low coercive force, and a high maximum magnetic permeability, and were useful as wound cores.
以上本発明合金は、保磁力が小さく、透磁率が高い優れ
た軟磁気特性を有するだけでなく、耐摩耗性が特に大き
く、さらに非晶質合金本来の性質である薄帯状又は薄膜
状試料を容易に製造することができ、しかも従来知られ
ている半金属元素を多量に含む非晶質合金に比べ、切断
、打ち抜き研磨等の機械加工がはるかに容易であるとい
う大きな特長を兼ね備えているので、磁気ヘッド、高周
波トランス等の磁心材として極めて好適に使用すること
ができる。As described above, the alloy of the present invention not only has excellent soft magnetic properties such as low coercive force and high magnetic permeability, but also has particularly high wear resistance. It is easy to manufacture and has the great advantage of being much easier to machine, such as cutting and punching and polishing, compared to conventionally known amorphous alloys containing large amounts of metalloid elements. It can be extremely suitably used as a magnetic core material for magnetic heads, high frequency transformers, etc.
第1図は、本発明合金を溶融状態から超急冷するのに用
いられる2つの装置の例を示す路線図、第2図は、本発
明のCOt6MO+oBs Zrq非晶質合金を無磁場
中で、150〜490℃の間で20分間焼なましだ際の
実効透磁率(IKHz)の変化を示す図、第3図は、C
oe I Mo、、Zr I o非晶質合金の張力に対
する保磁力および残留磁束密度の影響を示す図、第4図
は、Co7JB Bb Zr+o非晶質合金の周波数と
実効透磁率の関係を示す図である。
1・・・溶融合金、2・・・急冷凝固された合金、3・
・・冷却回転円板、4・・・ロール。
(O□u+c)9ylホ田ψ壕承
手続補正書
平成1年6月28日
特許庁長官 吉 1)文 毅 殿
第1項の規定による特許出願(1、
発明の名称
磁歪が小さく透磁率の高いコバルト基非晶質合金補正を
する者
事件との関係 特許出願人
住 所 宮城県仙台市青葉区上杉3丁目8番22号氏
名 増 本 健
住 所 大阪府大阪市中央区北浜4丁目7番19号名
称 住友特殊金属株式会社FIG. 1 is a route diagram showing examples of two apparatuses used to ultra-quench the alloy of the present invention from a molten state. Figure 3 shows the change in effective magnetic permeability (IKHz) during annealing at ~490°C for 20 minutes.
Figure 4 shows the influence of coercive force and residual magnetic flux density on the tension of a Co7JB Bb Zr+o amorphous alloy. It is. 1... Molten alloy, 2... Rapidly solidified alloy, 3...
... Cooling rotating disk, 4... rolls. (O Relationship with the case involving a person who corrects high cobalt-based amorphous alloys Patent applicant address: 3-8-22 Uesugi, Aoba-ku, Sendai, Miyagi Prefecture Name: Ken Masumoto Address: 4-7 Kitahama, Chuo-ku, Osaka, Osaka Prefecture No. 19 Name Sumitomo Special Metals Co., Ltd.
Claims (1)
V、NbおよびTaの中から選ばれる何れか1種または
2種以上を5〜20%、下記(イ)、(ロ)、(ハ)、
(ニ)、(ホ)および(ヘ)の群の中から選ばれる何れ
か1種または2種以上を20%以下、残部実質的にCo
よりなる磁歪が小さく透磁率の高いコバルト基非晶質合
金。 (イ)Fe:10%以下 (ロ)Ni:20%以下 (ハ)Mn、Cu、の中から選ばれる何れか1種または
2種:10%以下 (ニ)Tc、Ru、Rh、Pdの中から選ばれる何れか
1種または2種以上:10%以下 (ホ)Ti、Hf、Sc、Y、ランタニド元素の中から
選ばれる何れか1種または2種以上:5%以下 (ヘ)B、C、P、Be、Al、Si、Ge、Sn、S
b、Inの中から選ばれる何れか1種または2種以上:
4%未満[Claims] 1. In terms of atomic ratio, Zr is 7 to 15%, Cr, Mo, W,
5 to 20% of one or more selected from V, Nb and Ta, the following (a), (b), (c),
20% or less of one or more selected from the groups (d), (e) and (f), and the remainder is substantially Co.
