JPH01215916A - Method for treating dephosphorization of molten iron - Google Patents

Method for treating dephosphorization of molten iron

Info

Publication number
JPH01215916A
JPH01215916A JP3950288A JP3950288A JPH01215916A JP H01215916 A JPH01215916 A JP H01215916A JP 3950288 A JP3950288 A JP 3950288A JP 3950288 A JP3950288 A JP 3950288A JP H01215916 A JPH01215916 A JP H01215916A
Authority
JP
Japan
Prior art keywords
dephosphorizing
reaction
stage
dephosphorization
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3950288A
Other languages
Japanese (ja)
Other versions
JPH0514003B2 (en
Inventor
Koichi Nakamura
中村 皓一
Masao Kurosaki
将夫 黒崎
Eiji Aida
相田 英二
Mitsuyasu Tomoi
友井 三泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3950288A priority Critical patent/JPH01215916A/en
Publication of JPH01215916A publication Critical patent/JPH01215916A/en
Publication of JPH0514003B2 publication Critical patent/JPH0514003B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently execute dephosphorizing reaction in molten iron by specifying CaO/O values in refining agent at desiliconizing reaction stage preceding dephosphorization, the dephosphorizing reaction stage following this and the dephosphorizing reaction last stage at the time of dephosphorizing by blowing basic slag making agent and oxidizing agent into molten iron with carrier gas. CONSTITUTION:Before supplying the molten iron tapped from a blast furnace into a steelmaking furnace, dephosphorizing pre-refining is executed. Then, lime series basic flux and dephosphorizing agent composing of oxidizing agent are blown with the carrier gas. In this case, the refining reaction is divided into a first stage, which desiliconizing reaction precedes the dephosphorizing reaction till coming down to about 0.05% Si content in the molten iron, a second stage, which vigorous dephosphorizing reaction develops as following the above stage, and a third stage, which P in the molten iron is decreased in accordance with progress of the dephosphorizing reaction and the dephosphorizing reaction is delayed. By making 2.3-3.0 of the value of CaO/O in the dephosphorizing agent used in the first stage and 1.7-2.2 of the value of CaO/O in the dephosphorizing agent in the second and third stages, O2 efficiency used in the dephosphorizing reaction is improved, and pre-dephosphorizing reaction in the molten iron is executed at extremely efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は溶銑の脱燐処理法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method for dephosphorizing hot metal.

従来の技術 溶銑での脱燐処理を行うことにより製鋼過程における脱
燐のために使用される副原料の使用量を減じて鋼を製造
することはよく知られている。
BACKGROUND OF THE INVENTION It is well known to produce steel by dephosphorizing hot metal to reduce the amount of auxiliary materials used for dephosphorization in the steelmaking process.

例えば特開昭58−73709号公報には珪素含有量0
.25%以下の溶銑浴中に、粉状の脱燐・脱硫剤をキャ
リヤガスとともにインジェクションするに際し、インジ
ェクションに供する流体を組成する気体酸素または固体
酸素源よりなる酸化剤の量を、溶銑燐濃度の推移に応じ
て制御し、脱燐を促進することを特徴とする溶銑の予備
処理方法が開示されている。
For example, in JP-A-58-73709, the silicon content is 0.
.. When injecting a powdered dephosphorization/desulfurization agent together with a carrier gas into a hot metal bath with a concentration of 25% or less, the amount of oxidizing agent consisting of gaseous oxygen or a solid oxygen source that composes the fluid to be injected is adjusted to match the hot metal phosphorus concentration. A method for pretreatment of hot metal is disclosed, which is characterized by controlling according to the transition and promoting dephosphorization.

発明が解決しようとする課題 前記従来技術は、脱炭、脱マンガンなど有用成分の消耗
を抑制しつつ、脱燐、脱硫を行うことを目的としており
、溶銑燐濃度が0.03〜0.05%に達したとき脱燐
、脱硫剤による脱燐効率が低下するという知見に基づい
て、溶銑燐濃度が0.04%を境にして吹き込み酸素比
を変化させるという技術である。
Problems to be Solved by the Invention The purpose of the above-mentioned conventional technology is to perform dephosphorization and desulfurization while suppressing the consumption of useful components such as decarburization and demanganization. This technology changes the blowing oxygen ratio when the hot metal phosphorus concentration reaches 0.04%, based on the knowledge that the dephosphorization efficiency by the desulfurization agent decreases when the phosphorus concentration reaches 0.04%.

