JPH02237711A - Twist drill - Google Patents

Twist drill

Info

Publication number
JPH02237711A
JPH02237711A JP5705289A JP5705289A JPH02237711A JP H02237711 A JPH02237711 A JP H02237711A JP 5705289 A JP5705289 A JP 5705289A JP 5705289 A JP5705289 A JP 5705289A JP H02237711 A JPH02237711 A JP H02237711A
Authority
JP
Japan
Prior art keywords
drill
twist
reinforcing fibers
cutting edge
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5705289A
Other languages
Japanese (ja)
Inventor
Tatsuo Hattori
服部 達雄
Yoshiharu Ashino
芦野 義治
Koji Hashimoto
橋本 光二
Shinichi Nakamura
伸一 中村
Kazuo Takasaki
高崎 和男
Hideji Hosono
細野 秀司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Metal Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5705289A priority Critical patent/JPH02237711A/en
Publication of JPH02237711A publication Critical patent/JPH02237711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PURPOSE:To drill a hole without causing burrs or peeling due to reinforcing fibers by forming a twisted groove into a helical shape advancing in the direction of rotation according as it goes from the tip side toward the base end side, and making web thickness of a drill body 8-20% of the diameter of the drill. CONSTITUTION:A twisted groove 2 is formed into a helical shape advancing in the direction of rotation according as it goes from the tip side toward the base end side, and web thickness of a drill body 1 is kept at 8-20% of the diameter of the drill. Aa a result, axial rake angle of a cutting edge 3 becomes minus, and reinforcing fibers can be cut as if they were cut off with scissors. No reinforcing fibers thus remain on the surface machined by the cutting edge 3, and frictional resistance between the drill body 1 and a hole is small since the web thickness of the drill body 1 is thin. Reinforcing fibers can thus be cut with good cutting action, and thereby generation of burrs or peeling on the edge part and the inner periphery of the hole can be efficiently prevented.

Description

【発明の詳細な説明】 「産業」二の利用分野] この発明は、炭素糧維やケブラー繊維等により構成した
繊維強化東合材料の穴明け加工に用いて好適なツイスト
ドリルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application in "Industry" 2] This invention relates to a twist drill suitable for use in drilling holes in fiber-reinforced Togo materials made of carbon fibers, Kevlar fibers, etc.

「従来の技術とその課題] 近年、繊維強化複合材料の開発が急速に進められ、FR
P等で構成した素材を機械加工する場合が多くなってい
る。たとえば、CFRPは、合成樹脂を炭素繊維で強化
したもので、合成樹脂内に織った炭素繊維を介在させる
ことにより合成樹脂の引張り強度を高めたものである。
“Conventional technology and its issues” In recent years, the development of fiber reinforced composite materials has progressed rapidly, and FR
Materials made of P or the like are often machined. For example, CFRP is a synthetic resin reinforced with carbon fibers, and the tensile strength of the synthetic resin is increased by interposing woven carbon fibers within the synthetic resin.

ところが、CFRP等の機械加工は、その内部の強化繊
維の存在により極めて困難であった。特に、ツイストド
リル(以下、ドリルと略称する)で穴明け加工をする場
合に、ドリルの入り側と抜け側のみならず穴の内周にお
いても強化繊維がぼりやむしれとなって残ってしまい、
穴明け加工が不可能に近い状態であった。このため、繊
維強化複合材料の穴明け加工に適したドリルが強く要望
されていた。
However, machining of CFRP and the like has been extremely difficult due to the presence of reinforcing fibers inside it. In particular, when drilling holes with a twist drill (hereinafter abbreviated as a drill), reinforcing fibers remain as bulges and rips not only on the entry and exit sides of the drill but also on the inner periphery of the hole.
It was almost impossible to drill holes. For this reason, there has been a strong demand for a drill suitable for drilling holes in fiber-reinforced composite materials.

[発明の目的] この発明は、上記事情に鑑みて′なされたもので、強化
繊維によるぼりやむしれを発生させることなく穴明け加
工を行うことができるドリルを提供することを目的とす
る。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a drill that can perform hole drilling without causing the reinforcing fibers to peel or peel.

