JP2009062660A - Plastic optical fiber producing machine - Google Patents

Plastic optical fiber producing machine Download PDF

Info

Publication number
JP2009062660A
JP2009062660A JP2007233897A JP2007233897A JP2009062660A JP 2009062660 A JP2009062660 A JP 2009062660A JP 2007233897 A JP2007233897 A JP 2007233897A JP 2007233897 A JP2007233897 A JP 2007233897A JP 2009062660 A JP2009062660 A JP 2009062660A
Authority
JP
Japan
Prior art keywords
optical fiber
plastic optical
cooling device
outer diameter
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007233897A
Other languages
Japanese (ja)
Other versions
JP5210575B2 (en
Inventor
Takeshi Kitayama
武史 北山
Hideki Kihara
英樹 木原
Atsushi Okumura
淳 奥村
Masamitsu Sekizawa
政光 関沢
Nobuyuki Ogawa
宜之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007233897A priority Critical patent/JP5210575B2/en
Publication of JP2009062660A publication Critical patent/JP2009062660A/en
Application granted granted Critical
Publication of JP5210575B2 publication Critical patent/JP5210575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plastic optical fiber producing machine enabling the outer diameter of optical fiber to be put under control in high stability without declining in optical fiber productivity through maintaining optical fiber spinning speed. <P>SOLUTION: The plastic optical fiber producing machine 10 is such that a spinneret 20 with one or more outlets via which a molten resin is extruded into a strand-shape is equipped with an adjacent heating cylinder 30, and a cooling device 40 is set in proximity thereto opposite to the spinneret 20 side of the heating cylinder 30. In this machine 10, the cooling device 40 has a multi cylindrical assembly for rectifying airflow blowing on the molten resin, and each of the cylinders constituting the assembly meets the relationship: L/S=0.5-15 (wherein, S is the opening area of the cylinder; and L is the length of the cylinder). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プラスチック光ファイバを溶融紡糸する際に、外径変動を小さくできるプラスチック光ファイバの製造装置に関する。   The present invention relates to an apparatus for manufacturing a plastic optical fiber capable of reducing fluctuations in the outer diameter when melt spinning the plastic optical fiber.

従来、プラスチック光ファイバの紡糸製造は、図7に示すような製造装置110により行われていた。この製造装置110は、溶融樹脂を連続的に吐出する1つ以上の吐出口が円周状、千鳥状又は一直線状に配置された紡糸口金120と、該紡糸口金120の直下に設けられた保温筒130と、溶融紡糸されたプラスチック光ファイバを冷却するための冷却装置140とからなっている。例えば、紡糸口金120から溶融紡糸されたプラスチック光ファイバZは保温筒130の内部を通過後、冷却装置140から吹き出された冷却風により冷却され、その後、ガイド150を経てニップロール170により引き取られて延伸工程へと送られる。   Conventionally, spinning production of a plastic optical fiber has been performed by a production apparatus 110 as shown in FIG. This manufacturing apparatus 110 includes a spinneret 120 in which one or more discharge ports for continuously discharging a molten resin are arranged in a circumferential shape, a staggered shape, or a straight line, and a heat insulating material provided immediately below the spinneret 120. It comprises a cylinder 130 and a cooling device 140 for cooling the melt-spun plastic optical fiber. For example, the plastic optical fiber Z melt-spun from the spinneret 120 is cooled by the cooling air blown from the cooling device 140 after passing through the inside of the heat insulating tube 130, and then drawn by the nip roll 170 through the guide 150 and drawn. Sent to the process.

このようなプラスチック光ファイバの製造では、紡糸工程での外径の均一性が、得られるプラスチック光ファイバの外径の均一性に大きな影響を与える。紡糸工程で外径が不均一なプラスチック光ファイバが紡糸されて延伸工程に送られると、外径が細い部分に大きな引張張力が集中し、その部分がさらに細くなってしまうため、外径の不均一性が増してしまう。したがって、得られるプラスチック光ファイバの外径を均一にするためには、紡糸工程での外径変動の制御が非常に重要である。   In the production of such a plastic optical fiber, the uniformity of the outer diameter in the spinning process greatly affects the uniformity of the outer diameter of the obtained plastic optical fiber. When a plastic optical fiber with a non-uniform outer diameter is spun in the spinning process and sent to the drawing process, a large tensile tension concentrates on the part with a thin outer diameter, and the part becomes even thinner. Uniformity increases. Therefore, in order to make the outer diameter of the obtained plastic optical fiber uniform, it is very important to control the outer diameter fluctuation in the spinning process.

紡糸工程で生じるプラスチック光ファイバの外径変動には、規則的で周期性のある外径変動と、不規則的で周期性のない外径変動とがある。規則的で周期性のある外径変動を引き起こす要因の一つとしては、定量ポンプの吐出量の変動の影響が考えられる。この外径変動を制御する方法としては、例えば、計量用のギヤポンプの一次樹脂圧力を一定にする方法が示されている(特許文献1)。また、複数のギヤ式定量ポンプを用いて溶融樹脂を吐出量の変動周期の位相が異なる複数の原料流に分配し、これらの複数の原料流を、吐出量の変動周期の位相が打ち消されるように組み合わせて合流させることにより、吐出量の変動を制御する方法が示されている(特許文献2)。しかし、これらの技術では、規則的で周期性のある外径変動は制御できても不規則的で周期性のない外径変動の制御は困難である。   The outer diameter fluctuation of the plastic optical fiber that occurs in the spinning process includes an outer diameter fluctuation that is regular and periodic, and an outer diameter fluctuation that is irregular and not periodic. One of the factors causing regular and periodic fluctuations in the outer diameter is considered to be the effect of fluctuations in the discharge amount of the metering pump. As a method of controlling the outer diameter fluctuation, for example, a method of making the primary resin pressure of a metering gear pump constant is shown (Patent Document 1). In addition, using a plurality of gear-type metering pumps, the molten resin is distributed to a plurality of raw material streams having different phases of the discharge amount fluctuation period, and the phase of the fluctuation period of the discharge amount is canceled out for these plural raw material streams. A method for controlling fluctuations in the discharge amount by combining them together is disclosed (Patent Document 2). However, with these techniques, it is difficult to control irregular and non-periodic outer diameter fluctuations even though regular and periodic outer diameter fluctuations can be controlled.

