JPH0268503A - Production of plastic optical fiber - Google Patents

Production of plastic optical fiber

Info

Publication number
JPH0268503A
JPH0268503A JP63221557A JP22155788A JPH0268503A JP H0268503 A JPH0268503 A JP H0268503A JP 63221557 A JP63221557 A JP 63221557A JP 22155788 A JP22155788 A JP 22155788A JP H0268503 A JPH0268503 A JP H0268503A
Authority
JP
Japan
Prior art keywords
optical fiber
heating furnace
plastic optical
heat treatment
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63221557A
Other languages
Japanese (ja)
Inventor
Isao Fujita
勲 藤田
Heiroku Suganuma
菅沼 平六
Shin Yamaguchi
伸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63221557A priority Critical patent/JPH0268503A/en
Publication of JPH0268503A publication Critical patent/JPH0268503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To provide the plastic optical fiber which is excellent in mechanical properties and particularly in tensile strength and elongation, flex resistance, flexibility, dimensional stability, etc., by blowing cold air to a heating furnace outlet and cooling the optical fiber while discharging a gaseous mixture composed of the cold air and a heating gas leaking out of the heating furnace. CONSTITUTION:The conjugate spun plastic optical fiber 1 passes the inside of the heating furnace continuously in an arrow direction so as to be heat treated. The heating gas in the heating furnace flows from a supply port 16 to an outflow port 17 in the direction reverse from the progressing direction of the optical fiber 1 or in the same direction. The optical fiber 1 is thus heat treated. A contactless type sealing device consisting of a cold air supply opening 24 and a discharge port, 25 which discharges the gaseous mixture composed of the cold air and the heating gas leaking out of the heating furnace is provided to the aperture part of the heating furnace outlet 19. The leakage of the heating gas from the heating furnace is, therefore, eliminated and since the impartation of the cooling effect is possible; therefore, the plastic optical fiber which is improved in the mechanical properties, is decreased in the fluctuation thereof and has excellent light transparency is produced.

Description

【発明の詳細な説明】 「産業上の利用分野コ 本発明はプラスチック光ファイバの製造方法に関する。[Detailed description of the invention] “Industrial Application Area The present invention relates to a method of manufacturing a plastic optical fiber.

ざらに詳しくは、工業用各種センサ、データリンク等、
短距離通信用途に使用されるプラスチック光ファイバに
良好な機械的性質や寸法安定性を付与しうる製造方法に
関する。
For more details, please refer to various industrial sensors, data links, etc.
The present invention relates to a manufacturing method capable of imparting good mechanical properties and dimensional stability to plastic optical fibers used in short-range communication applications.

[従来の技術] 有機系光学繊維、すなわちプラスチック光ファイバは、
ガラス系光学I!維に比較して透光性には劣るが、安価
で取扱い性に優れているために、短距離伝送用として広
く利用されようとしている。
[Prior art] Organic optical fibers, that is, plastic optical fibers, are
Glass optics I! Although it has inferior light transmittance compared to fiber, it is inexpensive and easy to handle, so it is becoming widely used for short-distance transmission.

このプラスチック光ファイバは、芯材にポリメチルメタ
クリレート、ポリスチレン、ポリカーボネー1〜等の透
明性に優れた重合体を用い、鞘材は芯材より低屈折率の
重合体を用いて一般的には同心円状に2〜3層複合紡糸
され、機械的性質を向上する目的で延伸を行ない、必要
に応じて寸法安定性を付与する目的で熱処理を行なった
後に巻取られるのが一般的な製法でおる。
This plastic optical fiber uses a highly transparent polymer such as polymethyl methacrylate, polystyrene, or polycarbonate 1 for the core material, and a polymer with a lower refractive index than the core material for the sheath material. The general manufacturing method is to spin two to three layers of composite material concentrically, stretch it to improve mechanical properties, heat treat it if necessary to give it dimensional stability, and then wind it up. is.