[課題を解決するための手段] この発明のドリルは、ねじれ溝を先端側から基端側へ向
かうに従って回転方向へ進む螺旋状に形成し、ドリル本
体の芯厚をドリル直径の8%〜20%としたものである
[Means for Solving the Problems] The drill of the present invention has a twisted groove formed in a spiral shape that advances in the rotational direction from the distal end side to the proximal end side, and the core thickness of the drill body is set to 8% to 20% of the drill diameter. %.

[作用] たとえば、細い糸を鋏で切断する場合を考えてみると、
鋏の2枚の刃の間に隙間が生じていると・糸はうまく切
れない。つまり、2枚の刃か互いに強く押し付けられ、
これによって、2枚の刃で糸を強く挟まないと糸はうま
《切れず、これは、CFR P等の強化繊維を切刃で切
断する場合も同じである。上記構成のドリルにあっては
、ねじれ溝のねじれ方向を従来ドリルと逆にしているか
ら、切刃のアキシャルレーキ角は必然的にマイナスとな
る。このような切刃で例えばC F R Pの穴明け加
工を行うと、切刃のアキシャルレーキ角がマイナスであ
るから強化繊維はすくい面によって合成樹脂側に強く押
し付けられる。これによって、強化繊維は合成樹脂とと
もに合成樹脂を下刃、切刃を上刃としてあたかも鋏で切
断するように断ち切られる。したがって、切刃による加
工面に強化繊維が残るようなことがなく、強化繊維によ
るばりの発生を未然に防止することができる。
[Function] For example, consider cutting a thin thread with scissors.
If there is a gap between the two blades of the scissors, the thread will not cut properly. In other words, the two blades are pressed strongly against each other,
As a result, the thread cannot be cut properly unless it is tightly pinched between two blades, and this is the same when cutting reinforcing fibers such as CFRP with the cutting blade. In the drill configured as described above, since the helix direction of the helical groove is opposite to that of conventional drills, the axial rake angle of the cutting edge is inevitably negative. When drilling, for example, C F R P with such a cutting edge, the reinforcing fibers are strongly pressed against the synthetic resin side by the rake surface because the axial rake angle of the cutting edge is negative. As a result, the reinforcing fibers and the synthetic resin are cut off as if using scissors, with the synthetic resin as the lower blade and the cutting blade as the upper blade. Therefore, no reinforcing fibers remain on the surface processed by the cutting blade, and it is possible to prevent the occurrence of burrs due to the reinforcing fibers.

さらに、芯厚をドリル直径の8%〜20%と従来ドリル
のものに.比して大幅に小さくしているので、穴明け加
工時のスラスト荷重が小さく、したがって、強化繊維を
切れ味良く切断し得ることと相俟って、特に穴の抜け側
におけるむしれの発生をより有効に防止することができ
るとともに、有効切刃部分の長さが長いために切れ味が
良く、穴中央部での発熱を防止することができる。
Furthermore, the core thickness is 8% to 20% of the drill diameter, which is that of a conventional drill. Since it is significantly smaller than the previous one, the thrust load during drilling is small, which makes it possible to cut the reinforcing fibers with good sharpness. This can be effectively prevented, and since the length of the effective cutting edge portion is long, the cutting quality is good, and heat generation at the center of the hole can be prevented.

[実施例] 以下、第1図ないし第5図を参照しながら本発明の一実
施例について説明する。第1図は実施例のドリルを示す
側面図である。図において符号lはドリル本体である。
[Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5. FIG. 1 is a side view showing a drill according to an embodiment. In the figure, reference numeral 1 indicates the drill body.

ドリル本体lは例えば超硬合金またはサーメットから構
成されたもので、基端側から見て時計方向、つまり右方
向へ回転させられるようになっている。ドリル本体1の
外周には2つのねじれ溝2が形成され、ねじれ溝2の回
転方向を向《壁面の先端稜線部には切刃3が形成されて
いる。以上の点については従来のドリルと同一である。
The drill body l is made of, for example, cemented carbide or cermet, and is designed to be rotated clockwise, that is, rightward, when viewed from the base end. Two helical grooves 2 are formed on the outer periphery of the drill body 1, and a cutting edge 3 is formed at the tip ridgeline of the wall surface facing the direction of rotation of the helical grooves 2. The above points are the same as conventional drills.

