JPH026971Y2 - - Google Patents

Info

Publication number
JPH026971Y2
JPH026971Y2 JP15675181U JP15675181U JPH026971Y2 JP H026971 Y2 JPH026971 Y2 JP H026971Y2 JP 15675181 U JP15675181 U JP 15675181U JP 15675181 U JP15675181 U JP 15675181U JP H026971 Y2 JPH026971 Y2 JP H026971Y2
Authority
JP
Japan
Prior art keywords
curved portion
cutting
chips
convex curved
concave curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15675181U
Other languages
Japanese (ja)
Other versions
JPS5863909U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15675181U priority Critical patent/JPS5863909U/en
Publication of JPS5863909U publication Critical patent/JPS5863909U/en
Application granted granted Critical
Publication of JPH026971Y2 publication Critical patent/JPH026971Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、工具の軸線方向に切り下ろして穴
明け加工を行なうドリルあるいは座ぐりカツタ等
の二枚刃の穴明け工具の改良に関する。
[Detailed Description of the Invention] This invention relates to an improvement of a two-blade drilling tool such as a drill or a counterbore cutter that performs drilling by cutting down in the axial direction of the tool.

一般に、この種の穴明け工具にあつては、工具
本体の軸線に沿つて切屑排出溝が、それもスムー
ズな切屑排出を考慮して大きな切屑排出溝が設け
られている。従つて、剛性が乏しいということが
否めない。その上、チゼルにおいて大きなスラス
ト荷重が生じるため、工具折損あるいは穴の精度
不良等の問題が往々にして発生している。
In general, this type of drilling tool is provided with a chip discharge groove along the axis of the tool body, and a large chip discharge groove is provided in consideration of smooth chip discharge. Therefore, it cannot be denied that the rigidity is poor. Moreover, since a large thrust load is generated in the chisel, problems such as tool breakage and poor hole accuracy often occur.

その点、本出願人が先に提案した中心に切刃、
つまりチゼルが無い穴明け工具によると空隙溝幅
で回転中心に生成される円柱状コアをねじ切るこ
とによりスラスト荷重の軽減を図ることができる
(特願昭54−127046号)。すなわち、第1図に示す
ように、工具本体1の先端には切刃チツプ2,2
がろう付け固定されており、また各切刃チツプ
2,2の切刃3は回転中心0に対して点対称に配
置され、しかも切刃3の内端縁3aは回転中心0
から中心にコアが生じない程度に離され、つまり
溝幅0.2〜2.5mmの空隙部を設けている。従つて、
このようなドリルで穴明け工具を行なうと、チゼ
ルが無く、かつ、その空隙溝で生成される円柱状
コアーをねじ切るため、その分スラスト荷重を減
少し得、これによつてドリルの剛性を相対的に向
上させることができ、また穴明け加工中、各内端
縁3aが踏んばる状態になるから、いわゆる「み
そすり」運動およびそれによつて発生するライフ
リングを防止することができ、ひいては工具折損
を防止することができ、また精度の良好な穴を明
けることができる。
In this respect, the applicant proposed earlier that the cutting blade was placed at the center.
In other words, with a drilling tool without a chisel, it is possible to reduce the thrust load by threading the cylindrical core generated at the center of rotation at the width of the gap groove (Japanese Patent Application No. 127046/1986). That is, as shown in FIG.
are fixed by brazing, and the cutting blades 3 of each cutting blade tip 2, 2 are arranged point-symmetrically with respect to the rotation center 0, and the inner edge 3a of the cutting blade 3 is located at the rotation center 0.
A gap with a groove width of 0.2 to 2.5 mm is provided so that a core is not formed in the center. Therefore,
When such a drill is used as a drilling tool, there is no chisel and the cylindrical core generated in the gap groove is threaded, so the thrust load can be reduced accordingly, thereby increasing the rigidity of the drill. In addition, since each inner edge 3a is pressed during the drilling process, the so-called "misosuri" movement and the rifling caused by it can be prevented, and as a result, Tool breakage can be prevented and holes can be drilled with good accuracy.

