JPH03278399A - Testing method for semiconductor device - Google Patents

Testing method for semiconductor device

Info

Publication number
JPH03278399A
JPH03278399A JP2078131A JP7813190A JPH03278399A JP H03278399 A JPH03278399 A JP H03278399A JP 2078131 A JP2078131 A JP 2078131A JP 7813190 A JP7813190 A JP 7813190A JP H03278399 A JPH03278399 A JP H03278399A
Authority
JP
Japan
Prior art keywords
write
time
memory cell
data
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2078131A
Other languages
Japanese (ja)
Inventor
Takehisa Shimokawa
下川 健寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2078131A priority Critical patent/JPH03278399A/en
Publication of JPH03278399A publication Critical patent/JPH03278399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a test method for a semiconductor device capable of detecting a defective cell by performing write simultaneously with the switching of a word line after setting the width of a write pulse less than ordinary pulse width, and detecting the presence/absence of write of inversion data in a memory cell to be tested. CONSTITUTION:When the memory cell is a good product, potential difference of around 0.4V exists between the potential VA and VB of nodes A and B at a time t5 even when an inverse write signal is supplied, and it is stably operated, therefore, no inversion occurs through influence to some extent is given. When the memory cell is a defective one in which leakage current, etc., occurs, the potential difference between the potential Va and Vb is small even before the time t5, and the potential difference goes down further after the time t5, there fore, a more unstable state is generated, and the inversion occurs at a point P during the minimum write time less than ordinary write time. In such a way, it is possible to obtain the testing method for a semiconductor memory device in which the defective cell can be surely detected.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は半導体記憶装置の試験方法に関し、特にスタテ
ィックメモリの試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for testing a semiconductor memory device, and more particularly to a method for testing a static memory.

[従来の技術] 一般に、スタティックメモリは、バイポーラトランジス
タやショットキーバリアダイオード等を負荷セルとした
トランジスタのフリップフロップ回路をメモリセルとし
、定電流回路を介して回路電源に接続されている。
[Prior Art] Generally, a static memory uses a flip-flop circuit of a transistor as a load cell such as a bipolar transistor or a Schottky barrier diode as a memory cell, and is connected to a circuit power supply via a constant current circuit.

第4図は被試験半導体記憶装置の一例の回路図である。FIG. 4 is a circuit diagram of an example of a semiconductor memory device under test.

試験される第i行第J列のメモリセルMIJはPNP 
トランジスタ負荷型で、第iのトランジスタQ、および
ワード線Wlと第iの定電流トランジスタQ1との間に
挿入され、一対のエミッタはそれぞれ第5列のディジッ
ト線DJおよびり、に接続されている。回路電源は、全
メモ′リセルに共通に最高電位電圧VCCおよび最低電
位電圧VEEの端子間に接続されている。通常、VCC
は接地点電位である。メモリセルMl、にはベース電位
■、と抵抗Rcで決まる保持電流I8が常に流れている
The memory cell MIJ in the i-th row and J-th column to be tested is PNP.
It is a transistor load type, and is inserted between the i-th transistor Q and word line Wl and the i-th constant current transistor Q1, and a pair of emitters are connected to the 5th column digit line DJ and R, respectively. . A circuit power supply is commonly connected to all memory cells between the terminals of the highest potential voltage VCC and the lowest potential voltage VEE. Normally, VCC
is the ground potential. A holding current I8 determined by the base potential (2) and the resistor Rc always flows through the memory cell M1.

従来、被試験メモリセルの漏れ電流が大きいため、保持
が不安定な書込み特性の不良品セルを検出するには、次
の方法があった。図を用いて説明すると、第5図は従来
例の動作を説明するための第4図の回路の各部信号のタ
イミング図、第6図は第4図の回路の節点AおよびBの
電圧波形図である。
Conventionally, the following methods have been used to detect defective cells with unstable write characteristics due to large leakage current in memory cells under test. To explain using figures, FIG. 5 is a timing diagram of signals of each part of the circuit of FIG. 4 to explain the operation of the conventional example, and FIG. 6 is a voltage waveform diagram of nodes A and B of the circuit of FIG. 4. It is.