しかしながらこの技術は、脱燐処理工程の後期における
処理に関するものであるから、脱燐、脱硫剤が節約でき
るとしてもその効果はそう大きくはない。
However, since this technique relates to treatment in the latter stage of the dephosphorization treatment process, even if dephosphorization and desulfurization agents can be saved, the effect is not so great.

課題を解決するための手段 本発明者らは、溶銑の脱燐処理工程全体についてより詳
細に検討を加えた結果、脱燐処理剤の配合条件及びその
添加時期に関する新しい知見を得て、本発明を完成した
Means for Solving the Problems As a result of a more detailed study of the entire hot metal dephosphorization process, the present inventors obtained new knowledge regarding the blending conditions of the dephosphorization agent and the timing of its addition, and have developed the present invention. completed.

即ち、本発明は、溶銑浴中に生石灰系の精錬フラックス
及び酸化剤をキャリヤガスによりインジェクションして
溶銑の脱燐処理を行うに際し、脱珪が優先的に進行し脱
燐の進行が遅い脱燐初期には脱燐処理剤中CaO10比
を2.3〜3.0の範囲内とし、その後は脱燐処理剤中
CaO10比を1.7〜2.2の範囲内として脱燐処理
を行うことを特徴とする溶銑の脱燐処理法である。
That is, in the present invention, when dephosphorizing hot metal by injecting a quicklime-based refining flux and an oxidizing agent into a hot metal bath using a carrier gas, desiliconization progresses preferentially and dephosphorization progresses slowly. Initially, the CaO10 ratio in the dephosphorization treatment agent should be within the range of 2.3 to 3.0, and thereafter, the dephosphorization treatment should be performed with the CaO10 ratio in the dephosphorization treatment agent within the range of 1.7 to 2.2. This is a hot metal dephosphorization treatment method characterized by the following.

作用 溶銑の脱燐処理工程を、脱珪が優先的に進行し脱燐の進
行が遅い脱燐反応ステージ工期と、脱珪が終了し脱燐が
速やかに進行する脱燐反応ステージII期と、溶銑中の
燐含有率が低下し再び脱燐の進行が停滞する脱燐反応ス
テージ工期に分けた場合、それぞれの脱燐反応ステージ
における脱燐剤配合比(CaO10)に最適値が存在す
るので、それぞれの該ステージにおいて脱燐剤配合比を
最適にコントロールすることにより、脱燐処理時間の短
縮及び脱燐剤の原単位低減を図ることが可能である。
The dephosphorization treatment process of working hot metal is divided into a dephosphorization reaction stage phase in which desiliconization proceeds preferentially and dephosphorization progresses slowly, and a dephosphorization reaction stage II phase in which desiliconization is completed and dephosphorization proceeds quickly. If the process is divided into dephosphorization reaction stages in which the phosphorus content in the hot metal decreases and dephosphorization progress stalls again, there is an optimum value for the dephosphorization agent compounding ratio (CaO10) in each dephosphorization reaction stage. By optimally controlling the blending ratio of the dephosphorizing agent in each stage, it is possible to shorten the dephosphorizing treatment time and reduce the unit consumption of the dephosphorizing agent.

実施例 第1図は脱燐剤使用量と溶銑中の燐濃度との関係を脱燐
反応ステージ毎に区分して示した図である。なお、第1
〜2図中の記号はそれぞれ同一処理の中間サンプリング
データを示す。
EXAMPLE FIG. 1 is a diagram showing the relationship between the amount of dephosphorizing agent used and the phosphorus concentration in hot metal, divided by dephosphorization reaction stage. In addition, the first
~2 Symbols in the figures each indicate intermediate sampling data of the same process.

同図に示すとおり、各ステージの脱燐挙動は次のような
特徴を有する。
As shown in the figure, the dephosphorization behavior at each stage has the following characteristics.

工期:脱珪が優先的に進行し、脱燐の進行が遅い(溶銑
中Siが0.05%に低下するまでの期間)。
Construction period: Desiliconization progresses preferentially, and dephosphorization progresses slowly (period until Si in hot metal drops to 0.05%).

II期:脱珪が終了し、脱燐が速やかに進行する。Stage II: Desiliconization is completed and dephosphorization progresses rapidly.

■期: [P]が低下し、再び脱燐の進行が停滞する。■ Stage: [P] decreases and the progress of dephosphorization stagnates again.

