JPH0269686A - Method for testing semiconductor storage device - Google Patents

Method for testing semiconductor storage device

Info

Publication number
JPH0269686A
JPH0269686A JP63222805A JP22280588A JPH0269686A JP H0269686 A JPH0269686 A JP H0269686A JP 63222805 A JP63222805 A JP 63222805A JP 22280588 A JP22280588 A JP 22280588A JP H0269686 A JPH0269686 A JP H0269686A
Authority
JP
Japan
Prior art keywords
memory cell
memory
inverted
holding current
vee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63222805A
Other languages
Japanese (ja)
Inventor
Takehisa Shimokawa
下川 健寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63222805A priority Critical patent/JPH0269686A/en
Publication of JPH0269686A publication Critical patent/JPH0269686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

PURPOSE:To invert a memory which is unstable in data holding characteristics and to surely detect a defective cell by inputting a short-period inverse digit signal which cannot be written in the normal state in a state where a holding current is reduced. CONSTITUTION:A memory Mij is selected with an address signal in a state where a high-order voltage Vcc is grounded and a low-order voltage VEE is VEE=-4.5V and data signals are supplied to digit lines Dj and the inverse of Dj during a normal writing period TWP. Then the voltage VEE is reduced to VEE=-3.5V while the voltage Vcc is maintained at the same state and a holding current IH is set to a value which is about the lower distribution limit value of the memory Mij. Then the data signals are inverted and write pulses of the shortest writing period Tnwp which is shorter than the normally writable minimum pulse width are given to the inverted data signals. In the case of a defective memory cell, the memory cell is inverted at a prescribed point of time P during the period Tnwp while the potential difference between contact voltages VA and VB is small. Since the memory cell from which inversion is detected is defective, a test can be completed with several tens mus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置の試験方法に関し、特にスタテ
ックメモリの試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for testing semiconductor memory devices, and more particularly to a method for testing static memories.

〔従来の技術〕[Conventional technology]

−mにスタティックメモリは、バイポーラトランジスタ
やショットキーバリヤダイオード等を負荷セルとしたト
ランジスタのフリップフロップ回路をメモリセルとし、
定電流回路を介して回路電源に接続されている。
-m Static memory uses a transistor flip-flop circuit with a load cell such as a bipolar transistor or Schottky barrier diode as a memory cell.
Connected to the circuit power supply via a constant current circuit.

第3図は被試験半導体記憶装置の一例の回路図である。FIG. 3 is a circuit diagram of an example of a semiconductor memory device under test.

試験される第i行第j列のメモリセルM1.は、PNP
)ランジスタ負荷型で第iのエミッタホロワ・トランジ
スタQ+及びワード線W、と、第iの定電流トランジス
タQ+ どの間に挿入され、対の制御エミッタはそれぞ
れ第1列のディジット線丁、及びり、に接続されている
Memory cell M1. in the i-th row and j-th column to be tested. is PNP
) transistor-loaded transistor-loaded ith emitter-follower transistor Q+ and word line W, and the ith constant-current transistor Q+, the control emitters of the pair being inserted between the first row of digit lines, and the word line W, respectively. It is connected.

回路電源は、全メモリセルに共通に高位電圧VCC及び
低位電圧VEεの端子間に接続されている。
A circuit power supply is commonly connected to all memory cells between terminals of a high voltage VCC and a low voltage VEε.

通常、■ccは接地点電位である。Normally, ■cc is the ground potential.

メモリセル間1ノには常にベース電圧■8と抵抗Rで決
まる保持電流I)1が流れている。
A holding current I)1 determined by the base voltage (I)8 and the resistor R always flows between the memory cells.

従来、被試験メモリセルの漏れ電流が大きいため保持が
不安定な書込み特性の不良品セルを検出するには、次の
三つの方法があった。
Conventionally, the following three methods have been used to detect defective cells whose write characteristics are unstable due to the large leakage current of the memory cell under test.

(1)正常の電圧条件でデータのディジット信号を書込
ませた後、300〜500μsの長い時間保持させてか
ら後、セルのデータを読出し、保持できたかどうかを確
認する。
(1) After a data digit signal is written under normal voltage conditions, it is held for a long time of 300 to 500 μs, and then the cell data is read out to check whether it has been held.