ところで、このようなドリルにあつては、上述
したようにスラスト荷重を減少し得てドリルの剛
性を相対的に向上させることができるから、高送
り切削が可能である。ところで、高送り切削を行
なつた場合、次のような新たな問題が生じた。す
なわち、このようなドリルでステンレス鋼等のね
ばい被削材を高送り切削した場合、厚い切屑が連
続して生成し、そしてこの切屑がドリルに巻きつ
いてドリルを折損したりあるいは穴の壁面をこす
つて面粗度を悪化させ、また穴から排出された切
屑がドリルに振り回されるため、穴明け作業が非
常に危険であり、また切屑が飛び散つて作業環境
が悪化するという問題が生じた。また、切刃チツ
プ2の内端縁3a付近は高送り切削によつて大き
なスラスト荷重を受けるため、切刃チツプ2の内
端縁3a付近が欠損し易くなるという問題が生じ
た。
By the way, in the case of such a drill, since the thrust load can be reduced and the rigidity of the drill can be relatively improved as described above, high-feed cutting is possible. However, when high-feed cutting is performed, the following new problem arises. In other words, when such a drill is used to cut a sticky workpiece material such as stainless steel at a high feed rate, thick chips are generated continuously, and these chips wrap around the drill and break the drill or damage the wall of the hole. Scraping worsens the surface roughness, and the chips discharged from the hole are thrown around by the drill, making drilling work extremely dangerous.Additionally, the chips scatter, worsening the working environment. Further, since the vicinity of the inner end edge 3a of the cutting blade tip 2 receives a large thrust load due to high-feed cutting, a problem has arisen in that the vicinity of the inner end edge 3a of the cutting blade tip 2 is easily damaged.

この考案は上記事情に鑑みてなされたもので、
切刃を底面視したとき、切刃を工具本体の回転中
心側の比較的曲率の大なる滑らかな凸曲線部と工
具本体の外周側の比較的曲率の大きな曲率の滑ら
かな凹曲線部とからあたかもサインカーブ状に構
成し、しかも凸曲線部と凹曲線部とを同一回転方
向側に位置させ、かつ凸曲線部を凹曲線部に対し
て切削回転方向に先行突出させることにより、ス
テンレス鋼等のねばい被削材を高送り切削しても
切屑分断することができ、また切刃チツプの内端
縁付近の欠損を防止することができる二枚刃の穴
明け工具を提供することを目的とする。
This idea was made in view of the above circumstances,
When the cutting edge is viewed from the bottom, the cutting edge consists of a smooth convex curved part with a relatively large curvature on the rotation center side of the tool body and a smooth concave curved part with a relatively large curvature on the outer periphery side of the tool body. Stainless steel, etc. is formed into a sine curve shape, and the convex curved part and the concave curved part are located on the same rotational direction side, and the convex curved part projects ahead of the concave curved part in the cutting rotation direction. The purpose of the present invention is to provide a two-blade drilling tool that can break up chips even when cutting a sticky workpiece material at a high feed rate and can prevent chipping near the inner edge of the cutting tip. shall be.

以下、この考案の一実施例について第2図を参
照して説明する。なお、上記従来例と同一部分に
は同一符号を付し、その説明を省略する。
An embodiment of this invention will be described below with reference to FIG. Note that the same parts as in the conventional example described above are denoted by the same reference numerals, and the explanation thereof will be omitted.