第2図は溶銑中の燐濃度と脱燐酸素効率との関係を示す
図で、溶銑の脱燐処理中の連続サンプリングから得たも
のである。この図から分るように溶銑中の燐[P]が低
下するのに伴って脱燐酸素効率ηgは低−高一低と変化
している。これは上記脱燐反応ステージに対応するもの
と考えられ、特に工期、II期の脱燐酸素効率の処理間
における差が大きい。ここで、脱燐酸素効率(ηP)と
は次式で定義したものをいう。
Figure 2 is a diagram showing the relationship between the phosphorus concentration in hot metal and the dephosphorization oxygen efficiency, and was obtained from continuous sampling during the hot metal dephosphorization process. As can be seen from this figure, as the phosphorus [P] in the hot metal decreases, the dephosphorization oxygen efficiency ηg changes from low to high to low. This is considered to correspond to the above-mentioned dephosphorization reaction stage, and there is a large difference between the treatments in dephosphorization and oxygen efficiency, especially in the process stage and stage II. Here, the dephosphorization oxygen efficiency (ηP) is defined by the following formula.

脱燐酸素効率(η工)−(脱燐に消費された酸素)X1
00/(酸化鉄中酸素+気体酸素−説珪に消費された酸
素)(2)          ・・・■木発明者らは
前記脱燐ステージ毎の脱燐酸素効率について更に検討を
行った結果、脱燐酸素効率は脱燐剤の組成によって定ま
る脱燐剤中のCaO10比によって変化し、そしてこの
Ca0ZO比は各脱燐反応ステージ毎に最適値が存在す
ることを知見した。
Dephosphorization oxygen efficiency (η engineering) - (oxygen consumed for dephosphorization) X1
00/(Oxygen in iron oxide + gaseous oxygen - oxygen consumed in oxidation) (2) ... ■ The inventors further investigated the dephosphorization oxygen efficiency at each dephosphorization stage, and found that It has been found that the phosphorus-oxygen efficiency changes depending on the CaO10 ratio in the dephosphorizing agent, which is determined by the composition of the dephosphorizing agent, and that this Ca0ZO ratio has an optimum value for each dephosphorization reaction stage.

なお、ここでいうCaO10比とは次式で定義したイ直
をいう。
Note that the CaO10 ratio herein refers to the ratio defined by the following formula.

CaO10= CaO吹込量(kg)/ [酸化鉄中酸
素(kg)+気体酸素(Nゴ)×32/22.4]  
   ・争−■第3図は脱燐反応ステー91期における
CaO10比と脱燐酸素効率ηPとの関係を示す図であ
る。
CaO10 = CaO injection amount (kg) / [Oxygen in iron oxide (kg) + gaseous oxygen (N) x 32/22.4]
-Contest-■ Figure 3 is a diagram showing the relationship between the CaO10 ratio and the dephosphorization oxygen efficiency ηP in the 91st stage of the dephosphorization reaction.

第3図に示すように、脱燐反応ステージ1期においては
、CaO10比が3.0以下の範囲内ではCaO10を
上げるとη8は高くなるが特にCaO10比が2.3以
上でその傾向が強い。
As shown in Figure 3, in the first dephosphorization reaction stage, increasing CaO10 increases η8 when the CaO10 ratio is 3.0 or less, but this tendency is particularly strong when the CaO10 ratio is 2.3 or higher. .

第4図は脱燐反応ステージ■期におけるCaO10比と
脱燐酸素効率η:との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the CaO10 ratio and the dephosphorization oxygen efficiency η: in the dephosphorization reaction stage II.

同図に示すように、脱燐反応ステージ■期においては、
脱燐剤中CaO10が高くなると1gは向上するが、C
aO10が1.8の点に屈曲点が存在し、この点を超え
ると1gは逆に低下傾向を示す。故に該■期においては
脱燐剤中Ga010を1.8 とすべきであるが、実際
には操業条件等によるバラツキが存在しGa010を1
点にコントロールすることは得策ではなく、バラツキを
考慮してCaO10比を1.7〜2.2の範囲内とする
のが有効である。
As shown in the figure, in the dephosphorization reaction stage II,
When the CaO10 content in the dephosphorizing agent increases, 1g improves, but C
There is a bending point at the point where aO10 is 1.8, and beyond this point, 1g shows a decreasing tendency. Therefore, Ga010 in the dephosphorizing agent should be set at 1.8 in the period (2), but in reality there are variations due to operating conditions, etc., and Ga010 is set at 1.8.
It is not a good idea to control the CaO10 ratio to a certain point, but it is effective to control the CaO10 ratio within a range of 1.7 to 2.2 in consideration of variations.