(2)メモリセルの保持電流を設定する定電流トランジ
スタのベース電圧vnを外部から強制的に電位を与え、
例えば1.2Vから1.OVに切換えて保持電流を減ら
し、データ保持が不充分なすなわち反転するメモリセル
を不良セルとして検出する方法もある。
(2) Forcibly applying an external potential to the base voltage vn of the constant current transistor that sets the holding current of the memory cell,
For example, from 1.2V to 1. There is also a method of reducing the holding current by switching to OV and detecting a memory cell that is insufficiently holding data, that is, is inverted, as a defective cell.

(3)通常のデータ書き込みを行なった後、回路電源の
電圧を低減して、例えばPNP負荷セルの場合にメモリ
セルの保持電流を数十μAから数μAに切換えて減らし
、データ反転セルを検出する。
(3) After performing normal data writing, reduce the voltage of the circuit power supply and, for example, in the case of a PNP load cell, reduce the holding current of the memory cell by switching from several tens of μA to several μA, and detect the data inversion cell. do.

〔発明が解決しようとする課題〕 上述した従来の半導体装置の試験方法では、第1の場合
は通常の保持電流が流れているため、保持不良のセルを
検出するためには各セルについて数百μsの長い時間の
保持状態が必要で、ウェーハ中の全ICの試験時間が数
十秒とかかりすぎるという欠点があった。
[Problems to be Solved by the Invention] In the conventional semiconductor device testing method described above, in the first case, a normal holding current is flowing, so in order to detect cells with poor holding, several hundred This method requires a holding state for a long time of μs, and has the disadvantage that it takes an excessively long time to test all ICs on a wafer, which is several tens of seconds.

第2の場合は、パッケージに組まれた製品に関しては、
外部から内部電位を与えるのは極めて困難であるという
欠点があった。
In the second case, regarding the packaged product,
The drawback was that it was extremely difficult to apply an internal potential from the outside.

さらに第3の場合は、電源電圧を低減した状態のデータ
保持の能力が製品によりばらついているので、良品セル
と不良品セルとを区別するための低減電圧値を最適に決
めるのが困難である。
Furthermore, in the third case, since the ability to retain data when the power supply voltage is reduced varies depending on the product, it is difficult to optimally determine the reduced voltage value to distinguish between good cells and defective cells. .

例えば設定を厳くしすぎると良品セルまでが不良品セル
とみなされる危険性もでてくる。
For example, if the settings are too strict, there is a risk that even good cells will be regarded as defective cells.

本発明の目的は、試験時間の短いかつメモルセルのデー
タ保持特性の検出が確実な半導体記憶装置の試験方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for testing a semiconductor memory device that requires a short test time and can reliably detect the data retention characteristics of a memory cell.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体記憶装置の試験方法は、ワード線及びデ
ィジット線及び保持電流の回路に接続して書込データを
保持する被試験メモリセルの複数個に電源電圧を供給し
て書込み状態を試験する半導体記憶装置の試験方法にお
いて、通常のパルス幅のディジット信号を書込み後に、
前記電源電圧を低減して前記保持電流の値を前記被試験
メモリセルと同一製造ロッドの保持電流分布の下限値近
傍に低減設定し、また前記ディジット信号を反転し、次
に書込パルスの幅を前記通常のパルス幅よりも短時間に
設定してから前記被試験メモリセルの前記反転データの
書込の有無を検出して構成されている。
The method for testing a semiconductor memory device of the present invention involves testing the write state by supplying a power supply voltage to a plurality of memory cells under test that are connected to a word line, a digit line, and a holding current circuit to hold write data. In a test method for semiconductor memory devices, after writing a digit signal with a normal pulse width,
The value of the holding current is set to be reduced to near the lower limit value of the holding current distribution of the same manufacturing rod as the memory cell under test by reducing the power supply voltage, and the digit signal is inverted, and then the width of the write pulse is set. is set to a shorter time than the normal pulse width, and then detects whether or not the inverted data is written in the memory cell under test.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の動作を説明するための第3
図の回路の各部信号のタイミング図、第2図は第3図の
回路の節点A及びBの電圧波形図である。
FIG. 1 is a third diagram for explaining the operation of one embodiment of the present invention.
FIG. 2 is a timing diagram of signals of each part of the circuit shown in the figure, and FIG. 2 is a voltage waveform diagram of nodes A and B of the circuit of FIG.