第5図に示すように、最高電位電圧V。Cは接地点電位
で不変のまま、最低電位電圧v0をまず、通常の−4,
5vに設定しておいて、アドレス信号SIJで被試験メ
モリセルMIJを選択し、データ信号S、を時点t11
から書込みパルスWEの通常の書込み時間Twp (I
 0ns)の間、データ書込み信号面およびWCとして
ディジット線り、および島に供給する。
As shown in FIG. 5, the highest potential voltage V. C remains unchanged at the ground point potential, and the lowest potential voltage v0 is first set to the normal -4,
5V, select the memory cell under test MIJ with the address signal SIJ, and send the data signal S at time t11.
The normal write time Twp (I
0 ns), the data write signal plane and WC are supplied to the digit line and the island.

次に、最高電位電圧VCCをそのままにして時点t1□
でVoを−3,6vに切換えて電源電圧を下げて、保持
電流IHを例えば15μAからメモリセルMl、の保持
電流の分布下限値以下の05μ八程度に設定する。
Next, leave the highest potential voltage VCC as it is at time t1□
Then, Vo is switched to -3.6 V to lower the power supply voltage, and the holding current IH is set from, for example, 15 μA to about 05 μ8, which is below the lower limit of the distribution of the holding current of the memory cell M1.

次に、時点L’sでデータ書込み信号WC,WCを反転
してから、通常の書込可能な最小のパルス幅である6n
sよりも短い最短書込時間T。1(たとえば5 ns)
の書込みパルスWEを時点t4から供給する。
Next, at time L's, the data write signals WC and WC are inverted, and then the normal writeable minimum pulse width of 6n
The shortest writing time T is shorter than s. 1 (e.g. 5 ns)
A write pulse WE is supplied from time t4.

第6図の実線に示すように、良品のメモリセルの場合は
節点AおよびBの電位VIA * VIBは時点t14
以前には約0.5V程度の電位差があり安定なので多少
影響はされるが反転はしない。
As shown by the solid line in FIG. 6, in the case of a good memory cell, the potentials VIA * VIB at nodes A and B are at time t14.
Previously, there was a potential difference of about 0.5V and it was stable, so although it would be affected to some extent, it would not reverse.

点線に示すように漏れ電流等がある不良品のメモリセル
の場合は、時点1+<以前、節点電位Vl11およびV
lの電位差は小さく不安定で高感度となり、通常よりも
短い最短書込み時間T工、の5nsの間に点PIで反転
する。
As shown by the dotted line, in the case of a defective memory cell with leakage current, etc., before time 1+<, the node potentials Vl11 and V
The potential difference at l is small and unstable, resulting in high sensitivity, and is reversed at point PI during the shortest write time T, which is 5 ns, which is shorter than usual.

したがって、反転データを検出したメモリセルは、漏れ
電流が大きくデータ保持が不安定な不良品セルと判定で
き、かつ、試験時間はセルあたり数μsで済む。
Therefore, a memory cell in which inverted data is detected can be determined to be a defective cell with large leakage current and unstable data retention, and the test time can be a few μs per cell.

[発明が解決しようとする課題] 上述した従来の半導体装置の試験方法の欠点を図を用い
て説明する。第7図はワード線の切換え時(7)W、、
 Ll+11 ト−t= ル0)節点A、B(7)電位
VA、 VBの波形図を示している。従来の試験方法で
はメモリセルが完全に選択された状態、図中では時点t
12以降で逆データを書込む方法をとっている。
[Problems to be Solved by the Invention] The drawbacks of the conventional semiconductor device testing method described above will be explained with reference to the drawings. Figure 7 shows (7) W when switching the word line.
Ll+11 Tort=L0) Nodes A, B (7) A waveform diagram of potentials VA, VB is shown. In the conventional test method, the memory cell is completely selected, at time t in the figure.
12 and later uses a method of writing reverse data.

しかし、回路の動作中、特にワード線が切換わる時点t
elからt2□の間では電位v、、 veは過渡状態に
あり、その電位差■、は完全に選択されたときよりも小
さくなる。
However, during the operation of the circuit, especially at the time t when the word line switches
Between el and t2□, the potentials v,, ve are in a transient state, and the potential difference ■, is smaller than when completely selected.

このようにセル選択の過渡時にvAと■、のマージンが
なくなる程度の不良セルは従来の試験方法では検出され
に(いという欠点がある。
As described above, the conventional testing method has the drawback that a defective cell to the extent that the margin between vA and (2) disappears during the transition of cell selection cannot be detected.