このようなプラスチック光ファイバの熱処理方法として
は、我々が先に特願昭6O−271754(特開昭62
−131206号公報)および特願昭62−13816
1において提案した加熱気体が循環する加熱炉を用いて
非接触状態でプラスチック光ファイバを該加熱炉中を通
過させる方法が一般的に用いられている。熱媒体として
は、加熱ガス、加熱空気、生スチームおよび過熱スチー
ム、もしくはその他の不活性ガスが用いられるが、プラ
スチック光ファイバの加熱炉内への導入、導出のために
設けられている熱処理炉の開口部には抵抗を設けて、該
加熱炉内への空気の流入もしくは加熱炉内からの加熱気
体の流出を極力抑えるようにシールすることによって、
炉内圧を適正に維持し、炉内温度の適正化、均一化を図
り、適正に熱処理して高品質のプラスチック光ファイバ
を得んとする必要がある。むろん、かかる開口部のシー
ルは、上記品質上のことばかりでなく省エネルギー化や
低コスト化にも直ちにつながり、実際工業上は多大な意
義を有するものである。
As a method for heat treatment of such plastic optical fibers, we first published Japanese Patent Application No. 6O-271754 (Japanese Unexamined Patent Publication No. 62-1999).
-131206 Publication) and Japanese Patent Application No. 13816/1983
The method proposed in No. 1, using a heating furnace in which heated gas circulates, is generally used in which a plastic optical fiber is passed through the heating furnace in a non-contact manner. Heated gas, heated air, raw steam, superheated steam, or other inert gases are used as the heating medium, but the heat treatment furnace provided for introducing and extracting the plastic optical fiber into the heating furnace is used as the heating medium. By providing a resistance in the opening and sealing it to minimize the inflow of air into the heating furnace or the outflow of heated gas from the heating furnace,
It is necessary to properly maintain the pressure inside the furnace, to make the temperature inside the furnace appropriate and uniform, and to perform appropriate heat treatment to obtain a high-quality plastic optical fiber. Of course, such sealing of the opening not only improves the quality described above, but also immediately leads to energy saving and cost reduction, and has great industrial significance.

[発明が解決しようとする課題] このようなシールを行なうことによって、加熱炉を通過
したプラスチック光ファイバへ随伴される加熱気体はか
なり低減されるが、単なるシールのみでは徐冷となるた
めに冷却不足に基く機械物性の低下や機械物性のバラツ
キが生じ易いといった問題があった。
[Problems to be Solved by the Invention] By performing such a seal, the amount of heated gas that accompanies the plastic optical fiber that has passed through the heating furnace is considerably reduced. There have been problems in that mechanical properties are likely to deteriorate or vary due to insufficient amounts.

本発明の目的は、機械物性、待に引張強伸度や耐屈曲性
、可撓性および寸法安定性に優れ、かつ優れた透光性を
有するプラスチック光ファイバを提供するにある。ざら
に他の目的は、上記プラスチック光フアイバ製造におけ
る技術上の問題点である熱処理時の不均一さぁよび熱処
理1変の冷却不足に基く品質の変動バラツキの小さなプ
ラスチック光ファイバの製造方法を提供するにある。
An object of the present invention is to provide a plastic optical fiber having excellent mechanical properties, particularly tensile strength and elongation, bending resistance, flexibility, and dimensional stability, and excellent translucency. Another object of the invention is to provide a method for manufacturing plastic optical fibers that reduces the variation in quality caused by non-uniformity during heat treatment and insufficient cooling during heat treatment, which are the technical problems in manufacturing plastic optical fibers. It is in.

[課題を解決するための手段] 本発明は次の構成を有する。[Means to solve the problem] The present invention has the following configuration.

(1)複合紡糸してなるプラスチック光ファイバを連続
的に加熱炉へ通過させて熱処理を行なうに際し、加熱炉
内通路を並流もしくは向流で加熱気体を循環して該プラ
スチック光ファイバを熱処理した後、加熱炉出口の開口
部に冷風を吹き込み、該冷風と加熱炉から漏出する加熱
気体との混合気体を排出しながら冷却することを特徴と
するプラスチック光ファイバの製造方法。
(1) When a composite spun plastic optical fiber is continuously passed through a heating furnace for heat treatment, the plastic optical fiber is heat-treated by circulating heated gas in parallel or countercurrent through the passage in the heating furnace. A method for manufacturing a plastic optical fiber, characterized in that cooling is carried out by blowing cold air into the opening of the heating furnace outlet and discharging a gas mixture of the cold air and the heated gas leaking from the heating furnace.

(2)  熱処理が、未延伸プラスチック光ファイバの
非接触加熱延伸である1に記載のプラスチック光ファイ
バの製造方法。
(2) The method for producing a plastic optical fiber according to 1, wherein the heat treatment is non-contact heating stretching of the unstretched plastic optical fiber.