不規則的で周期性のない外径変動を制御する方法としては、冷却風を吹き出す冷却装置において、冷却風の上部の風向きを斜上向きに変化させる方法が示されている(特許文献3)。しかし、特許文献3の技術では、冷却風の吹き出し口と通過するプラスチック光ファイバとの距離によって、各プラスチック光ファイバ間に外径変動の差が生じるという問題があった。また、異なる品種のプラスチック光ファイバを製造する際には、その都度煩雑な風速の微調整が必要であった。   As a method for controlling irregular and non-periodic outer diameter fluctuations, a method of changing the wind direction of the upper part of the cooling air to an obliquely upward direction in a cooling device that blows out cooling air is disclosed (Patent Document 3). However, the technique of Patent Document 3 has a problem in that a difference in outer diameter variation occurs between the plastic optical fibers depending on the distance between the cooling air blowing port and the passing plastic optical fiber. Further, when manufacturing different types of plastic optical fibers, complicated fine adjustment of the wind speed is required each time.

特許文献4には、保温筒に冷却風が入り込まないような遮断板と、風速と温度を個別に設定できる多段構造型の冷却装置とを設け、上段部分から徐々に低い温度の風を吹きつけて溶融紡糸したプラスチック光ファイバを冷却することにより、得られるプラスチック光ファイバの外径変動を制御する方法が示されている。特許文献4の技術は、品種による煩雑な風速の微調整もなく、プラスチック光ファイバの外径変動を小さく制御できる。
特開平2−24923号公報 特開平5−11127号公報 特開平4−225303号公報 特開2005−42247号公報
Patent Document 4 is provided with a shield plate that prevents cooling air from entering the heat retaining cylinder and a multi-stage structure type cooling device that can individually set the wind speed and temperature, and blows wind at a gradually lower temperature from the upper part. A method for controlling fluctuations in the outer diameter of the obtained plastic optical fiber by cooling the melt-spun plastic optical fiber is shown. The technique of Patent Document 4 can control the outer diameter fluctuation of the plastic optical fiber to be small without complicated fine adjustment of the wind speed depending on the product type.
JP-A-2-24923 JP-A-5-11127 JP-A-4-225303 JP 2005-42247 A

しかし、保温筒内で発生した温風等により、冷却装置から吹き出される冷却風の方向が乱される場合があり、外径変動を充分に制御しきれないことがあった。したがって、得られるプラスチック光ファイバの外径変動がより安定に制御できる、プラスチック光ファイバの製造装置が望まれている。
そこで、本発明では、紡糸速度を維持して生産性を落とすことなく、高い安定性で外径変動が制御できるプラスチック光ファイバの製造装置を目的とする。
However, the direction of the cooling air blown out from the cooling device may be disturbed by the warm air generated in the heat insulating cylinder, and the outer diameter fluctuation may not be fully controlled. Therefore, a plastic optical fiber manufacturing apparatus that can more stably control the outer diameter variation of the obtained plastic optical fiber is desired.
Accordingly, an object of the present invention is to provide a plastic optical fiber manufacturing apparatus capable of controlling fluctuations in the outer diameter with high stability without reducing the productivity by maintaining the spinning speed.

本発明は、溶融樹脂をストランド状に吐出する一つ以上の吐出口を有する紡糸口金に、保温筒が隣接して設けられ、該保温筒の紡糸口金側と反対側に、冷却装置が近接して設けられた製造装置であって、前記冷却装置が、溶融樹脂に吹き付ける風を整流するための多筒集合体を有しており、該多筒集合体を形成する各筒状体の開口面積Sと長さLとが、L/S=0.5〜15であるプラスチック光ファイバの製造装置を提供する。   In the present invention, a heat insulating cylinder is provided adjacent to a spinneret having one or more discharge ports for discharging molten resin in a strand shape, and a cooling device is provided close to the side of the heat insulating cylinder opposite to the spinneret side. The cooling device has a multi-cylinder assembly for rectifying the wind blown to the molten resin, and the opening area of each cylindrical body forming the multi-cylinder assembly A plastic optical fiber manufacturing apparatus in which S and length L are L / S = 0.5 to 15 is provided.

本発明のプラスチック光ファイバの製造装置によれば、高い生産性を保ったまま、外径変動が小さく抑えられたプラスチック光ファイバが高い安定性で製造できる。   According to the plastic optical fiber manufacturing apparatus of the present invention, it is possible to manufacture with high stability a plastic optical fiber in which fluctuations in the outer diameter are suppressed while maintaining high productivity.

以下、本発明のプラスチック光ファイバの製造装置の一実施形態例について、図1〜5に基づいて詳細に説明する。
本発明のプラスチック光ファイバの製造装置10は、図1に示すように、紡糸口金20、保温筒30、冷却装置40、ガイド50、外径計測器60、及びニップロール70を備えている。
Hereinafter, an embodiment of a plastic optical fiber manufacturing apparatus according to the present invention will be described in detail with reference to FIGS.
As shown in FIG. 1, the plastic optical fiber manufacturing apparatus 10 of the present invention includes a spinneret 20, a heat retaining cylinder 30, a cooling device 40, a guide 50, an outer diameter measuring device 60, and a nip roll 70.

紡糸口金20には、例えば、円周状、千鳥状或いは一直線状に配置された一つ以上の吐出口が設けられる。また、紡糸口金20の直下に保温筒30が備え付けられる。保温筒30の下側には溶融紡糸されたプラスチック光ファイバが通過するための開口部32が設けられる。また、保温筒30の下には、溶融紡糸されたプラスチック光ファイバを冷却するための冷却装置40が設けられる。   The spinneret 20 is provided with, for example, one or more discharge ports arranged in a circumferential shape, a staggered shape, or a straight line shape. In addition, a heat retaining cylinder 30 is provided immediately below the spinneret 20. An opening 32 for allowing a melt-spun plastic optical fiber to pass through is provided below the heat retaining cylinder 30. A cooling device 40 for cooling the melt-spun plastic optical fiber is provided under the heat retaining cylinder 30.