本発明の目的は、セル選択の過渡時に■6と■6のマー
ジンがなくなるような不良セルも検出できる、半導体装
置の試験方法を提供することである。
An object of the present invention is to provide a semiconductor device testing method capable of detecting defective cells in which the margin between (1)6 and (6) disappears during cell selection transition.

[課題を解決するための手段] 本発明の半導体記憶装置の試験方法は、ワード線および
ディジット線及び保持電流の回路に接続して書込みデー
タを保持する被試験メモリセルの複数個に電源電圧を供
給して書込み状態を試験する、半導体記憶装置の試験方
法であって、通常のパルス幅のデータ書込み信号で書込
み後に、前記電源電圧を下げて、前記保持電流の値を前
記被試験メモリセルと同一製造ロッドの保持電流分布の
下限値以下に設定し、次に前記データ書込み信号を反転
させ、さらに書込パルスの幅を前記通常のパルス幅より
も短時間に設定してからワード線の切り換えと同時に書
込みを行い前記被試験メモリセルの前記反転データの書
込みの有無を検出するものである。
[Means for Solving the Problems] A semiconductor memory device testing method of the present invention applies a power supply voltage to a plurality of memory cells under test that are connected to a word line, a digit line, and a holding current circuit to hold write data. A test method for a semiconductor memory device in which a write state is tested by supplying a data write signal with a normal pulse width, the power supply voltage is lowered, and the value of the holding current is set to the value of the memory cell under test. Set to below the lower limit value of the holding current distribution of the same manufactured rod, then invert the data write signal, set the write pulse width to a shorter time than the normal pulse width, and then switch the word line. At the same time, writing is performed to detect whether or not the inverted data has been written in the memory cell under test.

[作用] 良品のメモリセルの場合は電位■、およびvI、はワー
ド線切り換え・時点で逆の書込み信号が供給されても約
0,4V程度の電位差があり、安定なので多少影響はさ
れるが反転は・しない、しかし漏れ電流等がある不良品
のメモリセルの場合は、ワード線切り換え以前でも電位
V、および■、の電位差が小さいうえ、ワード線切換以
降でさらにその電位差は小さくなるので、ますます不安
定な状態となり、通常よりも短い書込み時間の間に反転
する。
[Function] In the case of a good memory cell, there is a potential difference of about 0.4 V even if a reverse write signal is supplied at the time of word line switching, and the potentials ■ and vI are stable, so this will not be affected to some extent. In the case of a defective memory cell that does not invert, but has leakage current, etc., the potential difference between potentials V and ■ is small even before the word line is switched, and the potential difference becomes even smaller after the word line is switched. It becomes increasingly unstable and reverses during a shorter than normal write time.

[実施例コ 次に、本発明の実施例について図面を参照して説明する
[Embodiments] Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の動作を説明するための、第
4図の回路の各部信号のタイミング図、第2図は第4図
の回路の節点A、Bおよびワード線り、 W++や、)
の電圧波形図である。
1 is a timing diagram of various signals in the circuit of FIG. 4 for explaining the operation of an embodiment of the present invention, and FIG. 2 is a timing diagram of nodes A, B and word lines of the circuit of FIG. 4, W++ or,)
FIG.

第1図に示すように、最高電位電圧VCCは接地点電位
で不変のまま、最低電位電圧■、をまず通常の−4,5
■に設定しておいてアドレス信号SIJで被試験メモリ
セルMIJを選択し、データ信号S6を時点t1から書
込みパルスWEの通常書込み時間T、p(10ns)の
間、データ書込み信号WCおよびWCとしてディジット
線り、および島に供給する。書込み後、時点t2でアド
レス信号SIJを切り換えて選択ワード線を一端Wlか
らW++。I、に切り換える。次に、VCCをそのまま
にして時点t3でVEEを−3,6Vに切り換えて電源
電圧を下げて、保持電流■。を例えば1.5μAからメ
モリセルMIJの保持電流の分布下限値以下の05μA
程度に設定する。次に、時点t4でデータ信号S、を反
転させてから、同時にアドレス信号SIJでふたたび選
択ワード線をWNや、、からwlに切換える。このLL
や、)とwIの切換わる時点tsから、通常の書込み可
能な最小のパルス幅である6nsよりも短い最短書込み
時間T。wp(たとえば5 ns)の書込みパルスWE
を供給する。
As shown in Figure 1, the highest potential voltage VCC remains unchanged at the ground potential, and the lowest potential voltage
2, select the memory cell under test MIJ with the address signal SIJ, and use the data signal S6 as the data write signals WC and WC from time t1 to the normal write time T, p (10 ns) of the write pulse WE. digit line, and supply to the island. After writing, at time t2, the address signal SIJ is switched to change the selected word line from one end Wl to W++. Switch to I. Next, VEE is switched to -3.6V at time t3 while leaving VCC unchanged to lower the power supply voltage, resulting in a holding current (■). For example, from 1.5μA to 05μA below the lower limit of the distribution of the holding current of the memory cell MIJ.
Set to a certain degree. Next, at time t4, the data signal S is inverted, and at the same time, the selected word line is again switched from WN, etc. to wl using the address signal SIJ. This LL
The shortest write time T is shorter than 6 ns, which is the minimum pulse width that can normally be written, from the time point ts at which wI and wI switch. write pulse WE of wp (e.g. 5 ns)
supply.

