JPH0270014A - Dephosphorization treatment of molten iron - Google Patents

Dephosphorization treatment of molten iron

Info

Publication number
JPH0270014A
JPH0270014A JP22292388A JP22292388A JPH0270014A JP H0270014 A JPH0270014 A JP H0270014A JP 22292388 A JP22292388 A JP 22292388A JP 22292388 A JP22292388 A JP 22292388A JP H0270014 A JPH0270014 A JP H0270014A
Authority
JP
Japan
Prior art keywords
dephosphorization
period
molten iron
cao
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22292388A
Other languages
Japanese (ja)
Other versions
JPH0514004B2 (en
Inventor
Eiji Aida
相田 英二
Masao Kurosaki
黒崎 將夫
Koichi Nakamura
中村 皓一
Mitsuyasu Tomoi
友井 三泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22292388A priority Critical patent/JPH0270014A/en
Publication of JPH0270014A publication Critical patent/JPH0270014A/en
Publication of JPH0514004B2 publication Critical patent/JPH0514004B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To execute preliminary dephosphorization with good dephosphorization oxygen efficiency by adequately controlling the ratio of CaO and O2 in an oxidizing agent in an initial desiliconization period, a dephosphorization period in succession thereto and the final dephosphorization finishing period which follows the same at the time of blowing quick lime and oxidizing agent into the molten iron tapped from a blast furnace and subjecting the molten iron to preliminary dephosphorization refining. CONSTITUTION:A flux essentially consisting of the CaO and the oxidizing agent such as iron oxide, Mn ore or gaseous O2 are blown into the molten iron to oxidize the P in the molten iron to P2O5 and to convert the same to stable slag with the CaO by which the preliminary dephosphorization is executed at the time of producing a molten steel by subjecting the molten iron tapped from the blast furnace to decarburization refining in a converter, etc., to produce molten steel. The ratio CaO/O of the CaO to be added and the O2 in the oxidizing agent in the 1st period when the Si in the molten iron is first oxidation-desiliconized, the 2nd period when the molten iron is desiliconized to <0.05% Si and the dephosphorization reaction is accelerated and the 3rd period of the end period of the dephosphorization reaction is specified to 2.3 to 3.0 in the 1st period and to 1.7 to 2.2 in the 2nd period and the 3rd period, by which the molten iron is preliminarily dephosphorized with the high dephosphorization oxygen efficiency in a short period of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶銑の脱燐処理法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for dephosphorizing hot metal.

(従来の技術) 溶銑での脱燐処理を行うことにより製鋼過程における脱
燐のために使用される副原料の使用量を減じて鋼を製造
することはよく知られている。
(Prior Art) It is well known that steel can be manufactured by dephosphorizing hot metal to reduce the amount of auxiliary raw materials used for dephosphorization in the steel manufacturing process.

例えば特開昭58−73709号公報には珪素含有量0
.25%以下の溶銑浴中に、粉状の脱燐・脱硫剤をキャ
リヤガスとともにインジェクションするに際し、インジ
ェクションに供する液体を組成する気体酸素または固体
酸素源よりなる酸化剤の量を、溶銑燐濃度の推移に応じ
て制御し、脱燐を促進することを特徴とする溶銑の予備
処理方法が開示されている。
For example, in JP-A-58-73709, the silicon content is 0.
.. When injecting a powdered dephosphorization/desulfurization agent together with a carrier gas into a hot metal bath with a concentration of 25% or less, the amount of the oxidizing agent consisting of gaseous oxygen or solid oxygen source that composes the liquid to be injected is adjusted according to the hot metal phosphorus concentration. A method for pretreatment of hot metal is disclosed, which is characterized by controlling according to the transition and promoting dephosphorization.

(発明が解決しようとする課題) 前記従来技術は、脱炭、脱マンガンなど有用成分の消耗
を抑制しつつ、脱燐、脱硫を行うことを目的としており
、溶銑燐濃度が0.03〜005%に達したとき脱燐、
脱硫剤による脱燐効率が低下するという知見に基づいて
、溶銑燐濃度が0.04%を境にして吹き込み酸素比を
変化させるという技術である。
(Problems to be Solved by the Invention) The purpose of the above-mentioned conventional technology is to perform dephosphorization and desulfurization while suppressing consumption of useful components such as decarburization and demanganization. Dephosphorization when reaching %
Based on the knowledge that the dephosphorization efficiency of desulfurization agents decreases, this technology changes the blowing oxygen ratio when the hot metal phosphorus concentration reaches 0.04%.