切刃13は、第2図aに示すように、底面視し
たとき、同一回転方向側において回転中心0側か
ら外周側に向かつて順次形成された、滑らかな凸
曲線部13bと、滑らかな凹曲線部13cと、短
い直線部13dとから構成されている。両切刃1
3,13の凸曲線部13b,13b同志および、
凹曲線部13c,13c同志は互いに同一形状を
なし、かつ互いに径方向の同一位置に位置させら
れている。しかも、凸曲線部13bと凹曲線部1
3cは比較的大きな曲率の略相似形の円弧を描き
ながら滑らかに連なつてあたかもサインカーブ状
に形成されており、また凸曲線部13bは凹曲線
部13c及び直線部13dに対して切削回転方
向、つまり矢印方向に先行突出させられている。
また、切刃チツプ12のすくい面14は、凸曲線
部13b、凹曲線部13c及び直線部13dに
夫々対応し、かつ切屑排出溝15に沿つて形成さ
れた凸曲面部14b、凹曲面部14c及び平坦部
14dから構成されている。なお、図中16は切
削油を流すための油穴である。
As shown in FIG. 2a, the cutting edge 13 has a smooth convex curved portion 13b and a smooth concave curved portion 13b, which are sequentially formed from the rotation center 0 side toward the outer circumferential side in the same rotation direction side when viewed from the bottom. It is composed of a curved part 13c and a short straight part 13d. Double cutting edge 1
3 and 13 convex curved portions 13b and 13b, and
The concave curved portions 13c, 13c have the same shape and are located at the same position in the radial direction. Moreover, the convex curved portion 13b and the concave curved portion 1
3c are formed as if they were sine curves by drawing arcs of relatively similar shapes with relatively large curvatures, and the convex curved portion 13b is rotated in the cutting rotation direction with respect to the concave curved portion 13c and the straight portion 13d. , that is, it is projected forward in the direction of the arrow.
Further, the rake surface 14 of the cutting blade tip 12 corresponds to the convex curved section 13b, the concave curved section 13c, and the straight section 13d, respectively, and is formed along the chip discharge groove 15. and a flat portion 14d. Note that 16 in the figure is an oil hole for flowing cutting oil.

次に、このようなドリルで穴明け加工を行う
と、切屑は切刃13の凸曲線部13b、凹曲線部
13cおよび直線部13dで生成され、それぞれ
凸曲面部14b、凹曲面部14cおよび平坦部1
4dに沿つて成長する。切屑の成長速度は切削速
度にほぼ比例するから、切屑の内周側よりも外周
側の方が成長速度が早く、このため、切屑はドリ
ルの中心側へ向かつて伸びようとする。
Next, when drilling with such a drill, chips are generated at the convex curved section 13b, concave curved section 13c, and straight section 13d of the cutting blade 13, and chips are generated at the convex curved section 14b, concave curved section 14c, and flat section, respectively. Part 1
4d. Since the growth rate of chips is approximately proportional to the cutting speed, the growth rate of chips is faster on the outer circumference side than on the inner circumference side, and therefore the chips tend to extend toward the center of the drill.

ここで、凸曲線部13bで生成された切屑も上
記のように中心側へ伸びようとする。しかしなが
ら、凹曲線部13cで生成された切屑は、生成後
直ちに凸曲面部14bに押し当たるため、それ以
上中心側へ進むことができず、凹曲面部14cに
沿つてドリルの基端部側へ伸びる。このため、凹
曲線部13cで生成された切屑の伸長が凸曲線部
13bによる切屑のために阻害され、この結果、
両切屑の間に引張応力が生じる。そして、この引
張応力は互いに連なつた両切屑の側部に亀裂を生
じさせ、その後切屑は分断される。
Here, the chips generated at the convex curved portion 13b also tend to extend toward the center as described above. However, since the chips generated at the concave curved section 13c immediately press against the convex curved section 14b after being generated, they cannot proceed any further toward the center, and instead move toward the base end of the drill along the concave curved section 14c. extend. For this reason, the elongation of chips generated at the concave curved portion 13c is inhibited by the chips generated by the convex curved portion 13b, and as a result,
Tensile stress is generated between both chips. Then, this tensile stress causes cracks to occur on the sides of both chips that are connected to each other, and then the chips are separated.