第2図に示すように、ワード線W1とWN+11が切換
わる時点t、でTnwpの書込みパルスが供給されるが
、良品のメモリセルの場合は節点AおよびBの電位■、
および■、は時点t、で逆の書込み信号が供給されても
約0.4V程度の電位差があり、安定なので多少影響は
されるが反転はしない。しかし点線で示すように漏れ電
流等がある不良品のメモリセルの場合は、時点t、以前
でも節点電位v1および■、の電位差が小さいうえ一ワ
ード線切換時の時点t、以降でさらにその電位差は小さ
くなるので、ますます不安定な状態となり、通常よりも
短い最短書込み時間Tnwp (5ns)の間に点Pて
反転する。
As shown in FIG. 2, a write pulse of Tnwp is supplied at time t when the word lines W1 and WN+11 are switched, but in the case of a good memory cell, the potentials of nodes A and B are
and ■, even if a reverse write signal is supplied at time t, there is a potential difference of about 0.4 V and it is stable, so it will be affected to some extent but will not be reversed. However, as shown by the dotted line, in the case of a defective memory cell with leakage current, etc., the potential difference between the node potentials v1 and ■ is small even before time t, and even more so at time t and after when one word line is switched. becomes smaller, resulting in an increasingly unstable state, and is reversed at point P during the shortest writing time Tnwp (5 ns), which is shorter than normal.

第3図は本発明の第2の実施例の動作を説明するための
第4図の回路の各部信号のタイミング図である。
FIG. 3 is a timing chart of signals of each part of the circuit of FIG. 4 for explaining the operation of the second embodiment of the present invention.

この実施例では1回の書込みパルス幅をjwpとt工、
の和とし、そのパルスの中でアドレス信号とデータ信号
を切換えている。不良セル内部レベルV−,Vbに与え
る影響は第1の実施例と同じであるが、1回の書込みパ
ルスと1回のアドレス切換で済むため、第1の実施例に
くらべ、試験時間が半分に短縮されるという利点がある
In this embodiment, the width of one write pulse is jwp and t,
The address signal and data signal are switched within the pulse. The effect on the internal levels V- and Vb of the defective cell is the same as in the first embodiment, but since only one write pulse and one address switch are required, the test time is halved compared to the first embodiment. It has the advantage of being shortened to

[発明の効果コ 以上説明したように本発明は、保持電流が低減された状
態でワード線の切換えと同時に、正常セルでは書込み不
可能なほどの短い期間の逆データ書込み信号を入力して
、動作時でのデータ保持特性の不安定なセルのデータを
反転させることにより、不良品セルを確実に検出するこ
とができ、かつ試験時間もセル当り数μsで済む効果が
ある。
[Effects of the Invention] As explained above, the present invention has the advantage of inputting a reverse data write signal of such a short period that it is impossible to write to a normal cell at the same time as the word line is switched in a state where the holding current is reduced. By inverting the data of cells with unstable data retention characteristics during operation, defective cells can be reliably detected and the test time can be reduced to several microseconds per cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の動作を説明するだめの
第4図の回路の各部信号のタイミング図、第2図は第4
図の回路の本発明の節点A、 B及びW、、 W、。1
の電圧波形図、第4図は被試験半導体記憶装置の一例の
回路図、第3図は第2の実施例のタイミング図である。 第5図は従来例の動作を説明するための第4図の回路の
各部信号のタイミング図、第6図は第4図の回路の従来
の節点ABの電圧波形図、第7図はり、L4+と節点A
Bの電圧波形図である。
FIG. 1 is a timing diagram of signals of each part of the circuit of FIG. 4, which is used to explain the operation of the first embodiment of the present invention, and FIG.
Nodes A, B and W, , W, of the present invention in the circuit shown in the figure. 1
FIG. 4 is a circuit diagram of an example of a semiconductor memory device under test, and FIG. 3 is a timing diagram of a second embodiment. 5 is a timing diagram of signals of various parts of the circuit of FIG. 4 to explain the operation of the conventional example, FIG. 6 is a voltage waveform diagram of the conventional node AB of the circuit of FIG. 4, and FIG. 7 is a beam, L4+ and node A
It is a voltage waveform diagram of B.

