JP4090248B2 - Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting - Google Patents

Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting Download PDF

Info

Publication number
JP4090248B2
JP4090248B2 JP2002041236A JP2002041236A JP4090248B2 JP 4090248 B2 JP4090248 B2 JP 4090248B2 JP 2002041236 A JP2002041236 A JP 2002041236A JP 2002041236 A JP2002041236 A JP 2002041236A JP 4090248 B2 JP4090248 B2 JP 4090248B2
Authority
JP
Japan
Prior art keywords
tip
cutting
cutting edge
angle
deep hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002041236A
Other languages
Japanese (ja)
Other versions
JP2003236713A (en
Inventor
倬司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitac Inc
Original Assignee
Unitac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitac Inc filed Critical Unitac Inc
Priority to JP2002041236A priority Critical patent/JP4090248B2/en
Publication of JP2003236713A publication Critical patent/JP2003236713A/en
Application granted granted Critical
Publication of JP4090248B2 publication Critical patent/JP4090248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/46Drills having a centre free from cutting edges or with recessed cutting edges

Landscapes

  • Drilling Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に深孔切削用のスローアウエイチップ、即ち使い捨て用のチップと、該チップを用いたスローアウエイドリルの改良に関する。
【0002】
【従来の技術と課題】
この種のスローアウエイチップがドリルヘッドに回転軸心に対して半径方向に取着される場合に、該被削材の中心部分まで切削するためには、当然にチップ刃先部が正確に回転軸心を通らなければならない。しかし、ドリル中心部の切削速度は理論的にはゼロであるから、この部分の刃先部にはスラスト抵抗が負荷し、所謂チゼルエッジと言われ、切削力が働かない部分となっており、これが切削能力を上げることができない一因となっている。
【0003】
また、ドリルヘッドに取着されるチップは、ヘッド外周側と内周側とでは、外周側では、外切刃角を有するもので、内周側では、内切刃角を有するものを用いる必要があるなど、チップの構造が異なっており、これがために製造単価を下げることが困難であった。
【0004】
本発明は、上述の難点を完全に除去し、切削能力を飛躍的に向上することに成功したスローアウエイチップと、該チップを用いたスローアウエイドリルを提案することを目的とするものである。
【0005】
【課題を解決するための手段】
上記課題を解消するために、請求項1に係る発明は、中心部にボルト孔1を有し、周縁に外切刃角αの刃先部2を有し、刃先部2から後部にかけて前逃げ角βの逃げ面3を有してなるチップ本体4の刃先部2一端縁側の本体側面5に刃先部2一端縁2aを含む本体側面5の一部が没入した没入部6が形成され、該没入部6の刃先部の一端縁2aに該刃先部に直角に連続して後部側に延びる没入端縁7が形成され、該没入端縁7によって、前記外切刃角αと前記前逃げ角βとによってできる合成角γ、即ち