しかし、ドリル本体1の芯厚Tはドリル直径Dの8%〜
20%に設定されている。この数値限定の下限値はドリ
ル本体1の剛性を維持するために必要な値である。また
、上限値はスラスト荷重を少なくするとともに、切刃3
の切れ味を高め、穴中央部での発熱を防止するために必
要な値である。
However, the core thickness T of the drill body 1 is ~8% of the drill diameter D.
It is set to 20%. The lower limit of this numerical limitation is a value necessary to maintain the rigidity of the drill body 1. In addition, the upper limit value reduces the thrust load and
This value is necessary to improve the sharpness of the hole and prevent heat generation in the center of the hole.

また、ねじれ溝2は、先端側から基端側へ向かうに従っ
て回転方向へ進む螺旋状に形成されている。つまり、ね
じれ溝2は軸線方向先端視において反時計方向へねじれ
る左ねじれとされている。
Moreover, the twisted groove 2 is formed in a spiral shape that progresses in the rotational direction from the distal end side to the proximal end side. In other words, the twisted groove 2 is twisted counterclockwise to the left when viewed from the tip in the axial direction.

このため、切刃3のアキシャルレーキ角はマイナスとな
っている。ここで、ねじれ溝2のねじれ角は、15°〜
75°に設定され、好まし《は20〜60°、より好ま
し《は30’〜50’に設定される。この数値限定の下
限値は、パリやむしれの発生をより有効に防止し得る範
囲であり、上限値は切屑の流出をより円滑に行い、切屑
詰まりを防止し得る範囲である。
Therefore, the axial rake angle of the cutting edge 3 is negative. Here, the helix angle of the helix groove 2 is 15° ~
It is set to 75°, preferably << is set to 20 to 60°, and more preferably << is set to 30' to 50'. The lower limit of this numerical limitation is a range that can more effectively prevent the occurrence of cracks and peeling, and the upper limit is a range that allows chips to flow out more smoothly and prevents chip clogging.

また、ねじれ溝2の回転方向を向《壁面は、軸線と直交
する断面にお1プる形状か回転方向後方へ凹む凹曲線状
となるように凹曲面に形成されている。このため、ねじ
れ溝2を左ねじれとしたことと十目俟って、軸線方向先
端視にお(j?)切刃3か回転方向後方へ深く入り込ん
だ形状となり、これによって、切刃3のラジアルレーキ
角は大きくプラス方向となっている。つまり、切刃3の
アキシャルレーキ角がマイナス側に大きくなればなる程
ラ/アルレーキ角がプラス側へ大きくなり、これによっ
て、切削抵抗が極端に増加しないようにな、っている。
In addition, the wall surface of the helical groove 2 is formed into a concave curved surface so as to be concave in the cross section perpendicular to the axis or concavely curved toward the rear in the rotational direction. For this reason, the helical groove 2 has a left-handed helix, and the cutting edge 3 has a shape that (j?) is deeply recessed toward the rear in the rotational direction when viewed from the tip in the axial direction. The radial rake angle is large and in the positive direction. In other words, as the axial rake angle of the cutting edge 3 increases toward the negative side, the la/al rake angle increases toward the positive side, thereby preventing the cutting resistance from increasing excessively.

ここで、軸線を中心とし直径がドリル直径の60%であ
る円と切刃3との交点と切刃3の外周喘部とを結んだ線
分と、軸線から切刃3の外周端部に延ばした線分とのな
す角度φは5°〜60°に設定され、好ましくは10’
〜50°、より好ま1, <は15°〜40°に設定さ
れる。この数値限定の下限値は、切削抵抗をより減少さ
せ得る範囲であり、上限値は切刃3の外周端部における
強度をより高め得る範囲である。
Here, a line segment connecting the intersection of the cutting blade 3 with a circle centered on the axis and having a diameter of 60% of the drill diameter and the outer periphery of the cutting blade 3, and a line extending from the axis to the outer periphery of the cutting blade 3. The angle φ formed with the extended line segment is set to 5° to 60°, preferably 10'
~50°, more preferably 1, < is set to 15° to 40°. The lower limit value of this numerical limitation is a range in which the cutting resistance can be further reduced, and the upper limit value is a range in which the strength at the outer peripheral end of the cutting blade 3 can be further increased.

