JP2519692Y2 - heating furnace - Google Patents

heating furnace

Info

Publication number
JP2519692Y2
JP2519692Y2 JP9943191U JP9943191U JP2519692Y2 JP 2519692 Y2 JP2519692 Y2 JP 2519692Y2 JP 9943191 U JP9943191 U JP 9943191U JP 9943191 U JP9943191 U JP 9943191U JP 2519692 Y2 JP2519692 Y2 JP 2519692Y2
Authority
JP
Japan
Prior art keywords
heating furnace
heating
furnace
linear body
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9943191U
Other languages
Japanese (ja)
Other versions
JPH0541737U (en
Inventor
伸 山口
高男 佐野
勲 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9943191U priority Critical patent/JP2519692Y2/en
Publication of JPH0541737U publication Critical patent/JPH0541737U/en
Application granted granted Critical
Publication of JP2519692Y2 publication Critical patent/JP2519692Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Tunnel Furnaces (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は、線状体の加熱炉に関す
る。さらに詳しくは、線状体と並流若しくは向流方向に
流れる加熱流体を用いて線状体を加熱する加熱炉であっ
て、例えば、プラスチックモノフィラメント、プラスチ
ックマルチフィラメント、プラスチック中空糸、プラス
チック光フアイバ、ガラスフアイバ、ガラス光フアイ
バ、炭素繊維等の線状体の延伸、熱処理等を行なうため
の加熱炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear body heating furnace. More specifically, a heating furnace that heats a linear body using a heating fluid that flows in a cocurrent or countercurrent direction with the linear body, for example, a plastic monofilament, a plastic multifilament, a plastic hollow fiber, a plastic optical fiber, The present invention relates to a heating furnace for drawing and heat-treating linear bodies such as glass fibers, glass optical fibers, and carbon fibers.

【0002】[0002]

【従来の技術】通常このような加熱炉にあっては、被加
熱物である線状体の移動方向と並流もしくは向流方向に
流れる加熱ガス、空気、蒸気、或いはその他の不活性ガ
ス等の加熱流体を熱媒体として用い、線状体を加熱し、
何らかの処理、例えば焼成、乾燥、延伸、熱固定等を施
すことが行なわれている。
2. Description of the Related Art Usually, in such a heating furnace, heating gas, air, steam, or other inert gas flowing in a cocurrent or countercurrent direction with the moving direction of the linear object to be heated. The heating fluid of is used as a heat medium to heat the linear body,
Some treatment such as baking, drying, stretching, heat setting, etc. is performed.

【0003】従来、この種の加熱炉において、炉入口、
出口の開口部に特殊な非接触シール機構を設け、炉内へ
の外気の流入もしくは炉内からの熱媒体である加熱流体
の流出を極力抑制することにより、炉内の温度分布、流
速分布の均一化を計った例として、先に本考案者等が提
案した特開昭62ー238986号公報に示す加熱炉が
ある。
Conventionally, in this kind of heating furnace, the furnace inlet,
By installing a special non-contact sealing mechanism at the outlet opening and suppressing the inflow of outside air into the furnace or the outflow of the heating fluid that is the heat medium from the furnace as much as possible, the temperature distribution and flow velocity distribution in the furnace can be improved. As an example of uniformization, there is a heating furnace disclosed in Japanese Patent Laid-Open No. 62-238986 previously proposed by the present inventors.

【0004】ところが、上記従来装置は、加熱炉入口、
出口における加熱流体の非接触シールを強化し、加熱ガ
ス等の加熱流体の炉外への流出、あるいは外気の炉内へ
の流入を抑えても、加熱流体吹込口における幅方向の温
度分布、あるいは速度分布の不均一によって生ずる炉内
幅方向の温度分布、あるいは速度分布の不均一は抑制す
ることができなかった。さらに、炉の上下から吹き込ま
れた加熱流体の衝突によって発生する流体振動によって
生ずる炉内流速変動もまたシール強化では抑制すること
ができず、さらに改善の余地を残していた。
However, the above-mentioned conventional apparatus has a heating furnace inlet,
Even if the outflow of the heating fluid such as heating gas to the outside of the furnace or the inflow of outside air into the furnace is suppressed by strengthening the non-contact sealing of the heating fluid at the outlet, the temperature distribution in the width direction at the heating fluid inlet, or The temperature distribution in the width direction of the furnace caused by the non-uniform velocity distribution or the non-uniform velocity distribution could not be suppressed. Further, the fluctuation of the flow velocity in the furnace caused by the fluid vibration generated by the collision of the heated fluid blown from above and below the furnace cannot be suppressed by the seal strengthening, and there is still room for improvement.