Figure 0004090248
からなる内切刃角γの没入刃先部8が形成されてなる深孔切削用スローアウエイチップに係る。
【0006】
請求項2に係る発明は、前記没入刃先部8のすくい面9に傾斜段部10が形成されてなる請求項1に記載の深孔切削用スローアウエイチップに係る。
【0007】
請求項3に係る発明は、前記没入部6は前記ボルト孔1を挟んでチップ本体4の対称位置に一対形成されてなる請求項1又は2に記載の深孔切削用スローアウエイチップに係る。
【0008】
請求項4に係る発明は、ドリルヘッド12の先端部にその軸心側から外周側にかけて複数のスローアウエイチップ11a〜11c(以下、チップ11ともいう)がボルト13によって取着されてなる深孔切削用スローアウエイドリルにおいて、該チップ11は、請求項1または2に記載のチップからなり、このうち、軸心側のチップ11aは、その没入刃先部8がドリルヘッド12の回転軸心Oに対して若干芯下がり位置にくるよう設けられ、これによって、該ドリルヘッド12の回転軸心O付近に前記没入刃先部8の前記芯下がり量ε(正確には、2×ε)に相当する非切削ゾーン14が形成されてなる深孔切削用スローアウエイドリルに係る。
【0010】
請求項に係る発明は、前記没入部6はボルト孔2を挟んでチップ本体4の対称位置に一対形成されてなる請求項4に記載の深孔切削用スローアウエイドリルに係る。
【0011】
【発明の実施の形態】
図1〜図4は、本発明の一実施形態のチップ11を示すもので、先ず図1に示すように、チップ本体4は、正面視略平行四辺矩形状を呈し、その中心部に正面15から後面16に向かって貫通するボルト孔1が形成され、図中上下部端縁は緩やかに平行に傾斜して、これに外切刃角α(例えば12°)の刃先部2,2が形成され、両刃先部2の正面側に図2をも参照してJ状に没入したチップブレーカー17,17が形成され、両刃先部2の背面側に後部側にかけて前逃げ角β(例えば11°)の逃げ面3,3が形成される。
【0012】
そして、図1、図2および図3に示すように、チップ本体4の刃先部2の一端縁側の本体側面5(図3)に刃先部一端縁2aを含む本体側面5の一部が没入した没入部6が形成される。即ち、本体側面5は、その正面15側から裏面16側にかけて前記逃げ面3と同じ傾斜度の傾斜面に形成され、正面15寄り部分が最も大きく突出しているが、この本体側面5の突出部分を切欠するように、本体側面5を図3に示すように裏面側に向かって正面側から直角xに切欠することによって本体側面5の一部に没入部6が形成され、これによって該没入部6に前記刃先部2、正確には刃先部一端縁2aに連続した没入端縁7と該端縁7に続く没入側面9(図1、図2)と該没入側面9のから傾斜状に延びる傾斜段部10(図1、図3)とが形成される。そして、この没入端縁7は、後述のように内切刃角γの没入刃先部8を形成することになり、これが本発明の最大の特徴とするものである。なお、また没入側面9は該没入刃先部8のすくい面9を形成することなる。
【0013】
以上の構造からなる没入部6は、図1、図3および図4から明らかなように、ボルト孔1を中心点としてチップ本体4の点対称位置に一対形成されている。なお、図1、図2において、18,19はチップ本体3の正面側に両側面5,5にかけて形成される面取り部である。
【0014】
上記の実施形態からなるチップ11は、図7または図8に示すように、その刃先部2がドリルヘッド12の回転中心Oを通る中心線CLからR量だけ芯上がり位置に取着される。
【0015】
図5〜図6は、上記構造からなるチップ11をドリル本体20の先端部のドリルヘッド12に取着した状態を示すもので、ドリルヘッド12の回転軸心Oから中心線CL方向にその軸心部側と中間部と外周部側との3箇所に3つのチップ11(11a,11b,11c)がボルト13によって取着されており、このうち、軸心側のチップ11aは、その回転軸心O付近に取着されることによって、図6、特に図7、更に図8に示すように、該軸心Oとチップ11(11a)の前記没入端縁7との間に若干の空隙、例えば幅が0.8mm程度の非切削ゾーン14が形成される。なお、図5及び図6において、21,22はドリルヘッド12及びドリル本体20にそれぞれ連通して開口される切屑排出用の孔、23はボルト止めされたガイドパットである。
【0016】
また図7、図8に示すように、チップ11aは、その没入端縁7がドリルヘッド12の回転軸心Oを通る中心線CLより、例えば0.4mmの芯下がり量εを有する位置にくるよう取り付けられる。
【0017】
この状態で、チップ11aが面P及び面Q、即ち、刃先部2及び没入端縁7を図中反時計方向aに回転させることによって、没入端縁7が内切刃角γを有する切刃部8として作用を果たし、その芯下がり量εに相当するコア、正確には、芯下がり量ε×2の直径に相当するコアCが生成形成される。
【0018】
その理由を以下に述べると、まず、図14に示すように、トリルヘッド12に取着した複数のスローアウエイチップSa,Sbにおいて、外周部側の切削を担当する外切刃Sbに対して、中心部側を切削するためにドリルヘッド12の回転中心Oをオーバーラップして取り付けた内切刃Saには、図14の一部を取り出し、拡大して示すように、必ず内切刃角Θが必要である。
【0019】
そのため、従来にあっては、図14に示すように、外周部側の切削を担当する外切刃Sbには、外切刃角αを有する外切刃Sbを取着し、中心部側の切削を担当する内切刃Saには、内切刃角Θを有する内切刃Saを取着するようにしていた。
【0020】
これがために、当然のことながら、従来にあっては、構造の異なった複数種類の切刃をドリルヘッドに取り付ける必要があった。
【0021】
本発明は、図5に示すように、外切刃11c、中間切刃11b及び内切刃11aの何れも外切刃角αを有する切刃を用いることができ、特に外切刃角αを有する内切刃11aによっても、中心部側の切削が可能とする構成を該切刃11aに付与したことを特徴とするもので、後述のように(図8)、外切刃角αを有する内切刃11aに内切刃角γを有する没入刃先部8を付与することよって、中心部側の切削が可能としたものである。
【0022】
図7、特に図8のように、切刃部2は中心線CLからR量だけ芯上がり状態に取り付けられ、これによって没入端縁7は中心線CLを直交してR量だけオーバーラップして設けられている。
【0023】
そして、回転中心Oを中心に矢印aの方向にチップ11aが回転する際に、没入端縁7が内切刃角を有するので、R量オーバーラップした部分の没入端縁7が内切刃として、即ち、没入刃先部8としての作用を果たすことができる。
【0024】
即ち、図8において、刃先部2の外切刃角をαとし、該刃先部2の前逃げ角をβとすれば、没入端縁7によって、後述の計算式による合成角γとしての内切刃角γの没入刃先部8が得られる。そして、回転軸心Oを基準として面Pと面Qとを同一平面に並ぶよう反時計方向に展開すると図9に示すようになる。
【0025】
図8の状態からも分かるように、チップ11aは、刃先部2が外切刃角αを有する切刃として、また没入刃先部8は内切刃角γを有する内切刃として、夫々別の面に形成され、該没入刃先部8が回転軸心Oを中心に回転することによって、回転軸心Oから没入刃先部8の芯下がり量εに相当する半径の被削材を切削することになり、図示のように、該没入刃先部8の芯下がり量ε×2に相当する直径のコアCが生成形成されることになる。このコアCの生成時には没入刃先部8は切削刃としての役割を担うので、切削抵抗を受けることが少なく、長期間使用するも切刃の折損を可及的に少なくすることが可能となる。
【0026】
没入刃先部8の内切刃角γ、即ち、外切刃角αと前逃げ角βとによって得られる合成角γは、次の計算式から、
Figure 0004090248
となる。
【0027】
図10において、チップ11aの没入端縁7の厚さをTとし、刃先部2の外切刃角をαとし、逃げ面3の前逃げ角をβとすると、A部拡大図に示すように、点oから外切刃角αに直角となる補助線α1を引き、該補助線α1と前逃げ角βによりできる隠れ線β1の延長線との交点をQとすると、
ここでo−Qは、前逃げ角βと厚さTとの関係なので、
Figure 0004090248
となる。
【0028】
また、上述のように、没入刃先部8が内切刃角γを有して回転軸心O側の切削が可能であるが、該没入刃先部8によって、上述のように芯下がり量ε〔mm〕を半径とするコアCが生成形成されるが、没入刃先部8の内切刃角γ、芯下がり量ε及び没入刃先部8の送り量sによっては、被削材との間で干渉が起こる場合があるので、没入刃先部8の芯下がり量εと送り量sは干渉の起こらない領域の条件に設定する必要がある。
【0029】
これを計算式で表すと、図11及び図12において、芯下がり量ε〔mm〕を半径とするコアCが発生するとき、このコアCと没入刃先部8とが接触する点Pは送り量s〔mm/rev]により螺旋状に移動する。このときの円周と点Pとのなす角度をθ〔°〕とすると、図11及び図12に示す図を計算式で表すと、
Figure 0004090248
が成り立つ。
ゆえに、内切刃角γを有する没入刃先部8の被削材に対する干渉が起こらない領域は、
Figure 0004090248
と表すことができる。
即ち、没入刃先部8の芯下がり量εと送り量sは、
Figure 0004090248
と同じか又はそれ以上の領域に設定する必要がある。
【0030】
次に孔明け切削過程において起きる現象について述べると、図7および図13に示すように、矢印方向aに回転するチップ11によって切削が進行するにつれて、当然に被削材Wがチップ11の刃先部2で切削され、切削された切削屑はチップブレーカー17(図5、図6、図7)に細かく折り取られ排出されるが、このうち、軸心側に位置するチップ11aには、前述のように、その刃先部2の一端縁2aに直交して連続して、回転軸心Oに対して芯下がり量εを有する内切刃角γの没入刃先部8が形成されており、これがために、チップ11aの回転にともなって、回転軸心Oと芯下がり量εとの距離、例えば回転軸心Oから0.4mmの位置で、該没入刃先部8が被削材を切削し、回転軸心Oから0.4mmまでの被削材は切削されないで非切削ゾーン14を形成し、ここで、0.4mmを半径とするコアCが生成形成される。
【0031】
そして、本発明の実施形態においては、前記没入部6の没入側面9は没入刃先部8のすくい面9に相当し、これにチップブレーカーに相当する傾斜段部10が形成されているため、非切削ゾーン11で成長するコアCは、図13に示すように、その成長途上で傾斜段部10に衝突し、コアCの成長にともなって傾斜段部10への衝突圧力が確実に強くなり、しかも、該段部10は傾斜面に形成されているため、傾斜面に沿う折り取り方向への負荷が強力に働いて、コアCは強制的に且つ確実に該傾斜段部10によって折り取られ脱落されることになる。
【0032】
また本発明の実施態様の特徴とする構造は、図1および図4に示すように、前記没入部6は前記ボルト孔1を挟んでチップ本体4の対称位置に一対形成されてなることである。
【0033】
これがために、ドリルヘッド12の外周側に取着されたチップ11cの傾斜段部10は、ドリルヘッド12の外周面に沿ってなだらかな流線状に傾斜して連続することになる。
【0034】
ドリルヘッド12が被削材中に切削進行して、その切削作業が終了したときには、ドリルヘッド12を被削材中から引き抜くことになるが、その際に従来であればドリルヘッド12の外周面に位置するチップの外周面側に突出している部分が一種のかえりとなって、切削孔の切削壁を傷つけることがあったが、本発明の実施形態によれば、前述のようにドリルヘッド12の外周面側に突出している部分は傾斜段部10に形成され、ドリルヘッド12の外周面に対して流線状に連続しているため、ドリルヘッド12の引抜きの際に該チップ11cによって切削壁を傷つけることはない。
【0035】
なお、本発明の実施形態によれば、当然のことながら、一方側の刃先部2が摩耗すれば、チップ本体4を180°反転させて、他方の刃先部2を使用することができるから、それだけ長期間にわたって使用することができる。
【0036】
また従来であれば、チップをドリルヘッド12に取着する際に、その軸心側、中間側および外周面側に夫々構造や形状の異なった専用のチップを取着する必要があり、それだけ取着作業が面倒であったが、本発明の実施形態にあっては、図5および図6に示すように、同一構造及び形状の一種類のチップ11(11a,11b,11c)を、その軸心側、中間側および外周面側に夫々取着することができるから、それだけ部品点数を少なくすることができ、また取着作業も能率的に行うことができる。
【0037】
【発明の効果】
請求項1に係る発明の深孔切削用スローアウエイチップによれば、中心部にボルト孔1を有し、周縁に外切刃角αの刃先部2を有し、刃先部2から後部にかけて前逃げ角βの逃げ面3を有してなるチップ本体4の刃先部2一端縁側の本体側面5に刃先部2一端縁2aを含む本体側面5の一部が没入した没入部6が形成され、該没入部6の刃先部の一端縁2aに該刃先部に直角に連続して後部側に延びる没入端縁7が形成され、該没入端縁7によって、没入刃先部8が形成されてチップ11をドリルヘッド12の回転軸心Oに対して、該没入刃先部8が若干の芯下がり量εを有して前記ボルト孔1によってボルト止めすることによって、ドリルヘッド12の回転軸心Oの付近に非切削ゾーン14が形成されて、所謂、切削作用に阻害するチゼルエッジを除去することができるから、該チップ11を使用することによって切削能力を格段に向上させることができる。
【0038】
又、本発明の深孔切削用スローアウエイチップによれば、前記没入端縁7によって、前記外切刃角αと前記前逃げ角βとによってできる合成角γ、即ち
Figure 0004090248
からなる内切刃角γの没入刃先部8が形成されてなるため、没入刃先部8によって回転軸心O付近の被削材を切削抵抗を少なくして切削することができ、それだけ没入刃先部8の折損を可及的に少なくし、安定して使用することができる。
【0039】
又、ドリルヘッド12に取着されるチップ11には、その外周側切削を担当する外切刃角αを有する切刃部と、回転軸心O側切削を担当する内切刃角γを有する切刃の部分を備えてなるため、該チップ11をドリルヘッド12の軸心側、中間側および外周面側の何れにも同じ構造及び形状の一種類のチップのみを取着することができることになり、それだ製造面で有利となり、且つ取着部位でのチップの種類の選定作業を必要としないからチップ11をドリルヘッド12に迅速容易に取着することができる。
【0040】
請求項2に係る発明の深孔切削用スローアウエイチップによれば、前記没入刃先部8のすくい面9に傾斜段部10が形成されてなるため、切削作業途上で非切削ゾーン14に生成成長するコアCは、傾斜段部10に当接して強制的に折り取られ、コアCを細切れにして良好にドリルヘッド12から排出することができる。
【0041】
また請求項3に係る発明の深孔切削用スローアウエイチップよれば、前記没入部6は前記ボルト孔1を挟んでチップ本体4の対称位置に一対形成されてなるため、該チップをドリルヘッドに取着する際に、その軸心側では、該没入部がチゼルエッジを除去する役割を果たすと共に、その外周面側では、該没入部の傾斜段部がドリルヘッドの外周面に沿う流線形を呈し、ドリルヘッドの切削孔からの引抜き時において切削壁を損傷させることなく円滑にドリルヘッドを被削材の切削孔から引き抜くことができる。
【0042】