第1図に示すように、高位電圧VCCは接地点電位で不
変のまま、低位電圧V、P、をまず通常の−4,5Vに
設定しておいてアドレス信号Sllで被試験メモリセル
MIjを選択し、データ信号Sdが時点t1で書込パル
スWEの1Qnsの通常書込時間TwPの間ディジット
信号SO及びSτとしてディジット線り、及びり、に供
給される。
As shown in FIG. 1, while the high voltage VCC remains unchanged at the ground potential, the low voltages V and P are first set to the normal -4 and 5 V, and the memory cell under test MIj is controlled by the address signal Sll. At time t1, data signal Sd is applied to digit lines and as digit signals SO and Sτ during a normal write time TwP of 1 Qns of write pulse WE.

次に、高電位電圧VCCをそのままにして時点t2で低
位電圧VERを−3,5Vに切換えて電源電圧を低減し
て、保持電流IHを15μAからメモリセルMIJの保
持電流の分布下限値に近い例えば0.5μA程度に低減
設定する。
Next, with the high potential voltage VCC unchanged, the low potential voltage VER is switched to -3.5V at time t2 to reduce the power supply voltage, and the holding current IH is reduced from 15 μA to a value close to the lower limit value of the holding current distribution of the memory cell MIJ. For example, the reduction is set to about 0.5 μA.

次に時点t3でデータ信号S、を反転してから、通常の
書込可能な最小のパルス幅である3nsよりも短い最短
書込時間T。wp2.5nsの書込パルスWEを時点t
4から供給する。
Next, at time t3, the data signal S is inverted, and then the shortest write time T is shorter than 3 ns, which is the minimum pulse width that can be written normally. Write pulse WE of wp2.5ns at time t
Supply from 4.

第2図の実線に示すように、良品のメモリセルの場合は
節点A及びBの電圧■、及び■8は時点t4以前には約
0.5 V程度の電位差があり安定なので多少影響はさ
れるが反転はしない。
As shown by the solid line in Figure 2, in the case of a good memory cell, the voltages ■ and ■8 at nodes A and B are stable with a potential difference of about 0.5 V before time t4, so they are not affected to some extent. However, it does not reverse.

点線に示すように、漏れ電流等がある不良品のメモリセ
ルの場合は、時点t4以前節点電圧Va及びVbの電位
差は小さく不安定で高感度となり、通常よりも短い最短
書込時間T nwpの2.5rl Sの間に点Pで反転
する。
As shown by the dotted line, in the case of a defective memory cell with leakage current, etc., the potential difference between the node voltages Va and Vb before time t4 is small and unstable, resulting in high sensitivity, and the shortest write time T nwp is shorter than normal. It reverses at point P during 2.5 rl S.

従って、反転データを検出したメモリセルは、漏れ電流
が大きくデータ保持が不安定な不良品セルと判定でき、
かつ試験時間はセルあたり数十μsで済む。
Therefore, a memory cell in which inverted data is detected can be determined to be a defective cell with large leakage current and unstable data retention.
Moreover, the test time is only several tens of microseconds per cell.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、保持電流を低減された状
態で通常では書込み不可能なほどの短い期間の逆ディジ
ット信号を入力することにより、データ保持特性の不安
定なメモリセルを反転させることで、不良品セルを確実
に検出でき、かつ試験時間も従来の約10分の1に短縮
できる効果がある。
As explained above, the present invention is capable of inverting a memory cell with unstable data retention characteristics by inputting a reverse digit signal of such a short period that normally writing is impossible while the retention current is reduced. Therefore, defective cells can be detected reliably, and the test time can be reduced to about one-tenth of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の動作を説明するための第3
図の回路の各部信号のタイミング図、第2図は第3図の
回路の節点A及びBの電圧波形図、第3図は被試験半導
体記憶装置の一例の回路図である。 D、、D、・・・ディジット線、1.・・・保持電流、
MIJ・・・第i行第j列のメモリセル、Ql・・・第
i行の定電流トランジスタ、So・・・ディジット信号
、T wp・・・通常書込時間、T nwp・・・最短
書込時間、VCC・・・高位電圧、VCC・・・定位電
圧、wg・・・書込パルス、WI・・・第i行のワード
線、to・・・電圧切換時点、VA、V、・・・A節点
電圧、VB 、Vb・・・8節点電圧。
FIG. 1 is a third diagram for explaining the operation of one embodiment of the present invention.
FIG. 2 is a timing diagram of signals of various parts of the circuit shown in the figure, FIG. 2 is a voltage waveform diagram at nodes A and B of the circuit of FIG. 3, and FIG. 3 is a circuit diagram of an example of a semiconductor memory device under test. D, ,D, . . . digit line, 1. ...Holding current,
MIJ...memory cell in the i-th row and j-th column, Ql...constant current transistor in the i-th row, So...digit signal, T wp...normal write time, Tnwp...shortest write time write time, VCC...high voltage, VCC...local voltage, wg...write pulse, WI...word line of i-th row, to...voltage switching time, VA, V,...・A node voltage, VB, Vb...8 node voltage.