(3)熱処理が、延伸されたプラスチック光ファイバへ
寸法安定性を付与するための定長熱処理または3%以下
の弛緩率での弛緩熱処理で必る1に記載のプラスチック
光ファイバの製造方法。
(3) The method for producing a plastic optical fiber according to item 1, wherein the heat treatment is a constant length heat treatment or a relaxation heat treatment at a relaxation rate of 3% or less for imparting dimensional stability to the drawn plastic optical fiber.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は、本発明に使用するプラスチック光ファイバの
複合紡糸−非接触加熱延伸一非接触熱処理一巻取方法の
一例を示す側断面図である。
FIG. 1 is a side sectional view showing an example of a method of composite spinning, non-contact heating drawing, non-contact heat treatment, and winding of a plastic optical fiber used in the present invention.

図において、1はプラスチック光ファイバ、2は複合紡
糸口金、3は冷却用チムニ−14は未延伸プラスチック
光ファイバの引取ローラでおり、かつ、延伸帯域への供
給ローラー、5はブロックヒーターと加熱流体循環用フ
ァンおよび流体加熱ヒーターを装備する非接触加熱延伸
帯域、9は延伸ローラー、つまり、延伸されたプラスチ
ック光ファイバを延伸帯域から引出すローラーでおり、
同時に非接触熱処理帯域への供給ローラー、1゜は延伸
されたプラスチック光ファイバの寸法安定性を付与する
ための非接触熱処理帯域であり、14はその熱処理ロー
ラー、15はトラバースさせながらトルクモーターによ
り駆動されるスピンドルに装着されたフランジ付きボビ
ンへプラスチック光ファイバを巻取る巻取機である。
In the figure, 1 is a plastic optical fiber, 2 is a composite spinneret, 3 is a cooling chimney, 14 is a take-up roller for the undrawn plastic optical fiber and a supply roller to the drawing zone, 5 is a block heater and a heating fluid. a non-contact heated drawing zone equipped with a circulation fan and a fluid heater; 9 is a drawing roller, i.e. a roller for drawing out the drawn plastic optical fiber from the drawing zone;
At the same time, a supply roller to the non-contact heat treatment zone, 1° is a non-contact heat treatment zone for imparting dimensional stability to the drawn plastic optical fiber, 14 is its heat treatment roller, and 15 is driven by a torque motor while traversing. This is a winder that winds plastic optical fiber onto a flanged bobbin attached to a spindle.

第2図は、従来の熱処理用加熱炉の概略断面図であり、
16は加熱気体の供給口、17は加熱気体の流出口でお
る。この場合、熱処理を施されるプラスチック光ファイ
バ1が図中の矢印の方向に進むので加熱気体は向流方向
に流れるといえる。
FIG. 2 is a schematic cross-sectional view of a conventional heating furnace for heat treatment.
16 is a heating gas supply port, and 17 is a heating gas outlet. In this case, since the plastic optical fiber 1 to be heat-treated advances in the direction of the arrow in the figure, it can be said that the heated gas flows in the countercurrent direction.

プラスチック光ファイバ1の進行方向と同じく、加熱気
体を並流方向に流す場合は17が加熱気体の供給口、1
6が加熱気体の流出口でおる。また、18が加熱炉の入
口、19が加熱炉の出口でおり、双方とも開口部に抵抗
(風向板)23を設けて、該加熱炉内への空気の流入も
しくは加熱炉内からの加熱気体の流出を極力抑えるよう
にしているが不十分で必る。20が加熱炉の外壁、21
が保温材、22がブロックヒーターでおる。この加熱炉
を用いた場合はシールが不十分でおるために、加熱炉を
通過したプラスチック光ファイバへ随伴される加熱気体
はかなりの熱量を有するために、加熱炉外へ出たプラス
チック光ファイバは徐冷となるために冷却不足に基く機
械物性の低下や機械物性の変動バラツキが生じ易い。ま
た、漏洩した加熱気体により作業環境の悪化も生じるし
、省エネルギー化や低コスト化の点からも好ましくない
When the heated gas is flowed in the same direction as the traveling direction of the plastic optical fiber 1, 17 is the heating gas supply port;
6 is the heated gas outlet. Further, 18 is an inlet of the heating furnace, and 19 is an outlet of the heating furnace, and both are provided with a resistor (wind direction plate) 23 at the opening to allow air to flow into the heating furnace or heated gas from inside the heating furnace. Although efforts are being made to suppress the outflow of water as much as possible, it is insufficient and inevitably occurs. 20 is the outer wall of the heating furnace, 21
2 is a heat insulator and 22 is a block heater. When this heating furnace is used, the seal is insufficient, and the heated gas that accompanies the plastic optical fiber passing through the heating furnace has a considerable amount of heat, so the plastic optical fiber that exits the heating furnace is Due to slow cooling, deterioration of mechanical properties and variations in mechanical properties are likely to occur due to insufficient cooling. Further, the leaked heated gas causes deterioration of the working environment, which is also unfavorable from the viewpoint of energy saving and cost reduction.