また請求項4に係る発明の深孔切削用スローアウエイドリルによれば、ドリルヘッド12の先端部にその軸心側から外周側にかけて複数のスローアウエイチップ11a〜11c(以下、チップ11ともいう)がボルト13によって取着されてなる深孔切削用スローアウエイドリルにおいて、該チップ11は、請求項1または2に記載のチップからなり、このうち、軸心側のチップ11aは、その没入刃先部8がドリルヘッド12の回転軸心Oに対して若干芯下がり位置にくるよう設けられ、これによって、該ドリルヘッド12の回転軸心O付近に前記没入刃先部8の前記芯下がり量ε(正確には、2×ε)に相当する非切削ゾーン14が形成されてなるため、チップ11をドリルヘッド12の回転軸心Oに対して、該没入刃先部8が若干の芯下がり量εを有して前記ボルト孔1によってボルト止めされることによって、ドリルヘッド12の回転軸心Oの付近に非切削ゾーン14が形成されて、所謂、切削作用に阻害するチゼルエッジを除去することができるから、該チップ11を使用することによって切削能力を格段に向上させることができる。
【0043】
又、本発明の深孔切削用スローアウエイドリルによれば、前記没入端縁7によって、前記外切刃角αと前記前逃げ角βとによってできる合成角γ、即ち
Figure 0004090248
からなる内切刃角γの没入刃先部8が形成されてなるチップ11を取着してなるため、没入刃先部8によって回転軸心O付近の被削材を切削抵抗を少なくして切削することができ、それだけ没入刃先部8の折損を可及的に少なくし、長期にわたって安定して使用することができる。
【0044】
又、ドリルヘッド12に取着されるチップ11には、その外周側切削を担当する外切刃角αを有する切刃部と、回転軸心O側切削を担当する内切刃角γを有する切刃の部分を備えてなるため、該チップ11をドリルヘッド12の軸心側、中間側および外周面側の何れにも同じ構造及び形状の一種類のチップのみを取着することができることになり、それだ製造面で有利となり、且つ取着部位でのチップの種類の選定作業を必要としないからチップ11をドリルヘッド12に迅速容易に取着することができる。
【0046】
又、請求項に係る発明の深孔切削用スローアウエイドリルによれば、前記没入部6はボルト孔2を挟んでチップ本体4の対称位置に一対形成されてなるため、該チップをドリルヘッドに取着する際に、その軸心側では、該没入部がチゼルエッジを除去する役割を果たすと共に、その外周面側では、該没入部の傾斜段部がドリルヘッドの外周面に沿う流線形を呈し、ドリルヘッドの切削孔からの引抜き時において切削壁を損傷させることなく円滑にドリルヘッドを被削材の切削孔から引き抜くことができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るチップの正面図である。
【図2】 図1のIIーII線端面図である。
【図3】 同平面図である。
【図4】 図3のIVーIV線断面図である。
【図5】 本発明の一実施形態のチップをドリルヘッドに取着した状態の正面図である。
【図6】 同平面図である。
【図7】 同要部の拡大平面図である。
【図8】 同要部の作用を説明するための説明図である。
【図9】 同要部の作用を説明するための説明図である。
【図10】 同要部の作用を説明するための説明図である。
【図11】 同他の要部の作用を説明するための説明図である。
【図12】 同他の要部の作用を説明するための説明図である。
【図13】 同実施形態の作用を説明するための説明図である。
【図14】 従来技術のドリルヘッドを示す正面図である。
【符号の説明】
1 ボルト孔
2 刃先部
2a 刃先部一端縁
3 逃げ面
4 チップ本体
5 本体側面
6 没入部
7 没入端縁
8 没入刃先部
9 すくい面
10 傾斜段部
11 スローアウエイチップ
12 ドリルヘッド
13 ボルト
14 非切削ゾーン
α 外切刃角
β 前逃げ角
γ 合成角又は内切刃角
ε 芯下がり量
O 回転軸心
C コア[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a throw-away tip for deep hole cutting, that is, a disposable tip, and an improvement of a throw-away drill using the tip.
[0002]
[Prior art and issues]
When this type of throw-away tip is attached to the drill head in the radial direction with respect to the rotation axis, naturally, the tip edge of the tip is accurately positioned in order to cut to the center of the workpiece. You must pass through your heart. However, since the cutting speed at the center of the drill is theoretically zero, the cutting edge of this part is loaded with thrust resistance, so-called chisel edge, which is the part where the cutting force does not work. This is one of the reasons why we cannot improve our ability.
[0003]
In addition, the tip attached to the drill head must have an outer cutting edge angle on the outer peripheral side and an inner peripheral side on the outer peripheral side, and an inner cutting edge angle on the inner peripheral side. For example, the chip structure is different, which makes it difficult to reduce the manufacturing unit price.
[0004]
An object of the present invention is to propose a throw-away tip that has completely eliminated the above-mentioned difficulties and has dramatically improved cutting ability, and a throw-away drill using the tip.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 has a bolt hole 1 at the center, a cutting edge 2 having an outer cutting edge angle α at the periphery, and a front clearance angle from the cutting edge 2 to the rear. A dip portion 6 is formed by immersing a part of the body side surface 5 including the blade edge 2 one end edge 2a on the body side surface 5 of the edge portion 2 of the tip body 4 having the flank surface 3 of β. An immersion edge 7 is formed at one end edge 2a of the blade edge portion of the portion 6 so as to be continuous to the blade edge portion 2 at a right angle and extending to the rear side, and the outer cutting edge angle α and the front clearance angle are formed by the immersion edge 7. a composite angle γ formed by β, that is,
Figure 0004090248
This relates to a slow hole tip for deep hole cutting in which an immersion blade tip 8 having an inner cutting edge angle γ is formed.
[0006]
The invention according to claim 2 relates to the slow hole tip for deep hole cutting according to claim 1, wherein an inclined step portion 10 is formed on the rake face 9 of the immersive cutting edge portion 8.
[0007]
According to a third aspect of the present invention, there is provided the throw-away tip for deep hole cutting according to the first or second aspect, wherein the immersion portion 6 is formed in a pair at a symmetrical position of the tip body 4 with the bolt hole 1 in between.
[0008]
The invention according to claim 4, a plurality of indexable 11a~11c from the axis side at the tip of the drill head 12 to the outer side (hereinafter, it Moi chip 11) depth is being attached by bolts 13 In the slow-away drill for hole cutting, the tip 11 is composed of the tip according to claim 1, wherein the tip 11 a on the axial center side has an immersive cutting edge portion 8 whose rotational axis O of the drill head 12. With respect to the center axis of the drill head 12, it corresponds to the center down amount ε (more precisely, 2 × ε) of the immersion blade tip 8 in the vicinity of the rotational axis O of the drill head 12. The present invention relates to a deep hole cutting slow-away drill in which a non-cutting zone 14 is formed.
[0010]
The invention according to claim 5 relates to the slow hole drill for deep hole cutting according to claim 4, wherein a pair of the recessed portions 6 are formed at symmetrical positions of the tip body 4 with the bolt hole 2 interposed therebetween.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 show a chip 11 according to an embodiment of the present invention. First, as shown in FIG. 1, the chip body 4 has a substantially parallelogram shape when viewed from the front, and has a front surface 15 at the center thereof. Bolt holes 1 penetrating from the back to the rear surface 16 are formed, and the edges of the upper and lower portions in the figure are gently inclined in parallel to form the cutting edge portions 2 and 2 having an outer cutting edge angle α (for example, 12 °). In addition, chip breakers 17 and 17 that are immersed in a J shape are formed on the front side of both blade tips 2 with reference to FIG. 2, and a front clearance angle β (for example, 11 °) is formed on the back side of both blade tips 2 toward the rear side. ) Are formed.
[0012]
As shown in FIGS. 1, 2, and 3, a part of the main body side surface 5 including the cutting edge portion one end edge 2 a is immersed in the main body side surface 5 (FIG. 3) on one end edge side of the cutting edge portion 2 of the chip body 4. An immersive part 6 is formed. That is, the main body side surface 5 is formed on an inclined surface having the same inclination as the flank 3 from the front surface 15 side to the rear surface 16 side, and the portion closer to the front surface 15 protrudes the largest. As shown in FIG. 3, the main body side surface 5 is notched at a right angle x from the front side toward the back surface as shown in FIG. 3, thereby forming an immersion portion 6 in a part of the main body side surface 5. 6, the blade edge portion 2, more precisely, an immersion edge 7 continuous with the edge 1 a of the edge of the blade edge, an immersion side surface 9 (FIGS. 1 and 2) following the edge 7, and the immersion side surface 9 extend in an inclined manner. An inclined step 10 (FIGS. 1 and 3) is formed. The immersive edge 7 forms an immersive cutting edge portion 8 having an inner cutting edge angle γ as described later, which is the greatest feature of the present invention. In addition, the immersion side surface 9 forms the rake surface 9 of the immersion blade edge portion 8.