特に、このドリルでは凸曲線部13bと凹曲線
部13cとを正弦波形状(サインカーブ形状)に
形成しているから、両曲線部13b,13cで生
成される切屑の横断面におけるボリユームはほぼ
等しくなり、上記のような切屑の干渉による分断
を一層確実に生じさせることができる。すなわ
ち、上記のような切屑の干渉は、一方の切屑にそ
の進行方向と直交する方向(切屑の幅方向)に向
かう引張力が他方の切屑から負荷されることによ
つて生じ、その引張力は、切屑が亀裂分断される
部分近傍における横断面のボリユームの差が大き
いほど小さくなる。なぜならば、もし、凹曲線部
13cによる切屑の横断面におけるボリユームが
他方よりも著しく大きければ、凸曲線部13bに
よる切屑は凹曲線部13cの切屑によつて外周側
へ引き戻されてしまう。逆に、凸曲線部13bに
よる切屑の横断面におけるボリユームが大きけれ
ば、凹曲線部13cによる切屑が凸曲面部14b
を乗り越えて中心側へ引き込まれ、このような両
切屑の伸長方向が同じになつてしまうからであ
る。そして、前者の場合には、切屑全体の伸長方
向が外周寄りとなつて切屑が伸び気味となつてし
まい、後者の場合には、切屑が切屑排出溝15の
底部に達してしまう。このように、両切屑の横断
面におけるボリユームが異なると、一方の切屑の
伸長方向が他方の切屑の伸長方向寄りとなり、両
者の間に生じる引張力が小さくなり、上記したよ
うな亀裂分断が生じにくくなつてしまうのであ
る。
In particular, in this drill, since the convex curved section 13b and the concave curved section 13c are formed in a sinusoidal shape (sine curve shape), the volumes of chips generated in both curved sections 13b and 13c in the cross section are almost equal. This makes it possible to more reliably cause separation due to the interference of chips as described above. In other words, the above-mentioned chip interference occurs when a tensile force is applied to one chip in a direction perpendicular to its traveling direction (chip width direction) from the other chip, and the tensile force is , the larger the difference in the volume of the cross section near the part where the chips are cracked and separated, the smaller it becomes. This is because, if the volume of chips from the concave curved portion 13c in the cross section is significantly larger than the other, the chips from the convex curved portion 13b will be pulled back toward the outer circumferential side by the chips from the concave curved portion 13c. Conversely, if the volume of chips in the cross section due to the convex curved portion 13b is large, the chips due to the concave curved portion 13c are
This is because the chips are pulled toward the center by overcoming this, and the directions of elongation of both chips become the same. In the former case, the elongation direction of the chips as a whole becomes closer to the outer periphery and the chips tend to stretch, and in the latter case, the chips end up reaching the bottom of the chip discharge groove 15. In this way, when the volumes in the cross section of both chips are different, the elongation direction of one chip is closer to the elongation direction of the other chip, the tensile force generated between the two chips becomes smaller, and the above-mentioned crack separation occurs. It becomes difficult.

これに対して、上記ドリルでは、凸曲線部13
bと凹曲線部13cとを正弦波形状に形成してい
るから、両曲線部13b,13cで生成される切
屑の横断面におけるボリユームがほぼ等しくな
る。この結果、両切屑が各々の伸長方向へ向かつ
て伸びようとし、両切屑の間に大きな引張応力を
生じさせて切屑を確実に亀裂分断させることがで
きるのである。
On the other hand, in the above drill, the convex curved portion 13
Since the concave curved portion 13c and the concave curved portion 13c are formed in a sinusoidal shape, the volumes of chips generated in both the curved portions 13b and 13c in the cross section are approximately equal. As a result, both chips tend to extend in their respective extension directions, and a large tensile stress is generated between both chips, so that the chips can be reliably cracked and separated.

この結果、切屑がドリルに巻きついてドリルが
折損したり、あるいは切屑が穴の壁面をこすつて
穴の面粗度が悪化したりするのを防止することが
でき、また穴から排出された切屑がドリルに振り
回されることがないから穴明け作業の安全性を向
上させることができ、さらに切屑が飛び散ること
がないから作業環境を良好にすることができる。
As a result, it is possible to prevent chips from wrapping around the drill and causing the drill to break, or from scraping the wall of the hole and worsening the surface roughness of the hole. The safety of the drilling work can be improved because the drill does not get swung around by the drill, and the work environment can be improved because there are no chips flying around.