【0005】[0005]

【考案が解決しょうとする課題】本考案は、上述の問題
点、すなわち加熱炉への加熱流体吹込部における流体の
幅方向の温度斑、流速斑、あるいは経時的な温度斑、流
速斑、さらには、上下吹込流体の衝突から生ずる流体の
振動による炉内流速の乱れ等を解消しようとするもので
ある。さらに、これらの斑、乱れ等を解消し、線状体の
長手方向における線径変動の縮小および線径変動の線状
体間差の縮小を計り、均一な太さの線状体を得ることの
できる加熱炉を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention has the above-mentioned problems, namely, temperature unevenness and flow speed unevenness in the width direction of the fluid in the heating fluid blowing portion into the heating furnace, or temperature unevenness and flow unevenness over time, and Is to eliminate the disturbance of the flow velocity in the furnace due to the vibration of the fluid caused by the collision of the vertically injected fluid. Furthermore, by eliminating these spots, irregularities, etc., it is possible to obtain a linear body with a uniform thickness by reducing the variation of the wire diameter in the longitudinal direction of the linear body and the difference between the linear bodies of the diameter variation. It is intended to provide a heating furnace that can be used.

【0006】[0006]

【課題を解決するための手段】本考案は、 1.連続的に通過する線状体を、加熱流体を用いて加熱
する加熱炉において、加熱炉内壁面の少なくとも一面
に、線状体の配置幅にわたり連続した長さの突起を設け
たことを特徴とする加熱炉。 2.突起の高さ(H)が、突起の先端から線状体の通過
通路までの距離(L)の0.5倍以上である上記1記載
の加熱炉。 3.突起の数が、炉内長さ1メートルあたり1ないし1
0個である上記1記載又は上記2記載の加熱炉。とする
ことによって目的を達成するものである。
[Means for Solving the Problems] The present invention is as follows. In a heating furnace that heats a linear body that passes continuously using a heating fluid, at least one surface of the inner wall of the heating furnace is provided with a protrusion having a continuous length over the arrangement width of the linear body. Heating furnace. 2. The heating furnace according to claim 1, wherein the height (H) of the protrusion is 0.5 times or more the distance (L) from the tip of the protrusion to the passage of the linear body. 3. The number of protrusions is 1 to 1 per 1 meter of furnace length
The heating furnace according to the above 1 or 2, wherein the number is 0. By doing so, the purpose is achieved.

【0007】以下図面を用いて詳細説明する。図1は本
考案の一実施態様における加熱炉の断面図である。図2
は、図1のA−A線における断面図である。図3は、本
案加熱炉を芯鞘構造の光フアイバ製造ラインに使用した
場合の構成図である。
A detailed description will be given below with reference to the drawings. FIG. 1 is a sectional view of a heating furnace according to an embodiment of the present invention. Figure 2
FIG. 2 is a sectional view taken along the line AA of FIG. FIG. 3 is a configuration diagram when the heating furnace of the present invention is used in an optical fiber manufacturing line having a core-sheath structure.

【0008】図において、1は加熱炉である。加熱炉1
は長手方向の両端に開口入口2、開口出口3を設けてあ
る。線状体4は開口入口2から加熱炉1の中に入り、加
熱されて開口出口3から炉外へ取り出される。5は供給
ローラ、6は引取ローラで、線状体4の加熱炉1への送
り込み、引出を行なうもので、必要により引取ローラ6
の周速を供給ローラ5の周速よりも上げることにより線
状体4に延伸が加えられる。7は加熱炉1の内壁に設け
られた保温ヒータで加熱流体の温度低下を防ぐために設
けられている。
In the figure, 1 is a heating furnace. Heating furnace 1
Has an opening inlet 2 and an opening outlet 3 at both ends in the longitudinal direction. The linear body 4 enters the heating furnace 1 through the opening inlet 2, is heated, and is taken out of the furnace through the opening outlet 3. Reference numeral 5 is a supply roller, and 6 is a take-off roller for feeding the linear body 4 into and out of the heating furnace 1, and if necessary, the take-up roller 6
The linear body 4 is stretched by increasing the peripheral speed of the above than the peripheral speed of the supply roller 5. Reference numeral 7 is a heat retaining heater provided on the inner wall of the heating furnace 1 to prevent the temperature of the heating fluid from decreasing.