まt二、ねじれ溝2の形状を凹曲面と12たことにより
、側面視における切刃3(第1図)もハ端側へ凹んだ凹
曲線状となっている。このような切刃3の形状によって
、繊維強化複合材料の穴明け加工を極めて容易に行うこ
とができる。
Second, since the shape of the helical groove 2 is a concave curved surface, the cutting edge 3 (FIG. 1) when viewed from the side also has a concave curved shape concave toward the end side. With such a shape of the cutting edge 3, it is possible to extremely easily drill holes in the fiber-reinforced composite material.

すなわち、ドリルの中にはローソクボインl・型やフィ
ノシュテールポイント型と呼ばれる特殊な先端形状のも
のかある。これらは、主に薄板の穴明け加工に使用され
るもので、前者は、ドリル先端の中央部の先端角を外周
部よりも大きくすることにより鋼板・\の食付きを良く
してドリルの振動を防+L Lたちのである。一方、後
者は、先端角を180’以上とl〜たちので、穴の輪郭
線に沿って切削することによって、切削推力に起因する
穴縁部のむ[7れを防止することができるかドリルが振
動し易IJという欠点がある。実施例のドリルでは、側
面視における切刃3か基喘側へ入り込んだ凹曲線状とな
っているため、切刃3の内周側ではローソクボイン1・
型、切刃3の外周側ではフィッシュテール型となり、し
たかって、ドリルの振動を防止しつつパリやむl,れの
発生を防止することができるのである。
In other words, some drills have a special tip shape called a candlestick type or a finoch tail point type. These are mainly used for drilling holes in thin plates.The former makes the tip angle of the center part of the drill tip larger than the outer circumference, which improves the biting of the steel plate and reduces the vibration of the drill. Defense+L It's L's. On the other hand, the latter has a tip angle of 180' or more, so by cutting along the contour of the hole, it is possible to prevent the hole edge from being swallowed due to cutting thrust. The disadvantage is that the IJ is easily vibrated. In the drill of the example, since the cutting edge 3 has a concave curve shape that extends toward the base side in side view, the candleboin 1 and
The outer periphery of the die and the cutting edge 3 has a fishtail shape, so that it is possible to prevent the vibration of the drill and the occurrence of cracks, cracks, and cracks.

ここで、」二記のような切刃3の形状を得るためには、
切刃3の先端角θを150°以」二とすることか望ま[
5いが、切刃3の外周端部における欠損やチノビングを
防止するために、先端角θは175°以下とすべきであ
る。なお、この場合の先端角Oは軸線部Pと切刃3の外
周瑞Qとを結んだ線分のなす角度をいう。
Here, in order to obtain the shape of the cutting edge 3 as shown in ``2'',
It is desirable that the tip angle θ of the cutting blade 3 be 150° or more.
However, in order to prevent chipping and chinobing at the outer peripheral end of the cutting edge 3, the tip angle θ should be 175° or less. Note that the tip angle O in this case refers to the angle formed by the line segment connecting the axis P and the outer periphery Q of the cutting blade 3.

さらに、ねじれ溝2の溝幅比A:Bは、1.51以4−
と大きく設定され(従来ドリルのものは0.9:1程度
)、芯厚Tを8%〜20%としたことと相俟って切屑の
流出面積か非常に大きくなっている。これは、本発明の
ドリルが左ねじれて切屑か流出しに《くなっているため
、切屑の流出面積を大きく1、て排出性を向上させるた
めであるが、ドリル剛性を維持するために溝幅比A二B
は31以下であることが望ましい。
Furthermore, the groove width ratio A:B of the twisted groove 2 is 1.51 or more.
This is set large (compared to about 0.9:1 for conventional drills), and together with the fact that the core thickness T is 8% to 20%, the outflow area of chips becomes extremely large. This is because the drill of the present invention has a left-handed twist that prevents chips from flowing out, so the purpose is to increase the chip flow area and improve discharge performance. Width ratio A2B
is preferably 31 or less.