しかしながらこの技術は、脱燐処理工程の後期における
処理に関するものであるから、脱燐、脱硫剤が節約でき
るとしてもその効果はそう大きくはない。
However, since this technique relates to treatment in the latter stage of the dephosphorization treatment process, even if dephosphorization and desulfurization agents can be saved, the effect is not so great.

(課題を解決するための手段) 本発明者らは、溶銑の脱燐処理工程全体についてより詳
細に検討を加えた結果、脱燐処理剤の配合条件及びその
添加時期に関する新しい知見を得て、本発明を完成した
(Means for Solving the Problems) As a result of a more detailed study of the entire hot metal dephosphorization process, the present inventors obtained new knowledge regarding the blending conditions of the dephosphorization agent and the timing of its addition. The invention has been completed.

即ち、本発明は、溶銑浴中に生石灰系の精錬フラックス
及び酸化剤をキャリヤガスによりインジェクションして
溶銑の脱燐処理を行うに際し、上記酸化剤として、酸化
鉄、M、n鉱石および気体酸素を1種または複合して用
いて、脱珪が優先的に進行し脱燐の進行が遅い脱燐初期
には脱燐処理剤中Ca O/ O比を2.3〜3.0の
範囲内とし、その後は脱燐処理剤中Ca O/ O比を
1.7〜2.2の範囲内として脱燐処理を行うことを特
徴とする溶銑の脱燐処理法である。
That is, the present invention provides for dephosphorizing hot metal by injecting a quicklime-based refining flux and an oxidizing agent into a hot metal bath using a carrier gas. When used alone or in combination, the Ca O/O ratio in the dephosphorization treatment agent is kept within the range of 2.3 to 3.0 in the early stages of dephosphorization, when desiliconization proceeds preferentially and dephosphorization progresses slowly. This is a method for dephosphorizing hot metal, which is characterized in that the dephosphorization treatment is then carried out with the Ca O/O ratio in the dephosphorization treatment agent within the range of 1.7 to 2.2.

(作 用) 溶銑の脱燐処理工程を、脱珪が優先的に進行し脱燐の進
行が遅い脱燐反応ステージ1期と、脱珪が終了し脱燐が
速やかに進行する脱燐反応ステージ■期と、溶銑中の燐
含有率が低下し再び脱燐の進行が停滞する脱燐反応ステ
ージ■期に分けた場合、それぞれの脱燐反応ステージに
おける脱燐剤配合比(CaO10比体最適値が存在する
ので、それぞれの該ステージにおいて脱燐剤配合比を最
適にコントロールすることにより、脱燐処理時間の短縮
及び脱燐剤の原単位低減を図ることが可能である。
(Function) The dephosphorization process of hot metal is divided into the first stage of the dephosphorization reaction, in which desiliconization proceeds preferentially and dephosphorization progresses slowly, and the dephosphorization reaction stage, in which desiliconization is completed and dephosphorization proceeds quickly. When divided into stage (2) and stage (2), a dephosphorization reaction stage in which the phosphorus content in the hot metal decreases and the progress of dephosphorization stagnates again, the dephosphorization agent blending ratio (CaO10 ratio optimum value Therefore, by optimally controlling the dephosphorizing agent compounding ratio in each stage, it is possible to shorten the dephosphorizing treatment time and reduce the unit consumption of the dephosphorizing agent.

(実施例) 第1図は脱燐剤使用量と溶銑中の燐濃度との関係を脱燐
反応ステージ毎に区分して示した図である。なお、第1
〜2図中の記号はそれぞれ同−処理の中間サンプリング
データを示す。
(Example) FIG. 1 is a diagram showing the relationship between the amount of dephosphorizing agent used and the phosphorus concentration in hot metal, divided by dephosphorization reaction stage. In addition, the first
~2 Symbols in the figures each indicate intermediate sampling data of the same process.

同図に示すとおり、各ステージの脱燐挙動は次のような
特徴を有する。
As shown in the figure, the dephosphorization behavior at each stage has the following characteristics.