[0013]
As is apparent from FIGS. 1, 3, and 4, a pair of the immersing portions 6 having the above structure is formed at a point-symmetrical position of the chip body 4 with the bolt hole 1 as the center point. In FIGS. 1 and 2, reference numerals 18 and 19 denote chamfered portions formed on the front side of the chip body 3 on both side surfaces 5 and 5.
[0014]
As shown in FIG. 7 or FIG. 8, the tip 11 according to the above embodiment is attached to the center rising position by an amount R from the center line CL passing through the rotation center O of the drill head 12.
[0015]
5 to 6 show a state in which the tip 11 having the above structure is attached to the drill head 12 at the tip of the drill body 20, and the axis of the drill head 12 in the direction of the center line CL from the rotational axis O of the drill head 12 is shown. Three tips 11 (11a, 11b, 11c) are attached by bolts 13 at three locations of the central portion side, the intermediate portion, and the outer peripheral portion side, and among these, the tip portion 11a on the axial center side has its rotating shaft. By being attached in the vicinity of the center O, as shown in FIG. 6, particularly FIG. 7 and FIG. 8, a slight gap between the shaft center O and the immersion edge 7 of the tip 11 (11a), For example, the non-cutting zone 14 having a width of about 0.8 mm is formed. In FIGS. 5 and 6, reference numerals 21 and 22 denote chips discharging holes opened in communication with the drill head 12 and the drill main body 20, respectively, and reference numeral 23 denotes a bolted guide pad.
[0016]
Further, as shown in FIGS. 7 and 8, the tip 11 a comes to a position where the immersive end edge 7 has a core down amount ε of, for example, 0.4 mm from the center line CL passing through the rotation axis O of the drill head 12. It is attached as follows.
[0017]
In this state, the tip 11a rotates the surface P and the surface Q, that is, the cutting edge 2 and the immersion edge 7 in the counterclockwise direction a in the drawing, so that the immersion edge 7 has an inner cutting edge angle γ. The core 8 that functions as the portion 8 and that corresponds to the core drop amount ε, more precisely, the core C that corresponds to the diameter of the core drop amount ε × 2 is generated and formed.
[0018]
The reason for this will be described below. First, as shown in FIG. 14, in the plurality of throwaway tips Sa, Sb attached to the trill head 12, the outer cutting edge Sb in charge of cutting on the outer peripheral portion side, A part of FIG. 14 is taken out from the inner cutting edge Sa attached with the rotation center O of the drill head 12 overlapped in order to cut the center side. is required.
[0019]
Therefore, in the prior art, as shown in FIG. 14, the outer cutting edge Sb having the outer cutting edge angle α is attached to the outer cutting edge Sb in charge of cutting on the outer peripheral side, so that The inner cutting edge Sa having the inner cutting edge angle Θ is attached to the inner cutting edge Sa in charge of cutting.
[0020]
For this reason, as a matter of course, conventionally, it was necessary to attach a plurality of types of cutting blades having different structures to the drill head.
[0021]
In the present invention, as shown in FIG. 5, any of the outer cutting edge 11c, the intermediate cutting edge 11b, and the inner cutting edge 11a can use a cutting edge having an outer cutting edge angle α. The inner cutting edge 11a also has a configuration that allows the cutting of the central portion side to the cutting edge 11a, and has an outer cutting edge angle α as described later (FIG. 8). By providing the inner cutting edge 11a with an immersive cutting edge portion 8 having an inner cutting edge angle γ, cutting on the center side can be performed.
[0022]
As shown in FIG. 7, particularly FIG. 8, the cutting edge portion 2 is attached to the center-up state by an amount R from the center line CL, whereby the immersion edge 7 is overlapped by the amount R by intersecting the center line CL at right angles. Is provided.
[0023]
When the tip 11a rotates about the rotation center O in the direction of the arrow a, the immersive edge 7 has an inner cutting edge angle, so that the immersive edge 7 of the portion overlapping the R amount is used as the inner cutting edge. That is, the function as the immersion blade tip 8 can be achieved.
[0024]
That is, in FIG. 8, if the outer cutting edge angle of the cutting edge portion 2 is α and the front clearance angle of the cutting edge portion 2 is β, the inner cutting edge 7 will be used as a composite angle γ according to the calculation formula described later. An immersion blade tip 8 with a blade angle γ is obtained. Then, when the surface P and the surface Q are developed in the counterclockwise direction so as to be aligned on the same plane with the rotational axis O as a reference, the result is as shown in FIG.
[0025]
As can be seen from the state of FIG. 8, the tip 11 a is a separate cutting edge having a cutting edge portion 2 having an outer cutting edge angle α, and the immersive cutting edge portion 8 is a separate cutting edge having an inner cutting edge angle γ. By cutting the work piece formed on the surface and having a radius corresponding to the amount of core depression ε of the immersive cutting edge 8 from the rotating axis O, the immersive cutting edge 8 rotates about the rotation axis O. Thus, as shown in the figure, a core C having a diameter corresponding to the amount of core drop ε × 2 of the immersion blade tip 8 is generated and formed. Since the immersive cutting edge 8 plays a role as a cutting blade when the core C is generated, it is less likely to receive cutting resistance, and even when used for a long period of time, it is possible to reduce the breakage of the cutting blade as much as possible.
[0026]
The inner cutting edge angle γ of the immersive cutting edge 8, that is, the composite angle γ obtained by the outer cutting edge angle α and the front clearance angle β, is calculated from the following formula:
Figure 0004090248
It becomes.
[0027]
In FIG. 10, when the thickness of the immersion edge 7 of the tip 11a is T, the outer cutting edge angle of the cutting edge portion 2 is α, and the front clearance angle of the flank 3 is β, When an auxiliary line α1 perpendicular to the outer cutting edge angle α is drawn from the point o and the intersection of the auxiliary line α1 and the extension line of the hidden line β1 formed by the front clearance angle β is Q,