Claims (1)

【特許請求の範囲】 1、ワード線およびディジット線および保持電流の回路
に接続されて書込みデータを保持する被試験メモリセル
の複数個に電源電圧を供給して書込み状態を試験する、
半導体記憶装置の試験方法であって、 通常のパルス幅のデータ書込み信号で書込み後に、前記
電源電圧を下げて前記保持電流の値を前記被試験メモリ
セルと同一製造ロッドの保持電流分布の下限値以下に設
定し、次に前記データ書込み信号を反転させ、さらに書
込みパルスの幅を前記通常のパルス幅よりも短時間に設
定し、かつ前記ワード線の切り換わりと同時に書込みを
行なってから前記被試験メモリセルの前記反転データの
書込みの有無を検出する、半導体記憶装置の試験方法。
[Claims] 1. Testing the write state by supplying a power supply voltage to a plurality of memory cells under test that are connected to a word line, a digit line, and a holding current circuit and hold write data;
A test method for a semiconductor memory device, wherein after writing with a data write signal of a normal pulse width, the power supply voltage is lowered and the value of the holding current is set to the lower limit of the holding current distribution of the same manufacturing rod as the memory cell under test. Then, the data write signal is inverted, the width of the write pulse is set to be shorter than the normal pulse width, and writing is performed simultaneously with the switching of the word line, and then the data write signal is A method for testing a semiconductor memory device, which detects whether or not the inverted data is written in a test memory cell.
JP2078131A 1990-03-27 1990-03-27 Testing method for semiconductor device Pending JPH03278399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078131A JPH03278399A (en) 1990-03-27 1990-03-27 Testing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078131A JPH03278399A (en) 1990-03-27 1990-03-27 Testing method for semiconductor device

Publications (1)

Publication Number Publication Date
JPH03278399A true JPH03278399A (en) 1991-12-10

Family

ID=13653330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078131A Pending JPH03278399A (en) 1990-03-27 1990-03-27 Testing method for semiconductor device

Country Status (1)

Country Link
JP (1) JPH03278399A (en)

Similar Documents

Publication Publication Date Title
KR100377421B1 (en) Semiconductor memory device with precharge voltage correction circuit
US3949383A (en) D. C. Stable semiconductor memory cell
US5463585A (en) Semiconductor device incorporating voltage reduction circuit therein
EP0642134B1 (en) Test of a static random access memory
US4156941A (en) High speed semiconductor memory
US5267205A (en) Semiconductor memory device
JPS631676B2 (en)
US4742486A (en) Semiconductor integrated circuit having function for switching operational mode of internal circuit
US3969708A (en) Static four device memory cell
JPH04228200A (en) Short-circuit detector circuit for memory array
US4587639A (en) Static semiconductor memory device incorporating redundancy memory cells
GB1536013A (en) Data storage memories
CA1252564A (en) Dynamic memory with increased data retention time
US5963490A (en) Static semiconductor memory device having a variable power supply voltage applied to a memory cell depending on the state in use and method of testing the same
JPH0833432B2 (en) Transistor cell test circuit
KR950007140B1 (en) Current control circuit for dynamic memory
US4864539A (en) Radiation hardened bipolar static RAM cell
US4409674A (en) Semiconductor memory
US3510849A (en) Memory devices of the semiconductor type having high-speed readout means
KR950011730B1 (en) Dynamic random acess memory device
JPS5826114B2 (en) bipolar transistor memory cell
JPH03278399A (en) Testing method for semiconductor device
US8233341B2 (en) Method and structure for SRAM cell trip voltage measurement
JPH0529999B2 (en)
JPH0269686A (en) Method for testing semiconductor storage device