■期、脱珪が優先的に進行し、脱燐の進行が遅い(溶銑
中Siが0.05%に低下するまでの期間)。
In stage (2), desiliconization progresses preferentially, and dephosphorization progresses slowly (period until Si in the hot metal drops to 0.05%).

■期:脱珪が終了し、脱燐が速やかに進行する。■Stage: De-siliconization is completed and dephosphorization progresses rapidly.

■期:[P]が低下し、再び脱燐の進行が停滞する。■Phase: [P] decreases, and the progress of dephosphorization stagnates again.

第2図は溶銑中の燐濃度と脱燐酸素効率との関係を示す
図で、溶銑の脱燐処理中の連続サンプリングからえたも
のである。この図から分かるように溶銑中の燐[P]が
低下するのに伴って脱燐酸素効率η1は低−高一低と変
化している。これは上記燐反応ステージに対応するもの
と考えられ、特に1期、■期の脱燐酸素効率の処理間に
おける差が大きい。ここで、脱燐酸素効率(η )とは
次式で定義したものをいう。
Figure 2 is a diagram showing the relationship between the phosphorus concentration in hot metal and the dephosphorization oxygen efficiency, and was obtained from continuous sampling during the hot metal dephosphorization process. As can be seen from this figure, as the phosphorus [P] in the hot metal decreases, the dephosphorization oxygen efficiency η1 changes from low to high to low. This is considered to correspond to the above-mentioned phosphorus reaction stage, and there is a particularly large difference between the treatments in the phosphorus deoxidation efficiency in the 1st stage and the 2nd stage. Here, the dephosphorization oxygen efficiency (η) is defined by the following formula.

脱燐酸素効率(ηp)−(脱燐に消費された酸素)X1
00/(酸化鉄中酸素+Mn鉱石中酸素士気体酸素−脱
珪に消費された酸素)(%)・・・・・・■ なおMn鉱石中には酸素源としてM n O、Wi n
 O2゜FeO等を含んでいる。
Dephosphorization oxygen efficiency (ηp) - (oxygen consumed for dephosphorization) X1
00/(Oxygen in iron oxide + Oxygen gas in Mn ore - Oxygen consumed for desiliconization) (%) ......
Contains O2°FeO, etc.

本発明者らは前記脱燐ステージ毎の脱燐酸素効率につい
て更に検討を行った結果、脱燐酸素効率は脱燐剤の組成
によって定まる脱燐剤中のCaO10比によって変化し
、そしてこのCa O/ O比は各脱燐反応ステージ毎
に最適値が存在することを知見した。
The present inventors further investigated the dephosphorization oxygen efficiency for each dephosphorization stage, and found that the dephosphorization oxygen efficiency changes depending on the CaO10 ratio in the dephosphorization agent, which is determined by the composition of the dephosphorization agent, and this CaO /O ratio was found to have an optimum value for each dephosphorization reaction stage.

なお、ここでいうc a O/ O比とは次式で定義し
た値をいう。
Note that the ca O/O ratio herein refers to a value defined by the following formula.

Ca O/ O= Ca O吹込量(Kg)/[酸化鉄
中酸素(Kg) 4− M n鉱石中酸素(Kg)十気
体酸素(Nm3)x32/22.4]・・・・・・・・
・・・■第3図は脱燐反応ステージ1期におけるCaO
10比と脱燐酸素効率ηpとの関係を示す図である。
Ca O / O = Ca O injection amount (Kg) / [Oxygen in iron oxide (Kg) 4- M n Oxygen in ore (Kg) 10 Gaseous oxygen (Nm3) x 32/22.4] ...・
...■Figure 3 shows CaO in the first stage of the dephosphorization reaction.
10 is a diagram showing the relationship between the 10 ratio and the dephosphorization oxygen efficiency ηp.

第3図に示すように、脱燐反応ステージ1期においては
、Ca O/ O比が3.0以下の範囲内ではCa O
/ Oを上げるとη2は高くなるが特にCa O/ O
比が23以上でその傾向が強い。
As shown in Figure 3, in the first dephosphorization reaction stage, if the CaO/O ratio is 3.0 or less, CaO
/O increases, η2 increases, but especially CaO/O
This tendency is strong when the ratio is 23 or higher.