Here, o-Q is the relationship between the front clearance angle β and the thickness T.
Figure 0004090248
It becomes.
[0028]
Further, as described above, the immersive cutting edge 8 has the inner cutting edge angle γ and can be cut on the rotational axis O side. mm] is generated and formed, but depending on the inner cutting edge angle γ of the immersive cutting edge 8, the amount of core drop ε, and the feed amount s of the immersing cutting edge 8, interference with the work material occurs. Therefore, it is necessary to set the center down amount ε and the feed amount s of the immersive cutting edge 8 to the conditions of the region where no interference occurs.
[0029]
When this is expressed by a calculation formula, in FIG. 11 and FIG. 12, when a core C having a radius of the core down amount ε [mm] is generated, a point P where the core C and the immersive cutting edge portion 8 are in contact is a feed amount. It moves spirally by s [mm / rev]. If the angle formed by the circumference and the point P at this time is θ [°], the diagrams shown in FIG. 11 and FIG.
Figure 0004090248
Holds.
Therefore, the region where the interference with the work material of the immersive cutting edge 8 having the inner cutting edge angle γ does not occur,
Figure 0004090248
It can be expressed as.
That is, the amount of core drop ε and the feed amount s of the immersive cutting edge 8 are:
Figure 0004090248
Must be set to the same or larger area.
[0030]
Next, the phenomenon that occurs in the drilling process will be described. As shown in FIGS. 7 and 13, as the cutting progresses by the tip 11 that rotates in the arrow direction a, the work material W naturally becomes the cutting edge portion of the tip 11. The cutting chips cut and cut by 2 are finely broken and discharged by the chip breaker 17 (FIGS. 5, 6, and 7). Of these, the chip 11a positioned on the axial center side has the above-mentioned Thus, an immersive cutting edge portion 8 having an inner cutting edge angle γ having a center-down amount ε with respect to the rotation axis O is formed continuously and orthogonally to the one end edge 2a of the cutting edge portion 2, In addition, with the rotation of the tip 11a, the immersion blade tip 8 cuts the work material at a distance between the rotation axis O and the amount of core drop ε, for example, a position 0.4 mm from the rotation axis O, and rotates. Work material from axis O to 0.4mm is not cut The non-cutting zone 14 is formed, wherein the core C of a 0.4mm radius is generated form.
[0031]
And in embodiment of this invention, since the immersion side 9 of the said immersion part 6 is equivalent to the rake face 9 of the immersion blade edge | tip part 8, and the inclination step part 10 equivalent to a chip breaker is formed in this, it is non- As shown in FIG. 13, the core C growing in the cutting zone 11 collides with the inclined step portion 10 during its growth, and the collision pressure on the inclined step portion 10 is surely increased as the core C grows. In addition, since the step portion 10 is formed on the inclined surface, the load in the folding direction along the inclined surface works strongly, and the core C is forcibly and surely broken off by the inclined step portion 10. It will be dropped out.
[0032]
1 and FIG. 4, the structure that characterizes the embodiment of the present invention is that a pair of the recessed portions 6 are formed at symmetrical positions of the chip body 4 with the bolt hole 1 interposed therebetween. .
[0033]
For this reason, the inclined step portion 10 of the tip 11c attached to the outer peripheral side of the drill head 12 is continuously inclined along the outer peripheral surface of the drill head 12 in a gentle streamline shape.
[0034]
When the drill head 12 has been cut into the work material and the cutting operation is completed, the drill head 12 is pulled out from the work material. However, according to the embodiment of the present invention, as described above, the drill head 12 may damage the cutting wall of the cutting hole. Since the portion protruding to the outer peripheral surface side is formed in the inclined step portion 10 and is continuous in a streamline shape with respect to the outer peripheral surface of the drill head 12, the tip 11 c is cut when the drill head 12 is pulled out. It won't hurt the wall.
[0035]
In addition, according to the embodiment of the present invention, as a matter of course, if the cutting edge portion 2 on one side is worn, the tip body 4 can be inverted 180 ° and the other cutting edge portion 2 can be used. It can be used for a long time.
[0036]
Further, conventionally, when attaching the tip to the drill head 12, it is necessary to attach dedicated tips having different structures and shapes to the axial center side, intermediate side and outer peripheral surface side, respectively. However, in the embodiment of the present invention, as shown in FIGS. 5 and 6, one type of chip 11 (11 a, 11 b, 11 c) having the same structure and shape is attached to its axis. Since it can be attached to the center side, the intermediate side, and the outer peripheral surface side, the number of parts can be reduced accordingly, and the attachment work can be performed efficiently.
[0037]
【The invention's effect】
According to the throw-away tip for deep hole cutting of the invention according to claim 1, the bolt hole 1 is provided at the center, the edge part 2 having the outer cutting edge angle α is provided at the periphery, and the front part extends from the edge part 2 to the rear part. An intrusion portion 6 is formed in which a part of the body side surface 5 including the edge portion 2 one end edge 2a is immersed in the body side surface 5 on the one end edge side of the tip portion 2 of the tip body 4 having the flank 3 of the clearance angle β. An immersion edge 7 is formed on one end edge 2a of the cutting edge portion of the immersion portion 6 and extends to the rear side continuously at a right angle to the cutting edge portion 2 , and an immersion blade edge portion 8 is formed by the immersion edge 7 to form a tip. 11 with respect to the rotational axis O of the drill head 12, the immersive cutting edge 8 has a slight core drop amount ε and is bolted by the bolt hole 1, so that the rotational axis O of the drill head 12 is fixed. A non-cutting zone 14 is formed in the vicinity, so-called chisel that inhibits cutting action Since the Tsu di can be removed, it is possible to greatly improve the cutting ability by the use of the chip 11.
[0038]
In addition, according to the throw-away tip for deep hole cutting of the present invention, the composite angle γ formed by the outer cutting edge angle α and the front clearance angle β by the immersive end edge 7, that is,