なお、細かく分断された切屑は油穴16から流
入する切削油によつて、穴の外部へ速やかに排出
される。また、切刃13自体が上述した理由でチ
ツプブレーカ機能を持つているから、再研削の都
度チツプブレーカを形成する必要がなく、ドリル
の再研削が容易である。さらに、切刃13の内端
縁13a付近を凸曲線部13bとしているから、
切刃13の内端縁13a付近の切刃チツプ2の厚
さが厚くなり、その上厚くなることによつて凸曲
線部13bの曲率半径を大きくすることができ、
これによつて切刃チツプ2の内端縁13a付近の
強度を向上させることができ、従つて切刃チツプ
2の内端縁13a付近の欠損を防止することがで
きる。さらに、両切刃13,13の凸曲線部13
b,13bどうし、凹曲線部13c,13cどう
しを互いに同一形状に形成するのは勿論のこと、
互いに径方向の同一位置に位置させているから、
ドリルがワークに食付くとき、あるいはワークを
貫通するときに、ドリルが振られるのを防止する
ことができる。すなわち、切刃13に凸曲線部1
3bおよび凹曲線部13cを形成すると、切刃1
3に切削荷重の分力としてのラジアル荷重が作用
し、このラジアル荷重によつて食付き時および貫
通時にドリルが振られる。特に、両切刃13,1
3の凸曲線部13b,13bどうし、凹曲線部1
3c,13cどうしの互いの径方向の位置をずら
した場合には、一方の切刃13に作用するラジア
ル荷重と他方の切刃13に作用するラジアル荷重
とが加算され、ドリルの振れが大きくなる。この
点、上記のドリルにおいては、両切刃13,13
の凸曲線部13b,13b同志および凹曲線部1
3c,13c同志の径方向の位置を互いに一致さ
せているから、一方の切刃13に作用するラジア
ル荷重と他方の切刃13に作用するラジアル荷重
とが互いに相殺する。したがつて、ドリルが振ら
れるのを防止することができる。
Note that the finely divided chips are quickly discharged to the outside of the hole by the cutting oil flowing from the oil hole 16. Further, since the cutting blade 13 itself has a chip breaker function for the reason mentioned above, there is no need to form a chip breaker every time the drill is re-grinded, and the drill can be re-grinded easily. Furthermore, since the vicinity of the inner edge 13a of the cutting blade 13 is formed into a convex curved portion 13b,
The thickness of the cutting blade tip 2 near the inner edge 13a of the cutting blade 13 is increased, and by further increasing the thickness, the radius of curvature of the convex curved portion 13b can be increased,
As a result, the strength near the inner edge 13a of the cutting blade tip 2 can be improved, and damage to the area near the inner edge 13a of the cutting blade tip 2 can be prevented. Furthermore, the convex curved portion 13 of both cutting edges 13, 13
Of course, the concave curved portions 13c and 13c are formed in the same shape.
Because they are located at the same radial position,
It is possible to prevent the drill from swinging when biting into or penetrating the work. That is, the cutting edge 13 has a convex curved portion 1
3b and the concave curved portion 13c, the cutting edge 1
A radial load as a component of the cutting load acts on the drill bit 3, and this radial load causes the drill to swing during biting and penetration. In particular, both cutting edges 13,1
3 convex curved portions 13b, 13b, concave curved portion 1
When the radial positions of 3c and 13c are shifted from each other, the radial load acting on one cutting edge 13 and the radial load acting on the other cutting edge 13 are added, increasing the runout of the drill. . In this regard, in the above drill, both cutting edges 13, 13
Convex curved portions 13b, 13b comrades and concave curved portion 1
Since the radial positions of 3c and 13c are made to coincide with each other, the radial load acting on one cutting edge 13 and the radial load acting on the other cutting edge 13 cancel each other out. Therefore, it is possible to prevent the drill from swinging.