次に、上記構成のドリルにより、例えばCFR1)の穴
明け加工を行う場合の作用について第5図を参照しなが
ら説明する。第5図は切刃3と直交する彼削材Aの断面
を示すもので、彼削材Aの内部には無数の強化繊維Fか
平面視において縦横に織り込まれている。第5図から1
+1るように、切刃3のアキシャルレーキ角がマイナス
であるから、穴明け加工に際1,て切刃3に臨む強化繊
維Fはすくい而3aによって被削材A側に強く押し付け
られる。つまり、強化繊維Fは合成樹脂Mとともに合l
戊樹脂Mを下刃、切刀3を上刃としてあたかも鋏で切断
するように断ち切られる。このため、切刃3による加工
而Bに強化繊維Fが残るようなことがない。
Next, the operation when drilling, for example, CFR1) with the drill configured as described above will be described with reference to FIG. 5. FIG. 5 shows a cross section of the cross-cut material A that is perpendicular to the cutting edge 3. Inside the cross-cut material A, countless reinforcing fibers F are woven vertically and horizontally in a plan view. From Figure 5 1
Since the axial rake angle of the cutting blade 3 is negative as shown in FIG. In other words, the reinforcing fiber F is combined with the synthetic resin M.
The resin M is used as the lower blade and the cutting knife 3 is used as the upper blade, and the resin is cut as if using scissors. Therefore, the reinforcing fibers F will not remain in the machining process B by the cutting blade 3.

さらに、上記ドリルでは、ドリル本体1の芯厚′rをド
リル直径Dの8%〜20%に設定し、従来ドリルのもの
に比して大幅に小さ《しているので、穴明け加工時のス
ラスト荷重か小さく、したがって、強化楢維を切れ味良
く切断し得ることと相俟って、特に穴の抜け側における
む1,れの発生をより有効に防止することができるとと
もに、切刃3の有効部分の長さが長いために切れ味が良
く、穴中央部での発熱を防止することができる。したか
って、繊維強化複合材料の穴明け加工を金属材料の穴明
け加工と同様にスムーズに行うことができる。
Furthermore, in the above drill, the core thickness 'r of the drill body 1 is set to 8% to 20% of the drill diameter D, which is significantly smaller than that of conventional drills. The thrust load is small, which makes it possible to cut the reinforced oak fibers with good sharpness, and together with this, it is possible to more effectively prevent the occurrence of cracks and scratches, especially on the exit side of the hole, and the cutting edge 3 Because the length of the effective part is long, it cuts well and prevents heat generation in the center of the hole. Therefore, drilling of fiber-reinforced composite materials can be performed smoothly in the same way as drilling of metal materials.

なお、上記実施例は本発明をソリッドドリルに適用した
ものであるが、その他、切刃のみを超硬合金等で構成し
たろう付けドリルやスローアウエイ式ドリルに適用して
も同様の効果を奏することができる。また、上記実施例
は、ドリル本体lを基端側から見て時計方向へ回転させ
るものであるから、ねじれ溝2を左ねじれとしているが
、ドリル本体lを反時計方向へ回転させる場合には右ね
じれとなることは勿論である。
In addition, although the above embodiment is an application of the present invention to a solid drill, the same effect can be achieved even if the present invention is applied to a brazed drill or throw-away drill in which only the cutting edge is made of cemented carbide or the like. be able to. Further, in the above embodiment, the drill body l is rotated clockwise when viewed from the base end side, so the helical groove 2 is left-handed; however, when the drill body l is rotated counterclockwise, Of course, it will be a right-handed twist.

[発明の効果コ 以上説明したようにこの発明のドリルでは、ねじれ溝を
先端側から基端側へ向かうに従って回転方向へ進む螺旋
状に形成し、ドリル本体の芯厚をドリル直径の8%〜2
0%としているから、切刃のア牛シャルレーキ角がマイ
ナスとなり、強化繊維をあたかも鋏で切断するように断
ち切ることかできる。このため、切刃による加工面に強
化繊維が残るようなことがなく、しから、ドリル本体と
穴との摩擦抵抗が少ないから、強化繊維を切れ味良く切
断し得ることと相俟って、穴の縁郎及び内周でのパリや
むしれの発生を有効に防止することができる。
[Effects of the Invention] As explained above, in the drill of the present invention, the helical groove is formed in a spiral shape that advances in the direction of rotation from the distal end to the proximal end, and the core thickness of the drill body is set to 8% to 8% of the drill diameter. 2
Since it is set to 0%, the cutting blade has a negative Ashisharrake angle, and can cut the reinforcing fibers as if they were being cut with scissors. Therefore, there is no chance of reinforcing fibers remaining on the surface processed by the cutting blade, and since there is less frictional resistance between the drill body and the hole, the reinforcing fibers can be cut with good sharpness, and the hole can be cut easily. It is possible to effectively prevent the occurrence of cracks and pimples on the edges and inner periphery.