第4図は脱燐反応ステージ■期におけるCaO10比と
脱燐酸素効率η2との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the CaO10 ratio and the dephosphorization oxygen efficiency η2 in the dephosphorization reaction stage II.

同図に示すように、脱燐反応ステージ■期においては、
脱燐剤中Ca O/ Oが高くなるとηpは向上するが
、Ca O/ Oが18の点に屈曲点が存在し、この点
を超えるとη2は逆に低下傾向を示す。故に該■期にお
いては脱燐剤中Ca O/ 0を1.8とすべきである
が、実際には操業条件等によるバラツキが存在しCa 
O/ Oを1点にコンるのが有効である。
As shown in the figure, in the dephosphorization reaction stage II,
As the Ca O/O content in the dephosphorizing agent increases, ηp improves, but there is a bending point at a point where Ca O/O is 18, and beyond this point, η2 shows a decreasing tendency. Therefore, Ca O/0 in the dephosphorizing agent should be 1.8 in the period (①), but in reality, there are variations due to operating conditions, etc.
It is effective to condense O/O to one point.

Ca O7’ O比が1.7未満ではη2が低過ぎ、逆
に262超でもηpは低下する。
If the CaO7'O ratio is less than 1.7, η2 is too low, and conversely, even if it exceeds 262, ηp decreases.

第5図は脱燐反応ステージ■期における脱燐剤中Ca 
O/ O比と脱燐酸素効率ηpとの関係を示ず図である
Figure 5 shows the Ca in the dephosphorizing agent at the dephosphorization reaction stage II.
FIG. 3 is a diagram showing the relationship between the O/O ratio and the dephosphorization oxygen efficiency ηp.

第5図に示すように、該ステージ■についてもステージ
■と同様の傾向がある。即ちCa O/ 0比が18ま
ではCa O/ O比の値が大になる程η1は向」ニす
るが、18以」二ではη2の向上は無く、C+1LO1
0比が2.2を超えるとηpは低下する。従ってステー
ジ■についてもステージ■と同様にCa O/ 0比を
1.7〜2.2の範囲内にコントロールするのが有効で
ある。η2の値そのちのはステージHに比較して低い値
となっているが、これは従来より溶銑中燐濃度が低下す
ると脱燐反応は酸素供給律速から溶銑中燐の物質移動律
速に移行して脱燐速度が減少するためと考えられている
As shown in FIG. 5, there is a similar tendency for stage (2) as for stage (2). That is, up to a Ca O/O ratio of 18, η1 increases as the value of the Ca O/O ratio increases, but after 18, there is no improvement in η2, and C+1LO1
When the zero ratio exceeds 2.2, ηp decreases. Therefore, it is effective to control the Ca O/0 ratio within the range of 1.7 to 2.2 for stage (2) as well as for stage (2). The value of η2 is lower than that at stage H, but this is because when the phosphorus concentration in hot metal decreases, the dephosphorization reaction shifts from oxygen supply rate-limiting to rate-limiting mass transfer of phosphorus in hot metal. This is thought to be due to a decrease in the dephosphorization rate.

本発明において、溶銑の脱燐処理工程で脱燐処理剤中の
Ca O/ O比を変更するのは、脱燐反応ステージ1
期と■期の間であって脱燐処理工程の前段であり、そし
てその変更点は溶銑中のSiの値が005%に低減した
時点とすることができる。
In the present invention, changing the Ca O/O ratio in the dephosphorizing agent in the dephosphorizing process of hot metal is carried out in the dephosphorizing reaction stage 1.
It is between the period and the stage (2) and is the first stage of the dephosphorization treatment process, and the change point can be made at the time when the Si value in the hot metal has decreased to 0.005%.

第3図から第5図中プロットの層別は、0印はMn鉱石
使用の場合であり、・印はMn鉱石を使用しない場合で
ある。
The stratification of the plots in FIGS. 3 to 5 is as follows: 0 mark indicates the case where Mn ore is used, and * mark indicates the case where Mn ore is not used.

結局第3図から第5図による脱燐反応の酸素源として酸
化鉄、Mn鉱石、気体酸素の何れを用いても、また複合
して用いても酸素を重量換算すれば全て等価に扱え、脱
燐酸素効率で比較すればよいことが分かる。
After all, no matter which one of iron oxide, Mn ore, or gaseous oxygen is used as the oxygen source for the dephosphorization reaction shown in FIGS. It can be seen that the comparison can be made in terms of phosphorus-oxygen efficiency.