また、切刃13の最も外周側に位置する部分を
直線部13dとしているから、切刃13の欠損を
防止することができる。すなわち、仮に凹曲線部
13cを最も外周側に位置させると、切刃13の
外周側縁縁部における径方向のすくい角が過大に
なり、その部分の強度が低下して欠損し易くな
る。しかるに、直線部13dを形成すれば、その
部分が十分な強度を有するように、その径方向す
くい角を設定することができ、したがつて切刃1
3の欠損を防止することができる。
Moreover, since the portion of the cutting edge 13 located on the outermost peripheral side is the straight portion 13d, breakage of the cutting edge 13 can be prevented. That is, if the concave curved portion 13c is located at the outermost edge, the rake angle in the radial direction at the outer edge of the cutting blade 13 will become excessive, and the strength of that portion will decrease, making it more likely to break. However, if the straight portion 13d is formed, the radial rake angle can be set so that that portion has sufficient strength, and therefore the cutting edge 1
It is possible to prevent the loss of 3.

なお、上記実施例においては切刃13を側面視
したとき、切刃13を直線にしているが、これに
限られることなく、第3図から第5図に示すよう
に種々の形状とすることができる。以下、第3図
から第5図に示すドリルについて説明する。な
お、切刃以外は上記実施例と同様であるから、切
刃以外の部分については同一符号を付し、その説
明を省略する。第3図のものは、凸曲線部23b
と直線部23dとの接点を境にして切刃23の先
端角を2段にしたもので、凸曲線部23bから生
じる切屑と凹曲線部23cから生じる切屑とをよ
り一層分断させる効果がある。第4図のものは先
端角を2段にしたのみならず、凸曲線部33bを
凹曲線部33cより工具本体1側へ凹ませたもの
で、切屑分断をより確実にすると共に、切刃33
と切刃チツプ2の内側面とのなす角度を大きくし
て切刃チツプ2の内端縁33a部分の強度を大き
くして切刃チツプ2の欠損を防止し得、またワー
クに対する食い付き点を回転中心から遠くしてい
わゆる芯振れを小さくすることができる。第5図
のものは、切刃43の先端側が凸の円弧状とした
もので、中心側の先端角が大きく、外周側の先端
角が小さくなるから、切刃チツプ2の内端側の強
度向上を図れると共に、外周側から生成される切
屑を薄くするようにして切屑性能を向上させ、し
かも切刃43に折曲点がないから、局所的な摩耗
防止の効果がある。
In addition, in the above embodiment, when the cutting blade 13 is viewed from the side, the cutting blade 13 is straight, but it is not limited to this, and it may have various shapes as shown in FIGS. 3 to 5. Can be done. Hereinafter, the drill shown in FIGS. 3 to 5 will be explained. Note that the parts other than the cutting blade are the same as those in the above embodiment, so the same reference numerals are given to the parts other than the cutting blade, and the explanation thereof will be omitted. The one in FIG. 3 is a convex curved portion 23b.
The tip angle of the cutting blade 23 is made into two steps at the point of contact between the straight portion 23d and the straight portion 23d, which has the effect of further separating the chips generated from the convex curved portion 23b and the chips generated from the concave curved portion 23c. The one shown in Fig. 4 not only has a two-step tip angle, but also has a convex curved portion 33b recessed toward the tool body 1 side from a concave curved portion 33c, which makes chip separation more reliable and allows the cutting edge 33
The strength of the inner edge 33a of the cutting edge 2 can be increased by increasing the angle formed between the inner surface of the cutting edge 2 and the inner surface of the cutting edge 2, thereby preventing the cutting edge 2 from breaking. It is possible to reduce so-called core runout by moving it farther from the center of rotation. In the one shown in FIG. 5, the tip of the cutting edge 43 has a convex arc shape, and the tip angle on the center side is large and the tip angle on the outer periphery is small, so that the inner end of the cutting edge 2 is strengthened. In addition, the chip performance is improved by making the chips generated from the outer circumferential side thinner, and since there is no bending point on the cutting edge 43, there is an effect of preventing local wear.