CaO10比が1.7未満では1gが低過ぎ、逆に2.
2超でもη:は低下する。
If the CaO10 ratio is less than 1.7, 1g is too low, and conversely 2.
Even if it exceeds 2, η: decreases.

第5図は脱燐反応ステー91期における脱燐剤中CaO
10比と脱燐酸素効率ηぢとの関係を示す図である。
Figure 5 shows CaO in the dephosphorizing agent at the 91st stage of the dephosphorization reaction.
10 is a diagram showing the relationship between the phosphorization and oxygen efficiency η.

第5図に示すように、該ステージ■についてもステージ
■と同様の傾向がある。即ちCaO10比が1.8まで
はCaO10比の値が大になる程ηgは向上するが、1
.8以上ではη二の向上は無く、CaO10比が2.2
を超えるとηむは低下する。従ってステージ■について
もステージ■と同様にcao10比を1.7〜2.2の
範囲内にコントロールするのが有効である。ηgの値そ
のものはステージIIに比較して低い値となっているが
、これは従来より溶銑中燐濃度が低下すると脱燐反応は
酸素供給律速から溶銑中燐の物質移動律速に移行して脱
燐速度が減少するためと考えられている。
As shown in FIG. 5, there is a similar tendency for stage (2) as for stage (2). That is, up to a CaO10 ratio of 1.8, ηg improves as the value of the CaO10 ratio increases;
.. At 8 or higher, there is no improvement in η2, and the CaO10 ratio is 2.2.
When it exceeds , η decreases. Therefore, for stage (2) as well, it is effective to control the cao10 ratio within the range of 1.7 to 2.2. The value of ηg itself is lower than that in Stage II, but this is because as the phosphorus concentration in the hot metal decreases, the dephosphorization reaction shifts from oxygen supply rate-limiting to mass transfer rate-limiting of phosphorus in the hot metal. This is thought to be due to a decrease in phosphorus rate.

本発明において、溶銑の脱燐処理工程で脱燐処理剤中の
CaO10比を変更するのは、脱燐反応ステー91期と
■期の間であって脱燐処理工程の前段であり、そしてそ
の変更点は溶銑中のSiの値が0.05%に低減した時
点とすることができる。
In the present invention, the CaO10 ratio in the dephosphorizing agent in the hot metal dephosphorization process is changed between the dephosphorization reaction stages 91 and 2 and before the dephosphorization process. The point of change can be when the Si value in the hot metal is reduced to 0.05%.

発明の効果 以上述べたように本発明によれば、溶銑の脱燐処理工程
を脱燐反応ステージ毎に区分すると共に、各ステージ毎
に脱燐処理剤の組成を最適にして脱燐処理を行うもので
あるから、脱燐反応効率を高めることができ、脱燐処理
剤の原単位低減、処理時間の短縮、溶銑温度降下の防止
が図れる等の顕著な効果を奏する。
Effects of the Invention As described above, according to the present invention, the dephosphorization treatment process of hot metal is divided into each dephosphorization reaction stage, and the composition of the dephosphorization treatment agent is optimized for each stage to perform the dephosphorization treatment. As a result, the efficiency of the dephosphorization reaction can be increased, and remarkable effects can be achieved, such as reducing the unit consumption of the dephosphorizing agent, shortening the treatment time, and preventing a drop in hot metal temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は脱燐剤使用量と溶銑中の燐濃度との関係を脱燐
反応ステージ毎に区分して示した図、第2図は溶銑中の
燐濃度と脱燐酸素効率との関係を示す図、第3図は脱燐
反応ステー91期におけるCaO10比と脱燐酸素効率
との関係を示す図、第4図は脱燐反応ステージ■期にお
けるCaO10比と脱燐酸素効率との関係を示す図、第
5図は脱燐反応ステージ■期における脱燐剤中CaO1
0比と脱燐酸素効率との関係を示す図である。 代理人弁理士 井 −L 雅 生 第3図 Ca○/○ 第4図 Ca○/○
Figure 1 shows the relationship between the amount of dephosphorizing agent used and the phosphorus concentration in the hot metal, divided by dephosphorization reaction stage, and Figure 2 shows the relationship between the phosphorus concentration in the hot metal and the dephosphorization oxygen efficiency. Figure 3 is a diagram showing the relationship between CaO10 ratio and dephosphorization oxygen efficiency in dephosphorization reaction stage 91, and Figure 4 is a diagram showing the relationship between CaO10 ratio and dephosphorization oxygen efficiency in dephosphorization reaction stage ■. Figure 5 shows the CaO1 in the dephosphorizing agent at the dephosphorization reaction stage II.
It is a figure showing the relationship between 0 ratio and dephosphorization oxygen efficiency. Representative Patent Attorney I -L Miyabi Figure 3 Ca○/○ Figure 4 Ca○/○