本実施形態例の冷却装置は、図1に示すように、冷却装置40を3段重ね、風速及び温度が個別に設定できる3段構造型(以下、3段重ねにした各冷却装置40を、上段から順に上段冷却装置40a、中段冷却装置40b、下段冷却装置40cとする。)である。冷却装置は、単独で使用してもよく、上記のように複数積み重ねて使用してもよい。
冷却装置40を複数積み重ねて使用して溶融紡糸されたプラスチック光ファイバを冷却する際は、上側にある冷却装置からの冷却風の温度よりも下側にある冷却装置からの冷却風の温度の方が低くなるように設定するのがよい。例えば、図1では、上段冷却装置40aよりも中段冷却装置40b、中段冷却装置40bよりも下段冷却装置40cの方が、冷却風の温度が低くなるのがよい。また、中段冷却装置40bと下段冷却装置40cからの冷却風は、上段冷却装置からの冷却風の温度より低ければ、同じ温度であっても構わない。このようにすることで、プラスチック光ファイバの外径変動が制御し易くなる。
また、冷却装置40は、図2に示すように、例えば、ブロア41、抵抗体42、冷温水コイル43、多筒集合体45等の部品が備えられるが、設定した温度の、均一な冷却風を吹き出せるものであれば部品の種類や、その数量及び配置は特に限定されない。
まず、ブロア41により吹き出された風が抵抗体42により拡散された後に、冷温水コイル43に送られる。冷温水コイル43には外部の冷温水循環装置44から循環水が供給されており、この循環水の温度をフィードバック制御することにより冷却風の温度が調節される。冷温水コイル43を通過した風は、吹き溜まり部dで一旦吹き溜まり、均一にされた後、多筒集合体45のそれぞれの筒状体46から吹き出される。
As shown in FIG. 1, the cooling device according to the present embodiment has a three-stage structure in which the cooling devices 40 are stacked in three stages, and the wind speed and temperature can be individually set (hereinafter, each cooling device 40 in three stages is These are the upper cooling device 40a, the middle cooling device 40b, and the lower cooling device 40c in order from the upper stage). A cooling device may be used independently and may be used by stacking two or more as mentioned above.
When cooling a melt-spun plastic optical fiber using a plurality of cooling devices 40, the temperature of the cooling air from the cooling device below is lower than the temperature of the cooling air from the cooling device on the upper side. Should be set to be low. For example, in FIG. 1, the temperature of the cooling air is preferably lower in the middle cooling device 40b than in the upper cooling device 40a and in the lower cooling device 40c than in the middle cooling device 40b. Further, the cooling air from the middle cooling device 40b and the lower cooling device 40c may be the same temperature as long as it is lower than the temperature of the cooling air from the upper cooling device. By doing in this way, the outer diameter fluctuation | variation of a plastic optical fiber becomes easy to control.
As shown in FIG. 2, the cooling device 40 includes components such as a blower 41, a resistor 42, a cold / hot water coil 43, and a multi-tubular assembly 45. If it can blow out, the kind of parts, the quantity, and arrangement | positioning will not be specifically limited.
First, the wind blown by the blower 41 is diffused by the resistor 42 and then sent to the cold / hot water coil 43. Circulating water is supplied to the cold / hot water coil 43 from an external cold / hot water circulation device 44, and the temperature of the cooling air is adjusted by feedback control of the temperature of the circulating water. The wind that has passed through the cold / hot water coil 43 is once accumulated in the accumulation portion d and is made uniform, and then blown out from each cylindrical body 46 of the multi-cylinder assembly 45.

本発明のプラスチック光ファイバの製造装置10の特徴は、冷却装置40が多筒集合体45を有していることにある。従来のプラスチック光ファイバの製造装置では、冷却装置から吹き出す冷却風全体を金網等により一括して整流していたため、高い整流効果が得られていなかった。そのため、保温筒30内から吹き出してくる温風等によって冷却風が乱される場合があり、得られるプラスチック光ファイバの外径変動が制御しきれないことがあった。しかし、本発明の製造装置10では、多筒集合体45を利用し、冷却装置40から吹き出す冷却風をそれぞれの筒状体46により整流する。このようにすれば、各筒状体46により冷却風を分割して別々に整流でき、さらに筒状体の長さを長くすれば整流効果を非常に高くすることができる。そのため、冷却装置40から吹き出された冷却風は、保温筒30から吹き出される温風等によって乱されることなく直進するため、プラスチック光ファイバの外径変動が所望の通りに制御できる。
本発明のプラスチック光ファイバの製造装置10では、多筒集合体45を形成する各筒状体46は、該筒状体46の開口面積Sと長さLとが、L/S=0.5〜15となるようにする。筒状体46の開口面積Sと長さLとの関係は、L/S=1〜12の範囲であるのが好ましい。L/Sが15以下であれば冷却装置から冷却風を吹き出すのに大きなエネルギーが必要なくなるため、経済性が高くなる。また、L/Sが0.5以上であれば、冷却装置から吹き出される冷却風が充分に整流され、吹き出された冷却風の方向が安定する。
The plastic optical fiber manufacturing apparatus 10 according to the present invention is characterized in that the cooling device 40 has a multi-cylinder assembly 45. In the conventional plastic optical fiber manufacturing apparatus, the entire cooling air blown from the cooling device is rectified in a lump with a wire mesh or the like, so that a high rectifying effect has not been obtained. For this reason, the cooling air may be disturbed by the warm air blown out from the inside of the heat insulating cylinder 30, and the outer diameter fluctuation of the obtained plastic optical fiber may not be fully controlled. However, in the manufacturing apparatus 10 of the present invention, the multi-cylinder assembly 45 is used to rectify the cooling air blown from the cooling device 40 by the respective cylindrical bodies 46. In this way, the cooling air can be divided and rectified separately by each cylindrical body 46, and if the length of the cylindrical body is further increased, the rectifying effect can be greatly increased. Therefore, the cooling air blown out from the cooling device 40 goes straight without being disturbed by the hot air blown out from the heat retaining cylinder 30 and so on, so that the outer diameter fluctuation of the plastic optical fiber can be controlled as desired.
In the plastic optical fiber manufacturing apparatus 10 of the present invention, each cylindrical body 46 forming the multi-cylinder assembly 45 has an opening area S and a length L of the cylindrical body 46 such that L / S = 0.5. To be ~ 15. The relationship between the opening area S and the length L of the cylindrical body 46 is preferably in the range of L / S = 1-12. If L / S is 15 or less, a large amount of energy is not required to blow cooling air from the cooling device, so that economic efficiency is improved. Moreover, if L / S is 0.5 or more, the cooling air blown out from the cooling device is sufficiently rectified, and the direction of the blown cooling air is stabilized.