第3図は本発明に係る熱処理用加熱炉の概略側断面図で
おり、図において加熱炉出口19の開口部に冷風の吹出
し口24と該冷風と加熱炉からの漏出する加熱気体との
混合気体を排出する排出口25からなる非接触式シール
装置を設けて、プラスチック光ファイバ1を冷却するこ
とができるようにしたものである。26は非接触式シー
ル装置の仕切材、27は仕切材26によって形成された
セルである。なあ、この図の加熱炉方式の場合は入口1
8には簡易型シール装置である抵抗(風向板)23が設
けられている。
FIG. 3 is a schematic side sectional view of the heating furnace for heat treatment according to the present invention, and in the figure, a cold air outlet 24 is provided at the opening of the heating furnace outlet 19, and the cold air is mixed with the heated gas leaking from the heating furnace. A non-contact sealing device consisting of an exhaust port 25 for discharging gas is provided to cool the plastic optical fiber 1. 26 is a partitioning material of the non-contact type sealing device, and 27 is a cell formed by the partitioning material 26. By the way, in the case of the heating furnace method shown in this figure, inlet 1
8 is provided with a resistor (wind direction plate) 23 which is a simple sealing device.

第4図は本発明の熱処理用加熱炉の他の一例をを示す概
略側断面図であり、加熱炉入口1Bにも非接触式シール
装置を設けたものでおる。27は仕切材26によって形
成されたセルでおる。
FIG. 4 is a schematic side sectional view showing another example of the heating furnace for heat treatment of the present invention, in which a non-contact type sealing device is also provided at the heating furnace inlet 1B. 27 is a cell formed by the partition material 26.

加熱炉の入口部18と出口部19との双方に非接触式シ
ール装置を設けることにより、省エネルギー化と低コス
ト化および作業環境改善を図ったものでおる。
By providing non-contact sealing devices at both the inlet 18 and outlet 19 of the heating furnace, it is possible to save energy, reduce costs, and improve the working environment.

第5図は第4図にあけるz−z’矢視概略断面図であり
、加熱炉の上部は二点鎖線で示したにうに上方へ開放す
ることができる。これは、加熱炉への多糸条のプラスチ
ック光ファイバ1を糸通しやすくするためであり、非接
触糸シール装置も加熱炉と同様に上下へ二分割され、糸
通しが容易にできるように工夫されている。
FIG. 5 is a schematic sectional view taken along the line z-z' in FIG. 4, and the upper part of the heating furnace can be opened upward as shown by the two-dot chain line. This is to make it easier to thread the multi-filament plastic optical fiber 1 into the heating furnace, and the non-contact thread sealing device is also divided into two halves, top and bottom, just like the heating furnace, so that it can be threaded easily. has been done.

第6図は非接触式シール装置の拡大側断面図であり、第
7図は第6図のY−Y’矢禍概略断面図である。仕切材
26はプラスチック光ファイバ1の通路に対して対設さ
れており、整流効果を与える目的で蜂巣状の六角形で上
下のパネル28によりセル27が形成されている。この
対設した構造によりシール効果が付与される。ざらに、
供給口24から吹きつけられる冷風(温度:15〜25
°C2湿度:30〜65%RH,風速二〇、2〜20m
/S)により冷却される。
FIG. 6 is an enlarged side sectional view of the non-contact sealing device, and FIG. 7 is a schematic sectional view taken along the line YY' in FIG. The partition member 26 is provided opposite to the path of the plastic optical fiber 1, and has a honeycomb-like hexagonal cell 27 formed by upper and lower panels 28 for the purpose of providing a rectifying effect. This opposing structure provides a sealing effect. Roughly,
Cold air blown from the supply port 24 (temperature: 15 to 25
°C2 humidity: 30-65%RH, wind speed 20, 2-20m
/S).