また、上記実施例においては切刃チツプ2を工
具本体1にろう付け固定しているが、これに限ら
れることなく、切刃チツプ2をボルト等で固定し
てもよく、また切刃チツプ2を工具本体1と一体
に形成してもよい。
Further, in the above embodiment, the cutting edge tip 2 is fixed to the tool body 1 by brazing, but the present invention is not limited to this, and the cutting edge tip 2 may be fixed with a bolt or the like. may be formed integrally with the tool body 1.

以上説明したように、この考案による二枚刃の
穴明け工具によれば、切刃を底面視したとき、切
刃を、回転中心側から外周側へ向けて順次形成さ
れた、滑らかな凸曲線部と、この凸曲線部に接す
る滑らかな凹曲線部と、幅狭の直線部とから構成
し、しかも、凸曲線部と凹曲線部とを略正弦波形
状に形成し、両切刃の凸曲線部どうし、凹曲線部
どうしを互いに同一形状に形成するとともに、互
いに径方向の同一位置に位置させ、かつ凸曲線部
を凹曲線部に対して切削回転方向側へ先行突出さ
せているから、凸曲線部と凹曲線部で生成される
切屑の横断面におけるボリユームがほぼ等しくな
り、凸曲線部で生じた切屑の伸長が凸曲線部によ
る切屑のために阻害される。このため、両切屑の
間に大きな引張応力が生じ、互いに連なつた両切
屑の側部に亀裂を生じさせ、切屑を確実に分断さ
せることができ、切屑の排出性能を大幅に向上さ
せることができる。
As explained above, according to the two-blade drilling tool of this invention, when the cutting edge is viewed from the bottom, the cutting edge has a smooth convex curve that is sequentially formed from the rotation center side to the outer circumference side. It consists of a smooth concave curved part that touches this convex curved part, and a narrow straight part, and the convex curved part and the concave curved part are formed in a substantially sinusoidal shape, and the convex part of both cutting edges is formed into a substantially sinusoidal shape. Since the curved portions and the concave curved portions are formed in the same shape and located at the same position in the radial direction, and the convex curved portions are made to protrude ahead of the concave curved portions in the cutting rotation direction, The volumes of chips generated in the convex curved portion and the concave curved portion in the cross section are approximately equal, and the elongation of the chips generated in the convex curved portion is inhibited by the chips generated by the convex curved portion. As a result, large tensile stress is generated between both chips, causing cracks to form on the sides of both chips that are connected to each other, making it possible to reliably separate the chips and greatly improving chip evacuation performance. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は先に提案した中心に切刃のないドリル
の一例を示す図でaはその底面視図、bはその側
面図、第2図はこの考案の一実施例を示す図でa
はその底面視図、bはその側面図、第3図から第
5図はそれぞれこの考案の他の各実施例を示す側
面図、第6図は第5図の底面視図である。 1…工具本体、2…切刃チツプ、13,23,
33,43…切刃、13a,23a,33a,4
3a…内端縁、13b,23b,33b,43b
…凸曲線部、13c,23c,33c,43c…
凹曲線部、13d…直線部、14…すくい面、1
5…切屑排出溝、0…回転中心。
Figure 1 is a diagram showing an example of the previously proposed drill without a cutting edge in the center; a is a bottom view thereof, b is a side view thereof, and Figure 2 is a diagram showing an embodiment of this invention.
is a bottom view of the device, b is a side view thereof, FIGS. 3 to 5 are side views showing other embodiments of this invention, and FIG. 6 is a bottom view of FIG. 5. 1... Tool body, 2... Cutting blade tip, 13, 23,
33, 43...Cutting blade, 13a, 23a, 33a, 4
3a...Inner edge, 13b, 23b, 33b, 43b
...Convex curved portion, 13c, 23c, 33c, 43c...
Concave curved part, 13d... Straight line part, 14... Rake face, 1
5...Chip discharge groove, 0...Rotation center.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 工具本体1の先端部に該工具本体1の回転中心
0に対して点対称に配置された2つの切刃13
と、各切刃13のすくい面14側に位置しかつ前
記工具本体1の軸線方向に沿つて設けられた切屑
排出溝15とを備えた二枚刃の穴明け工具におい
て、前記各切刃13の内端縁13aは前記工具本
体1の回転中心0から離間して両内端縁の幅d
(d=0.2〜2.5mm)をもつ空隙部が設けられ、か
つ前記各切刃13を底面視したとき、該切刃13
は、前記工具本体1の回転中心0側から外周側へ
向けて順次形成された比較的曲率の大なる滑らか
な凸曲線部13bと、この凸曲線部13bに連な
る比較的曲率の大なる滑らから凹曲線部13cと
が、略正弦波形状に形成され、次いでこの凹曲線
部13cに連なる幅狭の直線部13dとからな
り、しかも両切刃13,13の凸曲線部13b,
13b同志および凹曲線部13c,13c同志は
互いに同一形状をなすとともに径方向の同一位置
に位置し、かつ前記凸曲線部13bは前記凹曲線
部13cに対して切削回転方向に先行突出してい
ることを特徴とする二枚刃の穴明け工具。
Two cutting edges 13 are arranged at the tip of the tool body 1 symmetrically with respect to the rotation center 0 of the tool body 1.
and a chip discharge groove 15 located on the rake face 14 side of each cutting edge 13 and provided along the axial direction of the tool body 1. The inner edge 13a is spaced apart from the rotation center 0 of the tool body 1 and has a width d of both inner edges.
(d=0.2 to 2.5 mm), and when each of the cutting edges 13 is viewed from the bottom, the cutting edges 13
A smooth convex curved portion 13b with a relatively large curvature is formed sequentially from the rotation center 0 side of the tool body 1 toward the outer circumferential side, and a smooth convex curved portion 13b with a relatively large curvature continuous with this convex curved portion 13b. The concave curved portion 13c is formed in a substantially sinusoidal shape, and then consists of a narrow straight portion 13d continuous to this concave curved portion 13c, and convex curved portions 13b of both cutting edges 13, 13,
13b and the concave curved portions 13c, 13c have the same shape and are located at the same position in the radial direction, and the convex curved portion 13b protrudes ahead of the concave curved portion 13c in the cutting rotation direction. A two-blade drilling tool featuring:
JP15675181U 1981-10-21 1981-10-21 double-blade drilling tool Granted JPS5863909U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15675181U JPS5863909U (en) 1981-10-21 1981-10-21 double-blade drilling tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15675181U JPS5863909U (en) 1981-10-21 1981-10-21 double-blade drilling tool