冷却装置40の多筒集合体45としては、例えば、図3に示すようなハニカムを用いることができる。この場合にはアルミハニカムであるのが好ましいが、これに限定されない。また、ハニカム以外であってもよく、例えば、断面四角形、断面五角形、断面円形等の筒状体の集合体であってもよく、いくつかの種類の筒状体を混合して集合体としたものであってもよい。また、各筒状体のL/S値は0.5〜15の範囲であれば異なっていてもよい。   As the multi-tube aggregate 45 of the cooling device 40, for example, a honeycomb as shown in FIG. 3 can be used. In this case, an aluminum honeycomb is preferable, but not limited thereto. Further, it may be other than the honeycomb, for example, it may be an aggregate of cylindrical bodies such as a quadrilateral cross section, a pentagonal cross section, a circular cross section, etc., and several kinds of cylindrical bodies are mixed to form an aggregate. It may be a thing. Further, the L / S value of each cylindrical body may be different as long as it is in the range of 0.5 to 15.

また、本発明の冷却装置40は、図4に示すように、ブロア41の多筒集合体45側に、外部に設置された冷水循環装置48から冷水が供給される冷水コイル47と電気ヒータ49とを設け、冷水コイル47により冷却された風を電気ヒータ49によって加熱することにより、設定した温度の冷却風とするものであっても構わない。このとき、冷水コイル47はブロア41よりも多筒集合体45側にあっても、多筒集合体45側と逆側にあってもよい。   Further, as shown in FIG. 4, the cooling device 40 of the present invention has a chilled water coil 47 and an electric heater 49 to which chilled water is supplied from a chilled water circulation device 48 installed on the outside of the blower 41 on the multi-tube assembly 45 side. And the air cooled by the cold water coil 47 is heated by the electric heater 49 so as to obtain the cooling air having a set temperature. At this time, the cold water coil 47 may be closer to the multi-cylinder assembly 45 than the blower 41 or may be opposite to the multi-cylinder assembly 45 side.

冷却装置40(本実施形態例では上段冷却装置40a)は、図1に示すように、冷却装置40から出る冷却風のうち最も上側の冷却風が、保温筒30のすぐ下側を通るように設けるのがよい。このように、冷却装置40と保温筒30との間の距離を小さくすることにより、保温筒30から吹き出てくる温風により対流が生じるのを防ぎ易くなる。   As shown in FIG. 1, the cooling device 40 (upper cooling device 40 a in the present embodiment) allows the uppermost cooling air from the cooling device 40 to pass immediately below the heat retaining cylinder 30. It is good to provide. Thus, by reducing the distance between the cooling device 40 and the heat retaining cylinder 30, it becomes easy to prevent convection from being generated by the warm air blown from the heat retaining cylinder 30.

また、製造装置10の保温筒30には、保温筒30内部の温度と気流を安定させるため、遮断板31を設けてもよい。遮断板31には、溶融紡糸されたプラスチック光ファイバが通過するための開口部32が形成される(図1)。遮断板31の設置は、冷却風の風速が0.4m/sec以上の場合に効果的である。また、遮断板31を設けていれば、上段冷却装置40aから吹き出された冷却風Xが保温筒30内部へと侵入して、保温筒30内部の気流を乱すことがなくなる。そのため、プラスチック光ファイバの外径変動を抑えることができる。また、例えば、図7に示すように遮断板を設けない場合には、保温筒130の冷却装置140から遠い側の内側面134に冷却風が衝突し、はね返った冷却風が冷却装置から遠い側にあるプラスチック光ファイバに集中して衝突するため、各プラスチック光ファイバ間の外径変動に差がでてしまうことがある。図1に示すように、遮断板31を設けておけば、保温筒30内への冷却風の侵入を防ぎ易く、保温筒30の内側面34への冷却風の衝突が防げるため、各プラスチック光ファイバ間の外径変動差を小さくし易い。   Further, the heat insulating cylinder 30 of the manufacturing apparatus 10 may be provided with a blocking plate 31 in order to stabilize the temperature and air flow inside the heat insulating cylinder 30. The blocking plate 31 is formed with an opening 32 through which the melt-spun plastic optical fiber passes (FIG. 1). The installation of the blocking plate 31 is effective when the wind speed of the cooling air is 0.4 m / sec or more. Further, if the blocking plate 31 is provided, the cooling air X blown out from the upper cooling device 40a does not enter the inside of the heat retaining cylinder 30 and disturb the airflow inside the heat retaining cylinder 30. Therefore, fluctuations in the outer diameter of the plastic optical fiber can be suppressed. Further, for example, as shown in FIG. 7, in the case where a blocking plate is not provided, the cooling air collides with the inner side surface 134 on the side far from the cooling device 140 of the heat insulating cylinder 130, and the rebounded cooling air is on the side far from the cooling device. Therefore, there is a case where a difference occurs in the outer diameter fluctuation between the plastic optical fibers. As shown in FIG. 1, if the blocking plate 31 is provided, it is easy to prevent the cooling air from entering the heat insulating cylinder 30 and the cooling air can be prevented from colliding with the inner side surface 34 of the heat insulating cylinder 30. It is easy to reduce the outer diameter fluctuation difference between fibers.