A cobalt-based amorphous alloy with low magnetostriction and high magnetic permeability. (a) Fe: 10% or less (b) Ni: 20% or less (c) Any one or two selected from Mn, Cu: 10% or less (d) Tc, Ru, Rh, Pd Any one or more selected from among: 10% or less (E) Any one or two or more selected from Ti, Hf, Sc, Y, and lanthanide elements: 5% or less (F) B , C, P, Be, Al, Si, Ge, Sn, S
One or more selected from b, In:
Less than 4%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1132826A JPH0270042A (en) | 1989-05-29 | 1989-05-29 | Cobalt-base amorphous alloy reduced in magnetostriction and having high magnetic permeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1132826A JPH0270042A (en) | 1989-05-29 | 1989-05-29 | Cobalt-base amorphous alloy reduced in magnetostriction and having high magnetic permeability |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16075879A Division JPS5684439A (en) | 1979-12-13 | 1979-12-13 | Cobalt based amorphous alloy having small magnetic strain and high permeability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0270042A true JPH0270042A (en) | 1990-03-08 |
JPH0413420B2 JPH0413420B2 (en) | 1992-03-09 |
Family
ID=15090452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1132826A Granted JPH0270042A (en) | 1989-05-29 | 1989-05-29 | Cobalt-base amorphous alloy reduced in magnetostriction and having high magnetic permeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0270042A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006060025A (en) * | 2004-08-20 | 2006-03-02 | National Printing Bureau | Falsification prevention structure of amorphous magnetic thin film and method of authenticity judgment of falsification prevention structure |
WO2017033936A1 (en) * | 2015-08-24 | 2017-03-02 | 山陽特殊製鋼株式会社 | Non-magnetic amorphous alloy, and sputtering target material and magnetic recording medium using said alloy |
KR102069720B1 (en) * | 2019-07-10 | 2020-01-23 | 공주대학교 산학협력단 | Magnetic alloy for a magnetic ink character recognition ink, alloy powder comprising the same and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5443838A (en) * | 1977-09-16 | 1979-04-06 | Mitsubishi Heavy Ind Ltd | One-side plating process for long-sized metal sheet |
-
1989
- 1989-05-29 JP JP1132826A patent/JPH0270042A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5443838A (en) * | 1977-09-16 | 1979-04-06 | Mitsubishi Heavy Ind Ltd | One-side plating process for long-sized metal sheet |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006060025A (en) * | 2004-08-20 | 2006-03-02 | National Printing Bureau | Falsification prevention structure of amorphous magnetic thin film and method of authenticity judgment of falsification prevention structure |
WO2017033936A1 (en) * | 2015-08-24 | 2017-03-02 | 山陽特殊製鋼株式会社 | Non-magnetic amorphous alloy, and sputtering target material and magnetic recording medium using said alloy |
JP2017045488A (en) * | 2015-08-24 | 2017-03-02 | 山陽特殊製鋼株式会社 | Magnetic recording amorphous alloy, sputtering target material, and magnetic recording medium |
KR102069720B1 (en) * | 2019-07-10 | 2020-01-23 | 공주대학교 산학협력단 | Magnetic alloy for a magnetic ink character recognition ink, alloy powder comprising the same and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0413420B2 (en) | 1992-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5339192B2 (en) | Amorphous alloy ribbon, nanocrystalline soft magnetic alloy, magnetic core, and method for producing nanocrystalline soft magnetic alloy | |
JP5455040B2 (en) | Soft magnetic alloy, manufacturing method thereof, and magnetic component | |
JP5316921B2 (en) | Fe-based soft magnetic alloy and magnetic component using the same | |
JP3437573B2 (en) | Fe-Ni based soft magnetic alloy having nanocrystalline structure | |
JP5429613B2 (en) | Nanocrystalline soft magnetic alloys and magnetic cores | |
JP2007182594A (en) | Amorphous alloy thin strip, nano-crystalline soft magnetic alloy, and magnetic core composed of nano-crystalline soft magnetic alloy | |
JPH0774419B2 (en) | Method for producing Fe-based soft magnetic alloy | |
US5547520A (en) | Wear-resistant high permeability magnetic alloy and method of manufacturing the same | |
JPH01242755A (en) | Fe-based magnetic alloy | |
JPH06322472A (en) | Production of fe base soft magnetic alloy | |
JPH01156451A (en) | Soft-magnetic alloy having high saturation magnetic flux density | |
JPS6133900B2 (en) | ||
JPH07268566A (en) | Production of fe-base soft-magnetic alloy and laminated magnetic core using the same | |
JPS625972B2 (en) | ||
JP3294029B2 (en) | Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head | |
JPH0230375B2 (en) | ||
JPS6212296B2 (en) | ||
JPH0270042A (en) | Cobalt-base amorphous alloy reduced in magnetostriction and having high magnetic permeability | |
JP2000119821A (en) | Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same | |
JP4217038B2 (en) | Soft magnetic alloy | |
JP3294938B2 (en) | Fe-based soft magnetic alloy | |
JP4310738B2 (en) | Soft magnetic alloys and magnetic parts | |
JP3251899B2 (en) | Wear-resistant high permeability alloy and magnetic recording / reproducing head | |
JPH1046301A (en) | Fe base magnetic alloy thin strip and magnetic core | |
JPH05267031A (en) | Magnetic core material |