Claims (1)

【特許請求の範囲】[Claims] 溶銑浴中に生石灰系の精錬フラックス及び酸化剤をキャ
リヤガスによりインジェクションして溶銑の脱燐処理を
行うに際し、脱珪が優先的に進行し脱燐の進行が遅い脱
燐初期には脱燐処理剤中CaO/O比を2.3〜3.0
の範囲内とし、その後は脱燐処理剤中CaO/O比を1
.7〜2.2の範囲内として脱燐処理を行うことを特徴
とする溶銑の脱燐処理法。
When dephosphorizing hot metal by injecting quicklime-based refining flux and oxidizing agent into the hot metal bath using a carrier gas, dephosphorization takes place preferentially and dephosphorization is slow in the early stages of dephosphorization. The CaO/O ratio in the agent is 2.3 to 3.0.
After that, the CaO/O ratio in the dephosphorization treatment agent should be within the range of 1.
.. A method for dephosphorizing hot metal, characterized in that the dephosphorizing treatment is carried out within the range of 7 to 2.2.
JP3950288A 1988-02-24 1988-02-24 Method for treating dephosphorization of molten iron Granted JPH01215916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3950288A JPH01215916A (en) 1988-02-24 1988-02-24 Method for treating dephosphorization of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3950288A JPH01215916A (en) 1988-02-24 1988-02-24 Method for treating dephosphorization of molten iron

Publications (2)

Publication Number Publication Date
JPH01215916A true JPH01215916A (en) 1989-08-29
JPH0514003B2 JPH0514003B2 (en) 1993-02-24

Family

ID=12554822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3950288A Granted JPH01215916A (en) 1988-02-24 1988-02-24 Method for treating dephosphorization of molten iron

Country Status (1)

Country Link
JP (1) JPH01215916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029497A1 (en) * 2001-09-27 2003-04-10 Nippon Steel Corporation Method for dephsophorization of molten irona

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026608A (en) * 1983-07-25 1985-02-09 Nippon Steel Corp Method for dephosphorizing molten iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026608A (en) * 1983-07-25 1985-02-09 Nippon Steel Corp Method for dephosphorizing molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029497A1 (en) * 2001-09-27 2003-04-10 Nippon Steel Corporation Method for dephsophorization of molten irona
EP1445337A4 (en) * 2001-09-27 2005-09-21 Nippon Steel Corp Method for dephsophorization of molten irona

Also Published As

Publication number Publication date
JPH0514003B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
JPH11158526A (en) Production of high p slag
JPH01215916A (en) Method for treating dephosphorization of molten iron
JP2002047508A (en) Blowing method in converter
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
JPH0141681B2 (en)
JP2000109924A (en) Method for melting extra-low sulfur steel
JPH0514004B2 (en)
JPS62109911A (en) Desiliconizing and dephosphorizing method for molten iron
JP3239722B2 (en) Hot metal pretreatment method
CN113943844B (en) Hot metal ladle dephosphorization-converter single decarburization steelmaking method
JPH07179920A (en) Production of molten steel
JPH05148525A (en) Treatment of molten iron
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPS6315965B2 (en)
JPH03274216A (en) Dephosphorize pre-treating method for molten iron
JPH111714A (en) Steelmaking method
JPS636606B2 (en)
KR0128138B1 (en) Method for producing molten metal
JPS63262407A (en) Method for dephosphorizing molten iron
CN116377160A (en) Slag control method for smelting low-carbon steel by converter
JP2002317218A (en) Molten iron dephosphorizing method
JPS63157809A (en) Blowing method for converter
JPH0293011A (en) Method for desiliconizing and dephosphorizing molten iron simultaneously
SU1300037A1 (en) Steel melting method
JP2002212615A (en) Method for dephosphorizing molten iron