遮断板31は、図5(a)、(b)に示すような構造であるのが好ましい。図5(a)の遮断板31は、保温筒30内部へと傾斜して設けられている。一方、図5(b)の遮断板は冷却装置40側へと傾斜して設けられている。また、遮断板31は、図5(c)に示すような、水平に設置した遮断板31に開口部32を設け、該開口部32の周縁部の保温筒内部側に側部33cが形成されたものや、図5(d)に示すような、開口部32の周縁部に冷却装置側へと側部33dが形成されたものであるのがより好ましい。また、水平に設けた遮断板31に形成させる開口部32の開口径が、プラスチック光ファイバに接触しない範囲でできるだけ小さく設けられた遮断板31がさらに好ましい。また、遮断板31は、図5(c)、図5(d)のように遮断板31が水平に設けられ、該遮断板31に開口部32がプラスチック光ファイバ1本に対して1つずつ設けられているのが特に好ましい。   The blocking plate 31 preferably has a structure as shown in FIGS. The blocking plate 31 in FIG. 5A is provided to be inclined toward the inside of the heat insulating cylinder 30. On the other hand, the blocking plate in FIG. 5B is provided to be inclined toward the cooling device 40 side. Further, the shield plate 31 is provided with an opening 32 in the horizontally installed shield plate 31 as shown in FIG. 5C, and a side portion 33 c is formed on the inner side of the heat insulating cylinder at the peripheral portion of the opening 32. As shown in FIG. 5D, it is more preferable that the side portion 33d is formed on the peripheral portion of the opening portion 32 toward the cooling device side. Further, it is more preferable that the shielding plate 31 provided as small as possible in the range where the opening diameter of the opening 32 formed in the shielding plate 31 provided horizontally does not contact the plastic optical fiber. In addition, as shown in FIGS. 5C and 5D, the shielding plate 31 is horizontally provided, and the shielding plate 31 has one opening 32 for each plastic optical fiber. It is particularly preferred that it is provided.

例えば、本実施形態例のように、冷却装置40を3段重ねて使用する際には、上段冷却装置40aから吹き出される冷却風の温度は、20〜70℃の範囲とするのがよい。前記冷却風の温度をこの範囲とすることで、該冷却風の風速が0.4m/sec未満の場合でも、上段冷却装置40aからの冷却風による流体塊cと、紡糸口金20からの輻射熱及びプラスチック光ファイバからの放熱により保温筒30内部に発生した温度の高い流体塊bとの温度差により生じる流体塊aの熱膨張が防ぎ易くなる(図1)。そのため、流体塊aが流体塊cよりも軽くなって浮力が生じることが原因で発生する自然対流が抑えられるため、自然対流の断続的なプラスチック光ファイバへの衝突が起き難くなり、製造されるプラスチック光ファイバの外径変動が制御し易くなる。また、上段冷却装置40aからの冷却風の温度を20℃以上とすれば、流体塊aの部分の空気密度が小さくなるため、前記冷却風の方向が保たれ易くなる。また、上段冷却装置40aからの冷却風の温度を70℃以下とすれば、中段冷却装置40b、下段冷却装置40cからの冷却風との温度差が小さくでき、それにより生じる上昇気流により外径変動が大きくなることを防ぎ易くなる。   For example, when the cooling device 40 is used in three stages as in this embodiment, the temperature of the cooling air blown out from the upper cooling device 40a is preferably in the range of 20 to 70 ° C. By setting the temperature of the cooling air in this range, even when the wind speed of the cooling air is less than 0.4 m / sec, the fluid mass c by the cooling air from the upper cooling device 40a and the radiant heat from the spinneret 20 and It becomes easy to prevent thermal expansion of the fluid mass a caused by the temperature difference with the high temperature fluid mass b generated inside the heat retaining cylinder 30 due to heat radiation from the plastic optical fiber (FIG. 1). Therefore, natural convection caused by the fluid mass a being lighter than the fluid mass c and generating buoyancy is suppressed, and therefore, the natural convection is less likely to collide with the intermittent plastic optical fiber. It becomes easy to control the outer diameter variation of the plastic optical fiber. Further, if the temperature of the cooling air from the upper cooling device 40a is 20 ° C. or higher, the air density in the fluid mass a portion is reduced, so that the direction of the cooling air is easily maintained. Further, if the temperature of the cooling air from the upper cooling device 40a is 70 ° C. or less, the temperature difference between the cooling air from the middle cooling device 40b and the lower cooling device 40c can be reduced, and the outside diameter fluctuates due to the rising airflow generated thereby. It becomes easy to prevent that becomes large.

また、プラスチック光ファイバの表面温度を充分に低下させてから、ガイド50やニップロール70と接触させるため、中段冷却装置40b及び下段冷却装置40cからの冷却風は、上段冷却装置40aよりも低い温度で、かつ5〜25℃であるのが好ましい。また、下段冷却装置40cからの冷却風の温度は、中段冷却装置40bの冷却風の温度以下に設定される。このような温度範囲とすることで、プラスチック光ファイバがガイド50やニップロール70に接触する際の、傷等の欠陥の発生が防ぎ易くなる。また、中段冷却装置40b及び下段冷却装置40cからの冷却風の風速は0.3〜1.5m/secであるのが好ましい。   Further, since the surface temperature of the plastic optical fiber is sufficiently lowered and then brought into contact with the guide 50 and the nip roll 70, the cooling air from the middle cooling device 40b and the lower cooling device 40c is at a lower temperature than the upper cooling device 40a. And it is preferable that it is 5-25 degreeC. Further, the temperature of the cooling air from the lower cooling device 40c is set to be equal to or lower than the temperature of the cooling air of the middle cooling device 40b. By setting it as such a temperature range, it becomes easy to prevent generation | occurrence | production of defects, such as a crack, when a plastic optical fiber contacts the guide 50 or the nip roll 70. FIG. Moreover, it is preferable that the wind speed of the cooling air from the intermediate | middle stage cooling device 40b and the lower stage cooling device 40c is 0.3-1.5 m / sec.

上段冷却装置40aからの冷却風の風速は0.2〜0.8m/secであるのがよく、温度が20〜70℃であれば、品種ごとに風速を調整しなくとも、高い安定性でほとんどのプラスチック光ファイバの外径変動が制御できる。ここで、冷却風の風速の斑は、各段の冷却装置40から吹き出される冷却風それぞれについて、各段の平均流速から±0.1m/secの範囲内であるのが好ましい。また、温度斑についても、格段の冷却装置40からの冷却風それぞれについて、各段の平均温度から±1℃の範囲であるのが好ましい。   The wind speed of the cooling air from the upper cooling device 40a should be 0.2 to 0.8 m / sec. If the temperature is 20 to 70 ° C., it is highly stable without adjusting the wind speed for each product type. The outer diameter fluctuation of most plastic optical fibers can be controlled. Here, it is preferable that the variation in the wind speed of the cooling air is within a range of ± 0.1 m / sec from the average flow velocity of each stage for each cooling air blown from the cooling device 40 of each stage. Further, the temperature spots are preferably within a range of ± 1 ° C. from the average temperature of each stage for each cooling air from the exceptional cooling device 40.