次いで、プラスチック光ファイバ1に随伴されて加熱炉
から漏出してくる加熱気体と冷風との混合気体を排出口
25から排出するため、プラスチック光ファイバに随伴
される加熱気体は除去される。それにより、加熱後の徐
冷に基く機械物性の低さやバラツキが軽減される。この
図の非接触式シール装置に設けられた加熱気体と冷風と
の混合気体の排出機溝としては、シロッコファン等によ
り吸引されて排出する機構を適用できる。
Next, the mixed gas of heated gas and cold air, which is accompanied by the plastic optical fiber 1 and leaks from the heating furnace, is discharged from the exhaust port 25, so that the heated gas which is accompanied by the plastic optical fiber is removed. This reduces the low and uneven mechanical properties caused by slow cooling after heating. As the ejector groove for the mixed gas of heated gas and cold air provided in the non-contact type sealing device shown in this figure, a mechanism for suctioning and ejecting the mixed gas by a sirocco fan or the like can be applied.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

[実施例] 十分に精製された市販のメチルメタクリレートを連続塊
状ラジカル重合し、脱モノマして、重量平均分子量が8
5,000、残存モノマ含有量が0.17重量%のポリ
メチルメタクリレートを得た。このポリメチルメタクリ
レートを芯成分とし、市販の弗化メタクリレートを鞘成
分として複合紡糸し、未延伸プラスチック光ファイバを
作成した。
[Example] Sufficiently purified commercially available methyl methacrylate was subjected to continuous bulk radical polymerization and demonomerized to have a weight average molecular weight of 8.
5,000 and a residual monomer content of 0.17% by weight was obtained. This polymethyl methacrylate was used as a core component, and a commercially available fluorinated methacrylate was used as a sheath component, which was composite-spun to produce an undrawn plastic optical fiber.

未延伸プラスチック光ファイバを第1図に示した非接触
加熱延伸装置と非接触熱処理装置および巻取装置を有す
るプロセスにより非接触加熱延伸非接触熱処理−巻取り
を行なった、この方法で非接触加熱延伸および非接触熱
処理を行なうのに際して、加熱炉としては第2図に示し
た従来の装置と第4図および第5図に示した本発明の改
良した加熱炉装置を用いて、第1表の条件で試験し、同
表に示した結果を得た。
An undrawn plastic optical fiber was subjected to non-contact heating, drawing, non-contact heat treatment and winding using the process shown in Fig. 1, which includes a non-contact heating and drawing device, a non-contact heat treatment device, and a winding device. When carrying out the stretching and non-contact heat treatment, the conventional heating furnace shown in FIG. 2 and the improved heating furnace apparatus of the present invention shown in FIGS. 4 and 5 are used. The test was conducted under the following conditions, and the results shown in the table were obtained.

本発明では加熱炉から漏出した加熱気体の随伴に伴なう
徐冷作用による機械物性の低さや値のバラツキを防止す
るので、すぐれた機械物性を有するプラスチック光ファ
イバを得ることが確認できた。
In the present invention, it was confirmed that a plastic optical fiber having excellent mechanical properties can be obtained because it prevents poor mechanical properties and variations in values due to slow cooling caused by the accompanying heating gas leaking from the heating furnace.