Publications (2)

Publication Number Publication Date
JPS5863909U JPS5863909U (en) 1983-04-28
JPH026971Y2 true JPH026971Y2 (en) 1990-02-20

Family

ID=29949284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15675181U Granted JPS5863909U (en) 1981-10-21 1981-10-21 double-blade drilling tool

Country Status (1)

Country Link
JP (1) JPS5863909U (en)

Also Published As

Publication number Publication date
JPS5863909U (en) 1983-04-28

Similar Documents

Publication Publication Date Title
US3963365A (en) Drill with indexable inserts
CA1213452A (en) Indexable insert drill
KR20050007568A (en) Drilling tool and indexable drill bit
JPS62188616A (en) Rotary cutting tool
JPH0715686Y2 (en) Ball end mill
JPS6232043B2 (en)
JP3988659B2 (en) Drill
JP3162309B2 (en) Tomoe type thinning drill with chisel for high-speed heavy cutting
JPH026971Y2 (en)
JP2005169513A (en) Rotary cutting tool for rough cutting, and its manufacturing method
JP4090248B2 (en) Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting
JPS628973Y2 (en)
JPH0258042B2 (en)
JP2002126925A (en) Twist drill
JP2003205412A (en) Tri-flute drill
JP2557189Y2 (en) End mill
JP7400311B2 (en) Drill
JPH0313004B2 (en)
JP4090493B2 (en) Deep hole cutting method using deep hole drill
JPH0632253Y2 (en) Burnishing drill
JPH0536566Y2 (en)
JPS6314969Y2 (en)
JPH02292109A (en) End mill
JPH06134611A (en) Throw away tip and throw away boring tool
JPH02237711A (en) Twist drill