尚、本実施形態例では、冷却装置40を3段重ねたものを説明したが、それ以上の多段構造型であってもよい。例えば、上段冷却装置40aをさらに多段に分割し、プラスチック光ファイバに吹き付ける冷却風の温度が20〜70℃で、上段から下段に向かって温度が低くなるような設定としてもよい。
また、保温筒30の長さe及び上段冷却装置40aの高さfは、プラスチック光ファイバYが冷却固化されるまでの時間及び紡糸速度によって適宜設定できるが、共に50〜500mmの範囲とするのが好ましい。
In the present embodiment, the cooling device 40 is described as being stacked in three stages, but a multi-stage structure type may be used. For example, the upper cooling device 40a may be further divided into multiple stages so that the temperature of the cooling air blown onto the plastic optical fiber is 20 to 70 ° C., and the temperature decreases from the upper stage toward the lower stage.
The length e of the heat insulating cylinder 30 and the height f of the upper cooling device 40a can be set as appropriate depending on the time until the plastic optical fiber Y is cooled and solidified and the spinning speed, but both are in the range of 50 to 500 mm. Is preferred.

以下、実施例及び比較例を示し、本発明を詳細に説明する。尚、本発明は以下の記載によって限定されない。
実施例及び比較例における評価方法は以下に示す通りである。
[プラスチック光ファイバの外径変動率]
紡糸工程後のプラスチック光ファイバの外径をキーエンス(株)製のレーザ外径測定器(図1の外径測定器6)により、サンプル間隔0.1sec、サンプル時間30minで測定し、この外径測定結果から標準偏差を求めた。次に、この標準偏差の3倍値(3σ)を外径変動とし、この値を用いて外径変動率を求めた。尚、外径変動率とは式(1)で算出される。
A=(B/C)×100 ・・・(1)
ここで、Aは外径変動率(%)、Bは標準偏差の3倍値(3σ)、Cは平均外径を示す。
EXAMPLES Hereinafter, an Example and a comparative example are shown and this invention is demonstrated in detail. In addition, this invention is not limited by the following description.
Evaluation methods in Examples and Comparative Examples are as shown below.
[Outer diameter fluctuation rate of plastic optical fiber]
The outer diameter of the plastic optical fiber after the spinning process was measured with a laser outer diameter measuring device (outer diameter measuring device 6 in FIG. 1) manufactured by Keyence Corporation at a sample interval of 0.1 sec and a sample time of 30 min. The standard deviation was determined from the measurement results. Next, the value of three times the standard deviation (3σ) was defined as the outer diameter fluctuation, and the outer diameter fluctuation rate was determined using this value. The outer diameter fluctuation rate is calculated by the equation (1).
A = (B / C) × 100 (1)
Here, A is the outer diameter fluctuation rate (%), B is the standard deviation three times (3σ), and C is the average outer diameter.

[外径変動差]
冷却装置に一番遠い側のプラスチック光ファイバの外径変動率(A)と、一番近い側のプラスチック光ファイバの外径変動率(A)とを用いて外径変動差A(%)を求めた。
= |(A)−(A)|
[Outer diameter fluctuation difference]
Outer diameter fluctuation of the plastic optical fiber of the farthest side in a cooling device and (A 1), the outer diameter fluctuation of the plastic optical fiber of the closest side (A 2) outer diameter fluctuation difference with the A T ( %).
A T = | (A 1 ) − (A 2 ) |

[実施例1]
芯材としてポリメチルメタクリレート(PMMA)、鞘材としてフッ化ビニリデン/テトラフルオロエチレン(80/20(mol%))を溶融樹脂として用いた。製造装置は、図1及び図2に示した装置構成で、紡糸口金20は円周状に配置された4つの吐出口を有しており、保温筒30の長さfは300mmである。また、冷却装置40aの長さgは300mmである。冷却装置40を形成する多筒集合体45としてはアルミハニカムを用い、各筒状体46の開口面積Sを10mm、長さLを100mmとした(L/S=10)。遮断板31は、図6に示すように、紡糸口金20から紡出されたプラスチック光ファイバからの距離gが12mm、開口径hが100mmとなるように開口部32を設けた。ニップロールの引取速度を20m/min、紡糸温度を230℃とし、上段冷却装置40aからの冷却風の温度を25℃、風速を0.5m/secとした。また、中段冷却装置40bからの冷却風の温度を20℃、風速を0.5m/secとし、下段冷却装置40cからの冷却風の温度を20℃、風速を0.5m/secとした。この製造装置10によりファイバ外径750μmのプラスチック光ファイバの製造を試みた。
[Example 1]
Polymethyl methacrylate (PMMA) was used as the core material, and vinylidene fluoride / tetrafluoroethylene (80/20 (mol%)) was used as the molten resin as the sheath material. The manufacturing apparatus has the apparatus configuration shown in FIGS. 1 and 2, the spinneret 20 has four outlets arranged circumferentially, and the length f of the heat retaining cylinder 30 is 300 mm. The length g of the cooling device 40a is 300 mm. As the multi-cylinder assembly 45 forming the cooling device 40, an aluminum honeycomb was used, the opening area S of each cylindrical body 46 was 10 mm 2 , and the length L was 100 mm (L / S = 10). As shown in FIG. 6, the blocking plate 31 was provided with an opening 32 so that the distance g from the plastic optical fiber spun from the spinneret 20 was 12 mm and the opening diameter h was 100 mm. The take-up speed of the nip roll was 20 m / min, the spinning temperature was 230 ° C., the temperature of the cooling air from the upper cooling device 40a was 25 ° C., and the wind speed was 0.5 m / sec. The temperature of the cooling air from the middle cooling device 40b was 20 ° C., the wind speed was 0.5 m / sec, the temperature of the cooling air from the lower cooling device 40c was 20 ° C., and the wind speed was 0.5 m / sec. An attempt was made to manufacture a plastic optical fiber having a fiber outer diameter of 750 μm using the manufacturing apparatus 10.