[発明の効果] 本発明のプラスチック光ファイバの製造方法は、従来の
プラスチック光ファイバの熱処理方法、特に加熱炉の構
造に基く欠点を解決し、加熱炉からの加熱気体の漏出を
なくし、さらに、加熱炉出口において冷風と該プラスチ
ック光ファイバを接触させることにより、冷却効果を付
与できるため、機械物性の向上と機械物性のバラツキを
低減でき、しかも省エネルギー化とそれによる低コスト
化を図ることができる。
[Effects of the Invention] The method for manufacturing a plastic optical fiber of the present invention solves the drawbacks of conventional heat treatment methods for plastic optical fibers, especially the structure of the heating furnace, eliminates leakage of heated gas from the heating furnace, and further, By bringing the plastic optical fiber into contact with the cold air at the exit of the heating furnace, a cooling effect can be imparted, which can improve mechanical properties and reduce variations in mechanical properties, while also saving energy and reducing costs. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用するプラスチック光ファイバの複
合紡糸−非接触加熱延伸−非接触熱処理巻取方法の一例
を示す概略側断面図、第2図は従来の熱処理用加熱炉の
概略側断面図、第3図は本発明に係る熱処理用加熱炉の
概略側断面図、第4図は本発明の熱処理用加熱炉の他の
一例を示す概略側断面図、第5図は第4図におけるz−
z’矢視概略断面図、第6図は非接触式シール装置の拡
大断面図、第7図は第6図におけるY−Y’矢視概略断
面図でおる。 1ニブラスチツク光フアイバ 2:複合紡糸口金 3:冷却用チムニ 4:未延伸プラスチック光フアイバ用引取ローラー兼延
伸帯域への供給ローラー 5:非接触加熱延伸帯域 6:加熱流体用ファン 7:加熱流体用ヒーター 8:非接触シール装置 9:延伸ローラー 10:非接触熱処理帯域 11:加熱流体用ファン 12:加熱流体用ヒーター 13:非接触シール装置 14:熱処理ローラー 15:巻取機 16:加熱気体の供給口 17:加熱気体の流出口 18:加熱炉入口 19:加熱炉出口 20:加熱炉外壁 21:断熱材 22ニブロツクヒーター 23:抵抗(風向板〉 24:冷風吹出し口 25:冷風と漏出加熱気体との混合気体の排出口26:
非接触シール装置の仕切材 27:仕切材によって形成されたセル 28:パネル
FIG. 1 is a schematic side sectional view showing an example of the composite spinning-non-contact heating drawing-non-contact heat treatment winding method of the plastic optical fiber used in the present invention, and FIG. 2 is a schematic side sectional view of a conventional heating furnace for heat treatment. 3 is a schematic side sectional view of the heating furnace for heat treatment according to the present invention, FIG. 4 is a schematic side sectional view showing another example of the heating furnace for heat treatment of the present invention, and FIG. z-
6 is an enlarged sectional view of the non-contact type sealing device, and FIG. 7 is a schematic sectional view taken along the Y-Y' arrow in FIG. 6. 1 Niblast optical fiber 2: Composite spinneret 3: Cooling chimney 4: Take-up roller for undrawn plastic optical fiber and supply roller to the drawing zone 5: Non-contact heating drawing zone 6: Fan for heated fluid 7: Heater for heated fluid 8: Non-contact sealing device 9: Stretching roller 10: Non-contact heat treatment zone 11: Heated fluid fan 12: Heated fluid heater 13: Non-contact sealing device 14: Heat treatment roller 15: Winder 16: Heated gas supply port 17: Outlet of heated gas 18: Furnace inlet 19: Furnace outlet 20: Furnace outer wall 21: Heat insulating material 22 Niblock heater 23: Resistance (wind direction plate) 24: Cold air outlet 25: Cold air and leaked heated gas Mixed gas outlet 26:
Partition material 27 of non-contact sealing device: Cell 28 formed by partition material: Panel

Claims (3)

【特許請求の範囲】[Claims] (1)複合紡糸してなるプラスチック光ファイバを連続
的に加熱炉へ通過させて熱処理を行なうに際し、加熱炉
内通路を並流もしくは向流で加熱気体を循環して該プラ
スチック光ファイバを熱処理した後、加熱炉出口の開口
部に冷風を吹き込み、該冷風と加熱炉から漏出する加熱
気体との混合気体を排出しながら冷却することを特徴と
するプラスチック光ファイバの製造方法。
(1) When a composite spun plastic optical fiber is continuously passed through a heating furnace for heat treatment, the plastic optical fiber is heat-treated by circulating heated gas in parallel or countercurrent through the passage in the heating furnace. A method for manufacturing a plastic optical fiber, characterized in that cooling is carried out by blowing cold air into the opening of the heating furnace outlet and discharging a gas mixture of the cold air and the heated gas leaking from the heating furnace.
(2)熱処理が、未延伸プラスチック光ファイバの非接
触加熱延伸である請求項1に記載のプラスチック光ファ
イバの製造方法。
(2) The method for manufacturing a plastic optical fiber according to claim 1, wherein the heat treatment is non-contact heating stretching of the unstretched plastic optical fiber.
(3)熱処理が、延伸されたプラスチック光ファイバへ
寸法安定性を付与するための定長熱処理または3%以下
の弛緩率での弛緩熱処理である請求項1に記載のプラス
チック光ファイバの製造方法。
(3) The method for producing a plastic optical fiber according to claim 1, wherein the heat treatment is a fixed length heat treatment to impart dimensional stability to the drawn plastic optical fiber or a relaxation heat treatment at a relaxation rate of 3% or less.
JP63221557A 1988-09-02 1988-09-02 Production of plastic optical fiber Pending JPH0268503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221557A JPH0268503A (en) 1988-09-02 1988-09-02 Production of plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221557A JPH0268503A (en) 1988-09-02 1988-09-02 Production of plastic optical fiber