一方高M n @の溶製に際しては、溶銑脱燐段階でM
n鉱石を使用しても溶銑中Mn濃度を予め高めておくの
がMn鉱石を使用しない場合よりも転炉で用いるMn系
合金鉄が削減できる点でコスト上有利となる。
On the other hand, when melting with high M n@, M
Even if N ore is used, increasing the Mn concentration in the hot metal in advance is more cost-effective than not using Mn ore because the amount of Mn-based alloy iron used in the converter can be reduced.

(発明の効果) 以上述べたように本発明によれば、溶銑の脱燐処理工程
を脱燐反応ステージ毎に区分すると共に、各ステージ毎
に脱燐処理剤の組成を最適にして脱燐処理を行うもので
あるから、脱燐反応効率を高めることができ、脱燐処理
剤の原単位低減、処理時間の短縮、溶銑温度降下の防止
が図れる等の顕著な効果を奏する。
(Effects of the Invention) As described above, according to the present invention, the dephosphorization treatment process of hot metal is divided into each dephosphorization reaction stage, and the composition of the dephosphorization treatment agent is optimized for each stage. Therefore, the efficiency of the dephosphorization reaction can be increased, and remarkable effects such as a reduction in the unit consumption of the dephosphorization treatment agent, a reduction in treatment time, and prevention of a drop in hot metal temperature can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は脱燐剤使用量と溶銑中の燐濃度との関係を脱燐
反応ステージ毎に区分して示した図、第2図は溶銑中の
燐濃度と脱燐酸素効率との関係を示す図、第3図は脱燐
反応ステージ1期におけるC a O/ O比と脱燐酸
素効率との関係を示す図、第4図は脱燐反応ステージ■
期におけるCaO10比と脱燐酸素効率との関係を示す
図、第5図は脱燐反応ステージ■期における脱燐剤中C
ab10比と脱燐酸素効率との関係を示す図である。 1】 図面の浄書(内容に変更なし) 第1図 覗#+御便重量 (陥/TP ) 第5図 C,C10/○ 響5乍8.6乙七 手続補正書(方式) %式% 事件の表示 昭和63年特許願第222923号 発明の名称 溶銑の脱燐処理法 3補正をする者 事件との関係  特許 出願人 住 所  東京都千代田区大手町2丁目6番3号(66
5)新日本製鐵株式会社 代理人〒103 置 241−0441住 所  東京
都中央区日本橋本町1丁目6番3号日本橋ダイヤモンド
マンション501号昭和63年11月29日(全送日) 6補正の対象 願書、明細書、全文及び図面 7補正の内容
Figure 1 shows the relationship between the amount of dephosphorizing agent used and the phosphorus concentration in the hot metal, divided by dephosphorization reaction stage, and Figure 2 shows the relationship between the phosphorus concentration in the hot metal and the dephosphorization oxygen efficiency. Figure 3 shows the relationship between C a O/O ratio and dephosphorization oxygen efficiency in the first stage of the dephosphorization reaction, and Figure 4 shows the relationship between the dephosphorization reaction stage ■
Figure 5 shows the relationship between CaO10 ratio and dephosphorization oxygen efficiency in the dephosphorization reaction stage.
It is a figure showing the relationship between ab10 ratio and dephosphorization oxygen efficiency. 1] Engraving of the drawings (no change in content) Figure 1 Preview # + Postage weight (Fail/TP) Figure 5 C, C10/○ Hibiki 5-8.6 Otsu-7 Procedural amendment (method) % formula % Display of the case Patent application No. 222923 filed in 1988 Name of the invention Hot metal dephosphorization treatment method 3 Person who makes amendments Relationship to the case Patent Applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo (66
5) Agent for Nippon Steel Corporation Address: 501 Nihonbashi Diamond Mansion, 1-6-3 Nihonbashi Honmachi, Chuo-ku, Tokyo 103-241-0441 November 29, 1988 (all date of delivery) 6th Amendment Contents of the subject application, specification, full text, and drawing 7 amendments

Claims (1)