さらに、穴明け加工時のスラスト荷重か小さく、したが
って、強化繊維を切れ味良く切断し得ることと相俟って
、特に穴の抜け側におけるむしれの発生をより有効に防
止することができるとともに、切刃の何効部分の長さが
長いために切れ味が良く、穴中央郎での発熱を防止する
ことができる。したがって、繊維強化複合材料の穴明け
加工を金属材料の穴明け加工と同様にスムーズに行うこ
とができる。
Furthermore, the thrust load during the drilling process is small, so the reinforcing fibers can be cut with good sharpness, and together with this, it is possible to more effectively prevent the occurrence of peeling, especially on the exit side of the hole, and The length of the effective part of the cutting blade is long, so it cuts well and prevents heat generation in the hole. Therefore, drilling of fiber-reinforced composite materials can be performed smoothly in the same way as drilling of metal materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は本発明の実施例を示す図であって
、第1図はドリルを示す側面図、第2図は第1図の■方
向矢視図、第3図は第2図の■方向矢視図、第4図は第
3図のIV方向矢視図、第5図はFRPの穴明け加工を
行っている状態を示す切刃と直交する断面図である。 l・・・・・・ドリル本体、 2・・・・・・ねじれ溝、 3・・・・・・切刃、 4・・・・・・マージン。
1 to 5 are views showing embodiments of the present invention, in which FIG. 1 is a side view showing a drill, FIG. FIG. 4 is a view taken in the IV direction of FIG. 3, and FIG. 5 is a sectional view perpendicular to the cutting blade showing a state in which a hole is being drilled in FRP. l...Drill body, 2...Twisted groove, 3...Cutting edge, 4...Margin.

Claims (6)

【特許請求の範囲】[Claims] (1)軸線回りに回転させられるドリル本体の外周にね
じれ溝が形成され、このねじれ溝の回転方向を向く壁面
の先端稜線部に切刃が形成されたツイストドリルにおい
て、上記ねじれ溝を、先端側から基端側へ向かうに従っ
て回転方向へ進む螺旋状に形成し、ドリル本体の芯厚を
ドリル直径の8%〜20%としたことを特徴とするツイ
ストドリル。
(1) In a twist drill, a twist groove is formed on the outer periphery of a drill body that is rotated around an axis, and a cutting edge is formed on the tip ridgeline of the wall surface facing the rotation direction of the twist groove. A twist drill characterized in that it is formed in a spiral shape that advances in the rotational direction as it goes from the side to the proximal end, and the core thickness of the drill body is 8% to 20% of the drill diameter.
(2)前記ねじれ溝の回転方向を向く壁面を、軸線と直
交する断面における形状が回転方向後方へ凹む凹曲線状
となるように凹曲面に形成したことを特徴とする特許請
求の範囲第1項に記載のツイストドリル。
(2) The wall surface of the helical groove facing the rotation direction is formed into a concave curved surface so that the shape in a cross section perpendicular to the axis is a concave curve concave toward the rear in the rotation direction. Twist drill as described in section.
(3)軸線を中心とし直径がドリル直径の60%である
円と切刃との交点と切刃の外周端部とを結んだ線分と、
軸線と切刃の外周端部とを結んだ線分とのなす角度を5
°〜60°としたことを特徴とする特許請求の範囲第2
項に記載のツイストドリル。
(3) a line segment connecting the intersection of the cutting blade with a circle centered on the axis and having a diameter of 60% of the drill diameter and the outer peripheral end of the cutting blade;
The angle formed by the line segment connecting the axis and the outer peripheral edge of the cutting blade is 5.
Claim 2 characterized in that the angle is between 60° and 60°.
Twist drill as described in section.
(4)前記ねじれ溝のねじれ角を15°〜75°とした
ことを特徴とする特許請求の範囲第1項ないし第3項の
いずれかに記載のツイストドリル。
(4) The twist drill according to any one of claims 1 to 3, wherein the twist angle of the twist groove is 15° to 75°.
(5)溝幅比を1.5〜3:1としたことを特徴とする
特許請求の範囲第1項ないし第4項のいずれかに記載の
ツイストドリル。
(5) The twist drill according to any one of claims 1 to 4, characterized in that the groove width ratio is 1.5 to 3:1.
(6)前記切刃の先端角を150°以上としたことを特
徴とする特許請求の範囲第1項ないし第5項のいずれか
に記載のツイストドリル。
(6) The twist drill according to any one of claims 1 to 5, wherein the cutting edge has a tip angle of 150° or more.
JP5705289A 1989-03-09 1989-03-09 Twist drill Pending JPH02237711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5705289A JPH02237711A (en) 1989-03-09 1989-03-09 Twist drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5705289A JPH02237711A (en) 1989-03-09 1989-03-09 Twist drill