Publications (1)

Publication Number Publication Date
JPH0268503A true JPH0268503A (en) 1990-03-08

Family

ID=16768590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221557A Pending JPH0268503A (en) 1988-09-02 1988-09-02 Production of plastic optical fiber

Country Status (1)

Country Link
JP (1) JPH0268503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020376A1 (en) * 1999-09-09 2001-03-22 Mitsubishi Rayon Co., Ltd. Plastic optical fiber, optical fiber cable and plug-attached optical fiber cable and production methods therefor
JP2009062660A (en) * 2007-09-10 2009-03-26 Mitsubishi Rayon Co Ltd Plastic optical fiber producing machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020376A1 (en) * 1999-09-09 2001-03-22 Mitsubishi Rayon Co., Ltd. Plastic optical fiber, optical fiber cable and plug-attached optical fiber cable and production methods therefor
US6871000B1 (en) 1999-09-09 2005-03-22 Mitsubishi Rayon Co., Ltd. Plastic optical fiber, optical fiber cable, plugged optical fiber cable, and production methods thereof
JP4527921B2 (en) * 1999-09-09 2010-08-18 三菱レイヨン株式会社 Plastic optical fiber, optical fiber cable, optical fiber cable with plug, and manufacturing method thereof
JP2009062660A (en) * 2007-09-10 2009-03-26 Mitsubishi Rayon Co Ltd Plastic optical fiber producing machine

Similar Documents

Publication Publication Date Title
JPS57154410A (en) Polyethylene terephthalate fiber and its production
CN114045565B (en) Ultra-high molecular weight polyethylene fiber stretching equipment and process
ATE529546T1 (en) METHOD FOR PRODUCING EXTRA-FINE FALSE-WIRE-TEXTURED POLYESTER YARN, AND EXTRA-FINE FALSE-WIRE-TEXTURED POLYESTER YARN
JPH0268503A (en) Production of plastic optical fiber
CN209616333U (en) A kind of cooling collapser of inflation film
KR100562620B1 (en) Plastic optical fiber, optical fiber cable and plug-attached optical fiber cable and production methods therefor
US3083073A (en) Method for the fluid treatment of strands of elongated material
WO2002023229A2 (en) Apparatus for manufacturing optical fiber made of semi-crystalline polymer
CN104903501B (en) Stretching device and drawing process
CN217600924U (en) Production equipment of semi-dull ultralow F drawn yarn
CA1075856A (en) Texturizing of filaments
JPS63303304A (en) Production of plastic optical fiber
JP2995920B2 (en) Heat treatment method and apparatus for plastic optical fiber
CN208701269U (en) A kind of production system of ocean hawser polyester industrial yarn
CN1090608A (en) The heavily stressed spin processes of improved polyester industrial yarn
JP2718104B2 (en) Manufacturing method of plastic optical fiber
JP2001305353A (en) Heat treatment method and heat treatment device for plastic optical fiber
JPH0713684B2 (en) Method for manufacturing plastic optical fiber with excellent flex resistance
JP3303387B2 (en) Heating furnace for linear body, apparatus for manufacturing linear body, and method for manufacturing linear body
JP4418059B2 (en) Plastic optical fiber cable manufacturing method and apparatus, and plastic optical fiber curl removal method
JP2000292626A (en) Manufacture of plastic optical fiber and manufacturing device
KR840000434B1 (en) Process for producing high knot strength polyamide monofilaments
JP2000304942A (en) Method and device for manufacturing plastic optical fiber
JP2519692Y2 (en) heating furnace
JPS6269815A (en) Apparatus for heat-treatment of yarn