【0009】8は加熱流体入口、9は加熱流体出口で、
本実施例では加熱流体は、線状体4に対して向流して流
れる。すなわち、加熱流体入口8および加熱流体出口9
は加熱炉1の開口入口2、開口出口3に近い位置に設け
られており、図示されていない流体加熱装置につながっ
ており、流体は流体加熱装置から加熱流体入口、加熱
炉、加熱流体出口を経て再び流体加熱装置に戻るよう循
環使用される。10はシールで開口入口2、開口出口3
の開口端に設けられ、線状体に対しては非接触に設けら
れており、加熱炉内の熱の放出を抑制している。
8 is a heating fluid inlet, 9 is a heating fluid outlet,
In the present embodiment, the heating fluid flows countercurrent to the linear body 4. That is, the heating fluid inlet 8 and the heating fluid outlet 9
Is provided at a position close to the opening inlet 2 and the opening outlet 3 of the heating furnace 1, and is connected to a fluid heating device (not shown). The fluid flows from the fluid heating device to the heating fluid inlet, the heating furnace, and the heating fluid outlet. After that, it is circulated and used again to return to the fluid heating device. 10 is a seal which is an opening inlet 2 and an opening outlet 3
Is provided at the open end of the heating element and not in contact with the linear body, and suppresses the release of heat in the heating furnace.

【0010】11は加熱炉内において、通過する被加熱
物である線状体に対しては非接触な状態で、線状体の配
置幅をカバーする範囲において連続して設けられている
突起である。突起11は、線状体の上側あるいは下側あ
るいはその両側に設けてある。突起の形状は限定されな
い。すなわち一番簡単な形は、平板を通過する線状体の
配置幅をカバーする範囲の長さにおくことである。突起
は線状体の配置幅をカバーする長さが必要であり、この
間は連続していることが必要である。
Reference numeral 11 denotes a protrusion continuously provided in the heating furnace in a state of not contacting a linear object which is an object to be heated passing therethrough, in a range covering the arrangement width of the linear object. is there. The protrusions 11 are provided on the upper side or the lower side of the linear body or on both sides thereof. The shape of the protrusion is not limited. That is, the simplest form is to set the length within a range that covers the arrangement width of the linear body passing through the flat plate. The protrusion needs to have a length that covers the arrangement width of the linear body, and needs to be continuous during this period.

【0011】突起の先端から線状体の通過通路までの距
離(L)は、線状体が突起先端に接触しない範囲で成る
べく短いことが好ましいが、一般的には線状体の材質や
形状さらには目的とする処理にもよるが0.5〜30m
mの範囲である。さらに、突起の先端から線状体の通過
通路までの距離(L)と加熱炉の壁面から突起先端まで
の距離すなわち突起の高さ(H)との関係は、上記距離
(L)の0.5倍以上が突起高さであるという関係が好
ましいが、線状体自体の形状や材質に加えて、その移動
速度も関係する事項である。
The distance (L) from the tip of the projection to the passage of the linear body is preferably as short as possible within the range where the linear body does not contact the tip of the projection, but generally, the material of the linear body and 0.5 to 30 m, depending on the shape and the intended treatment
m. Furthermore, the relationship between the distance (L) from the tip of the protrusion to the passage of the linear body and the distance from the wall surface of the heating furnace to the tip of the protrusion, that is, the height (H) of the protrusion is 0. It is preferable that the projection height is 5 times or more, but the moving speed is also a matter in addition to the shape and material of the linear body itself.

【0012】図2には加熱炉が上下に分離し、上側が炉
内を開放する状況が破線で示してある。このことは加熱
炉に線状体をセットする際非常に便利である。すなわ
ち、運転開始時に加熱炉の中の線状体が均一に配置され
線状体間にたるみや乱れのない状態で運転を開始するこ
とを容易にするものである。
In FIG. 2, the heating furnace is separated into upper and lower parts, and the upper part opens the inside of the furnace by broken lines. This is very convenient when setting the filament in the heating furnace. That is, it is easy to start the operation in a state where the linear bodies in the heating furnace are uniformly arranged at the start of the operation and there is no slack or disorder between the linear objects.