Figure 0004090248
Since the immersive cutting edge portion 8 having the inner cutting edge angle γ is formed, the immersive cutting edge portion 8 can cut the work material near the rotation axis O with less cutting resistance, and the immersive cutting edge portion. 8 breakage can be reduced as much as possible, and it can be used stably.
[0039]
Further, the tip 11 attached to the drill head 12 has a cutting edge portion having an outer cutting edge angle α in charge of outer peripheral side cutting and an inner cutting edge angle γ in charge of rotation axis O side cutting. Since the cutting edge portion is provided, the tip 11 can be attached to only one type of tip having the same structure and shape on the axial center side, the intermediate side, and the outer peripheral surface side of the drill head 12. Thus, it is advantageous in terms of manufacturing and does not require the work of selecting the type of tip at the attachment site, so that the tip 11 can be quickly and easily attached to the drill head 12.
[0040]
According to the slow hole tip for deep hole cutting of the invention according to claim 2, since the inclined step portion 10 is formed on the rake face 9 of the immersive cutting edge portion 8, it is generated and grown in the non-cutting zone 14 during the cutting operation. The core C to be pressed comes into contact with the inclined step portion 10 and is forcibly broken, and the core C can be finely cut and discharged from the drill head 12 satisfactorily.
[0041]
Further, according to the deep hole cutting throw-away tip of the invention according to claim 3, since the immersing portion 6 is formed in a pair at a symmetrical position of the tip body 4 with the bolt hole 1 in between, the tip is used as a drill head. At the time of attachment, the immersive part serves to remove the chisel edge on the axial center side, and the inclined stepped part of the immersive part exhibits a streamline along the outer peripheral surface of the drill head on the outer peripheral surface side. The drill head can be smoothly pulled out from the cutting hole of the work material without damaging the cutting wall when the drill head is pulled out from the cutting hole.
[0042]
According to the deep hole cutting throw-away drill of the invention according to claim 4, a plurality of indexable 11 a to 11 c (hereinafter to the outer side from the axis side at the tip of the drill head 12 will Moi chip 11 ) Is attached by a bolt 13, and the tip 11 includes the tip according to claim 1, wherein the tip 11 a on the axial center side is the tip of the immersion blade. The portion 8 is provided so as to be slightly lowered with respect to the rotational axis O of the drill head 12, and thereby, the amount of core downward ε (of the immersion blade tip 8 near the rotational axis O of the drill head 12. Precisely, a non-cutting zone 14 corresponding to 2 × ε) is formed, so that the tip 11 is slightly below the center of the tip 11 with respect to the rotational axis O of the drill head 12. By being bolted by the bolt hole 1 with a screw amount ε, a non-cutting zone 14 is formed in the vicinity of the rotational axis O of the drill head 12 and so-called chisel edges that hinder cutting action are removed. Therefore, the cutting ability can be remarkably improved by using the tip 11.
[0043]
In addition, according to the deep hole cutting slow-away drill of the present invention, the sunk end edge 7 makes a composite angle γ formed by the outer cutting edge angle α and the front clearance angle β, that is,
Figure 0004090248
Since the tip 11 formed with the immersive cutting edge portion 8 having the inner cutting edge angle γ is attached, the workpiece near the rotational axis O is cut by the immersive cutting edge portion 8 with less cutting resistance. Therefore, the breakage of the immersion blade edge portion 8 can be reduced as much as possible, and it can be used stably over a long period of time.
[0044]
Further, the tip 11 attached to the drill head 12 has a cutting edge portion having an outer cutting edge angle α in charge of outer peripheral side cutting and an inner cutting edge angle γ in charge of rotation axis O side cutting. Since the cutting edge portion is provided, the tip 11 can be attached to only one type of tip having the same structure and shape on the axial center side, the intermediate side, and the outer peripheral surface side of the drill head 12. Thus, it is advantageous in terms of manufacturing and does not require the work of selecting the type of tip at the attachment site, so that the tip 11 can be quickly and easily attached to the drill head 12.
[0046]
Further, according to the deep hole cutting throw-away drill of the invention according to claim 5 , since the immersing portion 6 is formed in a pair at the symmetrical position of the tip body 4 with the bolt hole 2 interposed therebetween, the tip is inserted into the drill head. At the axial center side, the immersive part serves to remove the chisel edge, and on the outer peripheral surface side, the inclined step portion of the immersive part has a streamline along the outer peripheral surface of the drill head. The drill head can be smoothly pulled out from the cutting hole of the work material without damaging the cutting wall when the drill head is pulled out from the cutting hole.
[Brief description of the drawings]
FIG. 1 is a front view of a chip according to an embodiment of the present invention.
FIG. 2 is an end view taken along line II-II in FIG.
FIG. 3 is a plan view of the same.
4 is a cross-sectional view taken along line IV-IV in FIG.
FIG. 5 is a front view of a state in which a tip according to an embodiment of the present invention is attached to a drill head.
FIG. 6 is a plan view of the same.
FIG. 7 is an enlarged plan view of the main part.
FIG. 8 is an explanatory diagram for explaining the operation of the main part.
FIG. 9 is an explanatory diagram for explaining the operation of the main part.
FIG. 10 is an explanatory diagram for explaining the operation of the main part.
FIG. 11 is an explanatory diagram for explaining the operation of the other main part.
FIG. 12 is an explanatory diagram for explaining the operation of the other main part.
FIG. 13 is an explanatory diagram for explaining the operation of the embodiment.
FIG. 14 is a front view showing a conventional drill head.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bolt hole 2 Cutting edge part 2a Cutting edge part one edge 3 Relief face 4 Tip body 5 Body side surface 6 Immersion part 7 Immersion edge 8 Immersion cutting edge part 9 Rake face 10 Inclined step part 11 Throw away tip 12 Drill head 13 Bolt 14 Non-cutting Zone α Outer cutting edge angle β Front clearance angle γ Composite angle or inner cutting edge angle ε Centering down amount O Rotational axis C Core