Claims (1)

【特許請求の範囲】[Claims] ワード線及びディジット線及び保持電流の回路に接続し
て書込データを保持する被試験メモリセルの複数個に電
源電圧を供給して書込み状態を試験する半導体記憶装置
の試験方法において、通常のパルス幅のディジット信号
を書込み後に、前記電源電圧を低減して前記保持電流の
値を前記被試験メモリセルと同一製造ロッドの保持電流
分布の下限値近傍に低減設定し、また前記ディジット信
号を反転し、次に書込パルスの幅を前記通常のパルス幅
よりも短時間に設定してから前記被試験メモリセルの前
記反転データの書込の有無を検出することを特徴とする
半導体記憶装置の試験方法。
In a semiconductor memory device test method that tests the write state by supplying power supply voltage to multiple memory cells under test that connect to word lines, digit lines, and holding current circuits and hold write data, a normal pulse After writing the digit signal of the width, the power supply voltage is reduced to set the value of the holding current to near the lower limit value of the holding current distribution of the rod manufactured in the same manner as the memory cell under test, and the digit signal is inverted. , Next, the width of the write pulse is set to be shorter than the normal pulse width, and then the presence or absence of writing of the inverted data in the memory cell under test is detected. Method.
JP63222805A 1988-09-05 1988-09-05 Method for testing semiconductor storage device Pending JPH0269686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222805A JPH0269686A (en) 1988-09-05 1988-09-05 Method for testing semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222805A JPH0269686A (en) 1988-09-05 1988-09-05 Method for testing semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH0269686A true JPH0269686A (en) 1990-03-08

Family

ID=16788173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222805A Pending JPH0269686A (en) 1988-09-05 1988-09-05 Method for testing semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH0269686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097699A (en) * 2006-10-11 2008-04-24 Nec Electronics Corp Semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097699A (en) * 2006-10-11 2008-04-24 Nec Electronics Corp Semiconductor memory device

Similar Documents

Publication Publication Date Title
US5687178A (en) Method and apparatus for testing a static RAM
CA1048645A (en) Test technique for semiconductor memory array
US20060136791A1 (en) Test method, control circuit and system for reduced time combined write window and retention testing
KR100190080B1 (en) High voltage detecting circuit for semiconductor memory cell test
JPS631676B2 (en)
JP3307473B2 (en) Test circuit for semiconductor memory
JPH0785700A (en) Electronic circuit with memory device
KR100367191B1 (en) Memory IDDQ-testable through cumulative word line activation
US5963490A (en) Static semiconductor memory device having a variable power supply voltage applied to a memory cell depending on the state in use and method of testing the same
JPH0833432B2 (en) Transistor cell test circuit
KR950007140B1 (en) Current control circuit for dynamic memory
US4820974A (en) Method for measuring a characteristic of semiconductor memory device
JPH0269686A (en) Method for testing semiconductor storage device
EP0220577B1 (en) Memory array
KR950011730B1 (en) Dynamic random acess memory device
JPS6258500A (en) Method for testing semiconductor memory device
US8233341B2 (en) Method and structure for SRAM cell trip voltage measurement
US4713814A (en) Stability testing of semiconductor memories
JP2568507B2 (en) Inspection method for semiconductor memory device
JPH03278399A (en) Testing method for semiconductor device
JP2616005B2 (en) Built-in inspection circuit for semiconductor memory
JPS601720B2 (en) semiconductor memory
JPH06349298A (en) Semiconductor device
JP2002033360A (en) Semiconductor wafer
KR940008725B1 (en) Test method and circuit of semiconductor memory device