【0013】図3は、本案加熱炉を光フアイバの如き芯
鞘フアイバの製造ラインに使用した例が示してある。1
2は口金でギヤポンプ13、14から送られたポリマが
芯鞘フアイバ18として吐出される。ギヤポンプ13に
は鞘成分ポリマ15が、ギヤポンプ14には芯成分ポリ
マ16が供給される。吐出した芯鞘フアイバ18には冷
却風17が当てられ冷却されて引取ロール19で引き取
られる。続いて芯鞘フアイバ18は引取ロール19と延
伸ロール20との間で所定の倍率に延伸され、さらに熱
処理ロール21で引かれて最後はボビン22に巻き取ら
れる。
FIG. 3 shows an example in which the heating furnace of the present invention is used in a production line of a core-sheath fiber such as an optical fiber. 1
2 is a mouthpiece, and the polymer sent from the gear pumps 13 and 14 is discharged as a core-sheath fiber 18. The gear pump 13 is supplied with the sheath component polymer 15, and the gear pump 14 is supplied with the core component polymer 16. Cooling air 17 is applied to the discharged core-sheath fiber 18 to cool it, and is taken up by a take-up roll 19. Subsequently, the core / sheath fiber 18 is stretched to a predetermined ratio between the take-up roll 19 and the draw roll 20, further drawn by the heat treatment roll 21, and finally wound up on the bobbin 22.

【0014】これらの工程を経る間において、引取ロー
ル19と延伸ロール20との間で芯鞘フアイバを引き延
ばすにあたり、引き延ばし中のフアイバを加熱すること
でスムースな延伸を行なわせるために加熱炉1を使用し
ている。また、延伸ロール20と熱処理ロール21の周
速を一定にしながら熱処理してフアイバを安定なものと
する場合にも加熱炉1が使用される。何れの場合におい
ても、本案加熱炉は炉内幅方向における加熱流体の温度
斑、流速斑を解消する上で最適なものであり、各工程に
おける糸処理を確実なものとしている。
During the course of these steps, when the core-sheath fiber is stretched between the take-up roll 19 and the stretching roll 20, the heating furnace 1 is heated to heat the fiber being stretched for smooth stretching. I'm using it. The heating furnace 1 is also used when heat treatment is performed while keeping the peripheral speeds of the drawing roll 20 and the heat treatment roll 21 constant to make the fiber stable. In any case, the heating furnace of the present invention is optimal for eliminating the temperature unevenness and flow speed unevenness of the heating fluid in the width direction of the furnace, and ensures the yarn processing in each step.

【0015】[0015]

【実施例】本考案による加熱炉をプラスチック光フアイ
バの延伸に用いた場合について説明する。使用した加熱
炉は図1及び図2に示すように加熱炉内壁上面及び下面
に糸の進行方向と略直角方向に糸の配置される幅より広
く連続した突起を設けたものである。炉の有効長さは
2.5mであり、突起の数は上面3ヵ所、下面6ヵ所で
略等間隔に配置した。炉内の高さは30mmであり、突
起の高さは5mm、突起は幅8mmで断面矩形とし、炉
内の横幅430mmの全幅に対しほぼ連続して設置し
た。 処理される糸は芯鞘構造のプラスチック光フアィ
バを用いた。芯成分としては十分精製された市販のメタ
クリル酸メチルにラジカル反応開始剤と連鎖移動剤を添
加して連続塊状ラジカル重合し、次いで一軸のベント型
エクストルーダからなる脱モノマ機により単量体などを
除去して、重量平均分子量が83000、残存モノマ率
が0.22重量%のポリメチルメタクリレートを得てこ
れを使用した。鞘成分としては市販のフッ化メタクリレ
ートを使用した。
EXAMPLE A case where the heating furnace according to the present invention is used for stretching a plastic optical fiber will be described. As shown in FIGS. 1 and 2, the heating furnace used is one in which projections are provided on the upper and lower surfaces of the inner wall of the heating furnace in a direction substantially perpendicular to the yarn traveling direction and wider than the width in which the yarn is arranged. The effective length of the furnace was 2.5 m, and the number of protrusions was 3 at the upper surface and 6 at the lower surface, and were arranged at substantially equal intervals. The height in the furnace was 30 mm, the height of the protrusions was 5 mm, and the protrusions had a width of 8 mm and had a rectangular cross section, and were installed almost continuously with respect to the entire width of 430 mm in the furnace. As the yarn to be treated, a plastic optical fiber having a core-sheath structure was used. As a core component, a radical polymerization initiator and a chain transfer agent are added to commercially-purified commercially available methyl methacrylate to perform continuous bulk radical polymerization, and then monomers and the like are removed by a demonomer machine consisting of a uniaxial vent-type extruder. Then, polymethylmethacrylate having a weight average molecular weight of 83000 and a residual monomer ratio of 0.22% by weight was obtained and used. A commercially available fluorinated methacrylate was used as the sheath component.