Publications (1)

Publication Number Publication Date
JPH02237711A true JPH02237711A (en) 1990-09-20

Family

ID=13044676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5705289A Pending JPH02237711A (en) 1989-03-09 1989-03-09 Twist drill

Country Status (1)

Country Link
JP (1) JPH02237711A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028654A1 (en) * 2007-07-26 2009-01-29 Snecma Ceramic drill bit for high-speed drilling of composites
US20090087275A1 (en) * 2005-08-02 2009-04-02 David Goulbourne Twist drill
US7665935B1 (en) * 2006-07-27 2010-02-23 Precorp, Inc. Carbide drill bit for composite materials
JP2011104751A (en) * 2009-11-20 2011-06-02 Mitsubishi Materials Corp Drill for spot facing
US7988389B2 (en) * 2004-05-27 2011-08-02 Horst Miebach Gmbh Twist drill
CN106475607A (en) * 2015-08-31 2017-03-08 马克托罗工业株式会社 Drill bit and it is perforated the manufacture method of part

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988389B2 (en) * 2004-05-27 2011-08-02 Horst Miebach Gmbh Twist drill
US20090087275A1 (en) * 2005-08-02 2009-04-02 David Goulbourne Twist drill
US8540463B2 (en) * 2005-08-02 2013-09-24 Dormer Tools Limited Twist drill
US7665935B1 (en) * 2006-07-27 2010-02-23 Precorp, Inc. Carbide drill bit for composite materials
US20090028654A1 (en) * 2007-07-26 2009-01-29 Snecma Ceramic drill bit for high-speed drilling of composites
US8206067B2 (en) * 2007-07-26 2012-06-26 Snecma Ceramic drill bit for high-speed drilling of composites
JP2011104751A (en) * 2009-11-20 2011-06-02 Mitsubishi Materials Corp Drill for spot facing
CN106475607A (en) * 2015-08-31 2017-03-08 马克托罗工业株式会社 Drill bit and it is perforated the manufacture method of part
JP2017047486A (en) * 2015-08-31 2017-03-09 マコトロイ工業株式会社 Drill and method for manufacturing bored article

Similar Documents

Publication Publication Date Title
US6676342B2 (en) Drill with specialized drill point geometry
JP2699527B2 (en) Twist drill
JPS5981010A (en) Drilling tool
JPH0632250Y2 (en) Drill
JP2012101322A (en) Reamer and method for working hole
JPH01171725A (en) Spiral fluted tap with chip curler
JP2019171493A (en) Drill
JP2017124475A (en) drill
JP2602032Y2 (en) Double angle drill
JPH02237712A (en) Twist drill
JP2008142834A (en) Drill
JPH02237711A (en) Twist drill
JP3988659B2 (en) Drill
JP2021088007A (en) Drill
JPH02180516A (en) End mill
JP2002126925A (en) Twist drill
JPH02237707A (en) Drilling tool
JP2001121332A (en) Twist drill
JPH02237710A (en) Twist drill
JP4176931B2 (en) Taper thread cutting tool for pipe and taper thread cutting method for pipe
WO2020240892A1 (en) Cutting tool
JP2005177891A (en) Drill
JP2009241239A (en) Drill and boring machining method
JPH0871845A (en) Composite material machining reamer
WO2018131537A1 (en) Drill and drill head