Claims (5)

中心部にボルト孔1を有し、周縁に外切刃角αの刃先部2を有し、刃先部2から後部にかけて前逃げ角βの逃げ面3を有してなるチップ本体4の刃先部2一端縁側の本体側面5に刃先部2一端縁2aを含む本体側面5の一部が没入した没入部6が形成され、該没入部6の刃先部の一端縁2aに該刃先部に直角に連続して後部側に延びる没入端縁7が形成され、該没入端縁7によって、前記外切刃角αと前記前逃げ角βとによってできる合成角γ、即ち、
Figure 0004090248
からなる内切刃角γの没入刃先部8が形成されてなる深孔切削用スローアウエイチップ。
The cutting edge portion of the chip body 4 having a bolt hole 1 in the center, a cutting edge portion 2 having an outer cutting edge angle α on the periphery, and a flank 3 having a front clearance angle β from the cutting edge portion 2 to the rear portion. The main body side surface 5 on the one end edge side is formed with an immersion portion 6 in which a part of the main body side surface 5 including the one end edge 2a of the blade edge portion 2 is immersed, and the one end edge 2a of the blade edge portion of the immersion portion 6 is perpendicular to the blade edge portion 2 A dip end edge 7 continuously extending to the rear side is formed, and by the dip end edge 7, a composite angle γ formed by the outer cutting edge angle α and the front clearance angle β, that is,
Figure 0004090248
A slow hole tip for deep hole cutting, in which an immersive cutting edge portion 8 having an inner cutting edge angle γ is formed.
前記没入刃先部8のすくい面9に傾斜段部10が形成されてなる請求項1に記載の深孔切削用スローアウエイチップ。  The throwaway tip for deep hole cutting according to claim 1, wherein an inclined step portion 10 is formed on the rake face 9 of the immersive cutting edge portion 8. 前記没入部6は前記ボルト孔1を挟んでチップ本体4の対称位置に一対形成されてなる請求項1又は2に記載の深孔切削用スローアウエイチップ。  The throw-away tip for deep hole cutting according to claim 1 or 2, wherein a pair of the immersing portions 6 are formed at symmetrical positions of the tip body 4 with the bolt hole 1 in between. ドリルヘッド12の先端部にその軸心側から外周側にかけて複数のスローアウエイチップ11a〜11c(以下、チップ11ともいう)がボルト13によって取着されてなる深孔切削用スローアウエイドリルにおいて、該チップ11は、請求項1または2に記載のチップからなり、このうち、軸心側のチップ11aは、その没入刃先部8がドリルヘッド12の回転軸心Oに対して若干芯下がり位置にくるよう設けられ、これによって、該ドリルヘッド12の回転軸心O付近に前記没入刃先部8の前記芯下がり量ε(正確には、2×ε)に相当する非切削ゾーン14が形成されてなる深孔切削用スローアウエイドリル。A plurality of indexable 11a~11c to the outer side from the axis side at the tip of the drill head 12 (hereinafter, will Moi chip 11) is in the slow-away drill deep hole cutting made is attached by bolts 13, The tip 11 is composed of the tip according to claim 1 or 2, and the tip 11 a on the axial center side of the tip 11 is slightly lowered from the rotational axis O of the drill head 12. As a result, a non-cutting zone 14 corresponding to the center down amount ε (more precisely, 2 × ε) of the immersion blade tip 8 is formed in the vicinity of the rotational axis O of the drill head 12. Throw away drill for deep hole cutting. 前記没入部6はボルト孔2を挟んでチップ本体4の対称位置に一対形成されてなる請求項に記載の深孔切削用スローアウエイドリル。5. The deep hole cutting throw-away drill according to claim 4 , wherein a pair of the recessed portions 6 are formed at symmetrical positions of the tip body 4 with the bolt hole 2 interposed therebetween.
JP2002041236A 2002-02-19 2002-02-19 Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting Expired - Lifetime JP4090248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041236A JP4090248B2 (en) 2002-02-19 2002-02-19 Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041236A JP4090248B2 (en) 2002-02-19 2002-02-19 Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007131973A Division JP4090493B2 (en) 2007-05-17 2007-05-17 Deep hole cutting method using deep hole drill