[実施例2]
多筒集合体45を形成する各筒状体46の開口面積Sを20mm、長さLを100mm(L/S=5.0)とした以外は、実施例1と同様にプラスチック光ファイバの製造を行った。
[Example 2]
The plastic optical fiber is the same as in Example 1 except that the opening area S of each cylindrical body 46 forming the multi-cylinder assembly 45 is 20 mm 2 and the length L is 100 mm (L / S = 5.0). Manufactured.

[実施例3]
多筒集合体45を形成する各筒状体46の開口面積Sを70mm、長さLを100mm(L/S=1.4)とした以外は、実施例1と同様にプラスチック光ファイバの製造を行った。
[Example 3]
The plastic optical fiber is the same as in Example 1 except that the opening area S of each cylindrical body 46 forming the multi-tubular assembly 45 is 70 mm 2 and the length L is 100 mm (L / S = 1.4). Manufactured.

[比較例1]
多筒集合体45を形成する各筒状体46の開口面積Sを300mm、長さLを100mm(L/S=0.3)とした以外は、実施例1と同様にプラスチック光ファイバの製造を行った。
[Comparative Example 1]
The plastic optical fiber is the same as in Example 1 except that the opening area S of each cylindrical body 46 forming the multi-cylinder assembly 45 is 300 mm 2 and the length L is 100 mm (L / S = 0.3). Manufactured.

[比較例2]
多筒集合体45を形成する各筒状体46の開口面積Sを10mm、長さLを200mm(L/S=20)とした以外は、実施例1と同様にプラスチック光ファイバの製造を行った。
実施例1〜3及び比較例1〜2における各筒状体の条件と製造されたプラスチック光ファイバの評価を表1に示す。
[Comparative Example 2]
A plastic optical fiber is manufactured in the same manner as in Example 1 except that the opening area S of each cylindrical body 46 forming the multi-cylinder assembly 45 is 10 mm 2 and the length L is 200 mm (L / S = 20). went.
Table 1 shows the conditions of each cylindrical body and the evaluation of the manufactured plastic optical fiber in Examples 1 to 3 and Comparative Examples 1 and 2.

Figure 2009062660
Figure 2009062660

多筒集合体を形成する各筒状体の開口面積Sと長さLが適切な条件である実施例1〜3では、製造されたプラスチック光ファイバの外径変動率が小さく、また、冷却装置に近い側と遠い側のプラスチック光ファイバの外径変動差も小さい。
一方、L/Sが小さい比較例1では、製造されたプラスチック光ファイバの外径変動率は大きく、また、冷却装置に近い側と遠い側のプラスチック光ファイバの外径変動差も大きい。同様に、L/Sが大きい比較例2でも、製造されたプラスチック光ファイバの外径変動率は大きく、また、冷却装置に近い側と遠い側のプラスチック光ファイバの外径変動差も大きい。
In Examples 1 to 3, in which the opening area S and length L of each cylindrical body forming the multi-cylinder aggregate are appropriate conditions, the outer diameter variation rate of the manufactured plastic optical fiber is small, and the cooling device The difference in the outer diameter of the plastic optical fiber on the near side and on the far side is also small.
On the other hand, in Comparative Example 1 where the L / S is small, the manufactured plastic optical fiber has a large outer diameter fluctuation rate, and the plastic optical fiber on the side closer to the cooling device and the far side has a large difference in outer diameter fluctuation. Similarly, in Comparative Example 2 where the L / S is large, the manufactured plastic optical fiber has a large outer diameter variation rate, and the outer diameter variation difference between the plastic optical fiber near and far from the cooling device is also large.

本発明のプラスチック光ファイバの製造装置によれば、高い安定性で、製造されるプラスチック光ファイバの外径変動が小さく抑えられ、各プラスチック光ファイバ間の外径変動差も小さくできる。このように、本発明の製造装置は、品質に優れたプラスチック光ファイバが安定的に製造できるため有用である。   According to the plastic optical fiber manufacturing apparatus of the present invention, the outer diameter fluctuation of the manufactured plastic optical fiber can be suppressed with high stability, and the outer diameter fluctuation difference between the plastic optical fibers can be reduced. Thus, the manufacturing apparatus of the present invention is useful because a plastic optical fiber excellent in quality can be stably manufactured.

本発明のプラスチック光ファイバの製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of the plastic optical fiber of this invention. 図1の製造装置10の冷却装置40を詳細に示した概略図である。It is the schematic which showed the cooling device 40 of the manufacturing apparatus 10 of FIG. 1 in detail. 本発明の製造装置10の多筒集合体45を開口面側から見た正面図である。It is the front view which looked at the multicylinder aggregate | assembly 45 of the manufacturing apparatus 10 of this invention from the opening surface side. 図1の製造装置の冷却装置40の他の形態を詳細に示した概略図である。It is the schematic which showed in detail the other form of the cooling device 40 of the manufacturing apparatus of FIG. 図1の製造装置の遮断板30の構造を示す概略図である。It is the schematic which shows the structure of the shielding board 30 of the manufacturing apparatus of FIG. 実施例及び比較例に用いた遮断板を冷却装置40側から見た正面図である。It is the front view which looked at the shielding board used for the Example and the comparative example from the cooling device 40 side. 従来のプラスチック光ファイバの製造装置を示した概略図である。It is the schematic which showed the manufacturing apparatus of the conventional plastic optical fiber.