【特許請求の範囲】[Claims] 溶銑浴中に生石灰系の精錬フラックス及び酸化剤をキャ
リヤガスによりインジェクションして溶銑の脱燐処理を
行うに際し、上記酸化剤として、酸化鉄、Mn鉱石およ
び気体酸素を1種または複合して用いて、脱珪が優先的
に進行し脱燐の進行が遅い脱燐初期には脱燐処理剤中C
aO/O比を2.3〜3.0の範囲内とし、その後は脱
燐処理剤中CaO/O比を1.7〜2.2の範囲内とし
て脱燐処理を行うことを特徴とする溶銑の脱燐処理法。
When dephosphorizing hot metal by injecting a quicklime-based refining flux and an oxidizing agent into a hot metal bath using a carrier gas, iron oxide, Mn ore, and gaseous oxygen are used alone or in combination as the oxidizing agent. In the early stages of dephosphorization, when desiliconization proceeds preferentially and dephosphorization progresses slowly, C in the dephosphorization treatment agent
The dephosphorization treatment is performed by setting the aO/O ratio within the range of 2.3 to 3.0, and then performing the dephosphorization treatment with the CaO/O ratio in the dephosphorization treatment agent within the range of 1.7 to 2.2. Hot metal dephosphorization treatment method.
JP22292388A 1988-09-06 1988-09-06 Dephosphorization treatment of molten iron Granted JPH0270014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22292388A JPH0270014A (en) 1988-09-06 1988-09-06 Dephosphorization treatment of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22292388A JPH0270014A (en) 1988-09-06 1988-09-06 Dephosphorization treatment of molten iron

Publications (2)

Publication Number Publication Date
JPH0270014A true JPH0270014A (en) 1990-03-08
JPH0514004B2 JPH0514004B2 (en) 1993-02-24

Family

ID=16789983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22292388A Granted JPH0270014A (en) 1988-09-06 1988-09-06 Dephosphorization treatment of molten iron

Country Status (1)

Country Link
JP (1) JPH0270014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029497A1 (en) * 2001-09-27 2003-04-10 Nippon Steel Corporation Method for dephsophorization of molten irona
JP2020059866A (en) * 2018-10-05 2020-04-16 Jfeスチール株式会社 Hot metal pretreatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026608A (en) * 1983-07-25 1985-02-09 Nippon Steel Corp Method for dephosphorizing molten iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026608A (en) * 1983-07-25 1985-02-09 Nippon Steel Corp Method for dephosphorizing molten iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029497A1 (en) * 2001-09-27 2003-04-10 Nippon Steel Corporation Method for dephsophorization of molten irona
EP1445337A4 (en) * 2001-09-27 2005-09-21 Nippon Steel Corp Method for dephsophorization of molten irona
JP2020059866A (en) * 2018-10-05 2020-04-16 Jfeスチール株式会社 Hot metal pretreatment method

Also Published As

Publication number Publication date
JPH0514004B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
CN110938726A (en) Method for smelting low-phosphorus molten steel by converter
JP3428628B2 (en) Stainless steel desulfurization refining method
JPH0270014A (en) Dephosphorization treatment of molten iron
JP4022266B2 (en) Stainless steel melting method
JP3460595B2 (en) Melting method for extremely low sulfur steel
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
JP2002047508A (en) Blowing method in converter
JPS6063307A (en) Converter steel making method of dead soft steel
CN113943844B (en) Hot metal ladle dephosphorization-converter single decarburization steelmaking method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH01215916A (en) Method for treating dephosphorization of molten iron
JPS62109911A (en) Desiliconizing and dephosphorizing method for molten iron
JPH08134528A (en) Production of extra low carbon steel
JPS6315965B2 (en)
JPS6121285B2 (en)
JPH0841516A (en) Pre-refining method
JP2002275520A (en) Method for refining molten high carbon steel
CN116377160A (en) Slag control method for smelting low-carbon steel by converter
JP2000212623A (en) Dephosphorization of molten iron low in lime
JPH03274216A (en) Dephosphorize pre-treating method for molten iron
JPS636606B2 (en)
JPH068454B2 (en) Dephosphorization / desulfurization method of molten iron alloy containing chromium
JPH0841519A (en) Steelmaking method
JP2001164310A (en) Refining method in top-bottom combined-blown converter
JPS5856005B2 (en) High chromium steel melting method