Publications (2)

Publication Number Publication Date
JP2003236713A JP2003236713A (en) 2003-08-26
JP4090248B2 true JP4090248B2 (en) 2008-05-28

Family

ID=27781713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041236A Expired - Lifetime JP4090248B2 (en) 2002-02-19 2002-02-19 Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting

Country Status (1)

Country Link
JP (1) JP4090248B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812255B2 (en) * 2004-01-21 2011-11-09 ユニタック株式会社 Cutting tool manufacturing method
JP2009226560A (en) 2008-03-25 2009-10-08 Yunitakku Kk Gun drill
JP2009255202A (en) * 2008-04-14 2009-11-05 Yunitakku Kk Drill head for cutting deep hole
JP5078731B2 (en) 2008-04-25 2012-11-21 ユニタック株式会社 Throw away insert for deep hole cutting and drill head for deep hole cutting
JP2011245619A (en) * 2011-07-27 2011-12-08 Yunitakku Kk Method of manufacturing drill head
CN102430781A (en) * 2011-10-27 2012-05-02 成都工具研究所有限公司 Inner chip removal deep hole drilling tool for hard alloys
CN109570577B (en) * 2018-12-25 2023-10-13 浙江欣兴工具股份有限公司 Inner chip removal deep hole drill for deep hole machining and drilling method thereof

Also Published As

Publication number Publication date
JP2003236713A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
JP3634909B2 (en) Drill insert
US6220795B1 (en) Spotting drill and milling cutter
KR101452197B1 (en) Deep-hole boring throwaway tip, and deep-hole boring drill head
SE511224C2 (en) drilling Tools
JP4586042B2 (en) Deep hole cutting method using deep hole drill
JP4090248B2 (en) Throw-away tip for deep hole cutting and throw-away drill for deep hole cutting
JPH10109210A (en) Throw away tip for spade drill
JP2009255202A (en) Drill head for cutting deep hole
WO2008050389A1 (en) Drill
JPH05154709A (en) Hole cutter
US6126365A (en) Boring tool
JP4090493B2 (en) Deep hole cutting method using deep hole drill
JP7375329B2 (en) Drill
JP3022002B2 (en) Indexable inserts and indexable drilling tools
JP2003025129A (en) Throw-away tip for cutting deep hole and throwaway drill for cutting deep hole
JP3995952B2 (en) Deep hole drill
JPH0666910U (en) End mill
JP2623304B2 (en) Cermet twist drill
JP4359912B2 (en) Throw-away end mill and throw-away tip used therefor
JPS5841058Y2 (en) Throwaway tip
JPS5841059Y2 (en) Throwaway tip
JP4608933B2 (en) Drills, throwaway drills and throwaway tips
EP0194245B1 (en) Drill for generating of holes in a work piece
JP3754915B2 (en) Milling cutter
JPS599775Y2 (en) drilling tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Ref document number: 4090248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term