符号の説明Explanation of symbols

10 プラスチック光ファイバの製造装置
20 紡糸口金
30 保温筒
40 冷却装置
45 多筒集合体
46 筒状体
DESCRIPTION OF SYMBOLS 10 Plastic optical fiber manufacturing apparatus 20 Spinneret 30 Heat insulation cylinder 40 Cooling apparatus 45 Multi-cylinder assembly 46 Cylindrical body

Claims (1)

溶融樹脂をストランド状に吐出する一つ以上の吐出口を有する紡糸口金に、保温筒が隣接して設けられ、該保温筒の紡糸口金側と反対側に、冷却装置が近接して設けられた製造装置であって、
前記冷却装置が、溶融樹脂に吹き付ける風を整流するための多筒集合体を有しており、該多筒集合体を形成する各筒状体の開口面積Sと長さLとが、L/S=0.5〜15であるプラスチック光ファイバの製造装置。
A heat insulating cylinder is provided adjacent to a spinneret having one or more discharge ports for discharging the molten resin in a strand shape, and a cooling device is provided adjacent to the side of the heat insulating cylinder opposite to the spinneret side. Manufacturing equipment,
The cooling device has a multi-cylinder assembly for rectifying the wind blown to the molten resin, and an opening area S and a length L of each cylindrical body forming the multi-cylinder assembly are L / Plastic optical fiber manufacturing apparatus with S = 0.5-15.
JP2007233897A 2007-09-10 2007-09-10 Plastic optical fiber manufacturing equipment Active JP5210575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233897A JP5210575B2 (en) 2007-09-10 2007-09-10 Plastic optical fiber manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233897A JP5210575B2 (en) 2007-09-10 2007-09-10 Plastic optical fiber manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2009062660A true JP2009062660A (en) 2009-03-26
JP5210575B2 JP5210575B2 (en) 2013-06-12

Family

ID=40557490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233897A Active JP5210575B2 (en) 2007-09-10 2007-09-10 Plastic optical fiber manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5210575B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355719A (en) * 2018-12-04 2019-02-19 吴江精美峰实业有限公司 A kind of spinning multistage cross air blowing device
KR20190135409A (en) * 2018-05-28 2019-12-06 라이펜호이저 게엠베하 운트 코. 카게 마쉬넨파브릭 Apparatus for making spunbonded nonwovens from continuous filaments
CN116732623A (en) * 2023-06-19 2023-09-12 桐昆集团浙江恒通化纤有限公司 Moisture-absorbing sweat-releasing polyester fiber and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148615A (en) * 1974-05-20 1975-11-28
JPS5310715A (en) * 1976-07-19 1978-01-31 Toray Ind Inc Cooling devices for melt spinning
JPS5735013A (en) * 1980-08-04 1982-02-25 Toray Ind Inc Cooling method of extruded polyamide filament
JPH0268503A (en) * 1988-09-02 1990-03-08 Toray Ind Inc Production of plastic optical fiber
JP2004300658A (en) * 2003-03-18 2004-10-28 Toray Ind Inc Device and method for manufacturing fiber
JP2005042247A (en) * 2003-07-22 2005-02-17 Mitsubishi Rayon Co Ltd Machine and method for producing plastic optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148615A (en) * 1974-05-20 1975-11-28
JPS5310715A (en) * 1976-07-19 1978-01-31 Toray Ind Inc Cooling devices for melt spinning
JPS5735013A (en) * 1980-08-04 1982-02-25 Toray Ind Inc Cooling method of extruded polyamide filament
JPH0268503A (en) * 1988-09-02 1990-03-08 Toray Ind Inc Production of plastic optical fiber
JP2004300658A (en) * 2003-03-18 2004-10-28 Toray Ind Inc Device and method for manufacturing fiber
JP2005042247A (en) * 2003-07-22 2005-02-17 Mitsubishi Rayon Co Ltd Machine and method for producing plastic optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190135409A (en) * 2018-05-28 2019-12-06 라이펜호이저 게엠베하 운트 코. 카게 마쉬넨파브릭 Apparatus for making spunbonded nonwovens from continuous filaments
KR102399905B1 (en) 2018-05-28 2022-05-18 라이펜호이저 게엠베하 운트 코. 카게 마쉬넨파브릭 Apparatus for making spunbonded nonwovens from continuous filaments
CN109355719A (en) * 2018-12-04 2019-02-19 吴江精美峰实业有限公司 A kind of spinning multistage cross air blowing device
CN116732623A (en) * 2023-06-19 2023-09-12 桐昆集团浙江恒通化纤有限公司 Moisture-absorbing sweat-releasing polyester fiber and preparation method thereof
CN116732623B (en) * 2023-06-19 2024-02-20 桐昆集团浙江恒通化纤有限公司 Moisture-absorbing sweat-releasing polyester fiber and preparation method thereof

Also Published As

Publication number Publication date
JP5210575B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
RU2475459C1 (en) Method of making optical fibre
JP2009186772A (en) Manufacturing device of plastic optical fiber, and manufacturing method thereof
KR101166675B1 (en) Electro-spinning apparatus for manaufactureing nonofiber for controlling temperature and hummidity of spinning zone
JP5682626B2 (en) Flameproof heat treatment furnace
CN102272063B (en) Method for manufacturing optical fiber wire
RU2409525C1 (en) Method of producing optical fibres and device to this end
JP5210575B2 (en) Plastic optical fiber manufacturing equipment
JP2010150127A (en) Apparatus and method for producing glass fiber
JPH027891B2 (en)
CA1098318A (en) Method and apparatus for draw forming glass fibers
JP5835081B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
US10875805B2 (en) Apparatus and method for cooling a glass strand produced by means of tube drawing
CN111910271B (en) Spinning equipment and slow cooling device thereof
JP2005042247A (en) Machine and method for producing plastic optical fiber
US10472738B2 (en) Gas supply blowout nozzle and method of producing flame-proofed fiber and carbon fiber
RU139222U1 (en) MULTI-FILER FEEDER FOR PRODUCING CONTINUOUS FIBER FROM ROCK MELT
CN114163121A (en) Optical fiber is prefabricated excellent wire drawing equipment of optical fiber for manufacturing
JP2012082092A (en) Method and apparatus for manufacturing multicore tape fiber strand
WO2022264607A1 (en) Bushing, glass fiber production device, and glass fiber production method
CN209906935U (en) Low circumferential wind speed non-uniform rate circular blowing cooling device
KR20220146497A (en) Flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and flame-resistant furnace
WO2022264606A1 (en) Bushing, glass fiber manufacturing device, and glass fiber manufacturing method
RU2628856C2 (en) Manufacture method of spun nanothin mineral fibre and equipment for its manufacture
US20230159372A1 (en) Optical fiber forming apparatus
WO2023034030A1 (en) Method of manufacturing an optical fiber and production device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5210575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250