【0016】芯成分と鞘成分を連続供給して250℃で
溶融複合紡糸し、1414μmφの未延伸プラスチック
光フアイバを得た。引き続きこの未延伸プラスチック光
フアイバを、160℃に上述の如き熱風循環方式の加熱
炉を用いて加熱しながら2.0倍に非接触加熱延伸し、
さらに同様の加熱炉を用いて165℃に加熱しながら定
長熱処理して寸法安定性を向上させ、定張力巻取機を用
いて巻き取り、1000μmφの延伸プラスチック光フ
アイバを得た。
The core component and the sheath component were continuously supplied and melt-composited at 250 ° C. to obtain an unstretched plastic optical fiber having a diameter of 1414 μm. Subsequently, this unstretched plastic optical fiber was stretched 2.0 times in a non-contact manner while being heated to 160 ° C. using the heating furnace of the hot air circulation system as described above,
Further, the dimensional stability was improved by carrying out a constant length heat treatment while heating at 165 ° C. in the same heating furnace, and it was wound by using a constant tension winder to obtain a stretched plastic optical fiber of 1000 μmφ.

【0017】得られたプラスチック光フアイバの線径変
動をキーエンス製レーザ・ダイオード方式外径測定器を
用いて測定したところ、その糸径変動幅は1000μm
±1.6%〜±2.1%と小さく、また、80℃におけ
る収縮率は0.51%〜0.57%と低く、かつ狭い範
囲に揃っていた。
The fluctuation of the wire diameter of the obtained plastic optical fiber was measured by using a laser diode type outer diameter measuring device manufactured by Keyence, and the fluctuation width of the thread diameter was 1000 μm.
It was as small as ± 1.6% to ± 2.1%, the shrinkage rate at 80 ° C. was as low as 0.51% to 0.57%, and was in a narrow range.

【0018】〔比較例〕 加熱炉内壁の上面、下面に突起を設けない以外は上記実
施例と同様の原料、紡糸条件、設備を用いてプラスチッ
ク光フアイバを製造したところ糸径変動幅は1000μ
m±2.0%〜2.7%と大きく、また80℃における
収縮率は0.55%〜0.7%と高く、かつバラツキも
大きかった。以上の測定結果をまとめて表1に示す。
Comparative Example A plastic optical fiber was manufactured using the same raw materials, spinning conditions and equipment as in the above example except that no protrusions were provided on the upper and lower surfaces of the heating furnace inner wall.
m ± 2.0% to 2.7%, the shrinkage ratio at 80 ° C. was as high as 0.55% to 0.7%, and the variation was large. The above measurement results are summarized in Table 1.

【表1】 [Table 1]

【0019】本考案加熱炉は、加熱炉内壁面に突起を設
けたので加熱流体の温度、流速の炉幅方向の斑が小さく
なり、処理する線状体の線径変動及び物性の線状体間差
を小さくすることができる。また、加熱流体の吹込口付
近における温度、流速の変動が緩和されるので線径及び
物性の長手方向の変動を小さくすることができる。ま
た、加熱流体の上下の干渉による流速変動が緩和され、
線径及び物性の長手方向の変動を小さくすることができ
る。
Since the heating furnace of the present invention is provided with the protrusions on the inner wall surface of the heating furnace, the unevenness of the temperature and the flow velocity of the heating fluid in the width direction of the furnace becomes small, and the linear diameter of the linear body to be processed and the linear body of the physical property are The gap can be reduced. Further, fluctuations in temperature and flow velocity in the vicinity of the inlet of the heating fluid are alleviated, so fluctuations in the wire diameter and physical properties in the longitudinal direction can be reduced. In addition, fluctuations in flow velocity due to vertical interference of the heating fluid are alleviated,
Variations in the wire diameter and the physical properties in the longitudinal direction can be reduced.

【0020】さらに、線状体の随伴流の剥離を行なうこ
とが出きるので加熱効率が向上し、加熱流体の加熱温度
を低くすることが出きるので加熱エネルギを節約するこ
とができる。加えて、炉内温度分布を均一にすることが
出きるので、線状物に張力を加えた場合、張力変動が小
さくなり、線状物の揺れが小さくなり、線状物の融着を
生じないので融着による切断トラブルを少なくすること
ができるものである。
Further, since it is possible to separate the accompanying flow of the linear body, the heating efficiency is improved, and the heating temperature of the heating fluid can be lowered, so that the heating energy can be saved. In addition, since it is possible to make the temperature distribution in the furnace uniform, when tension is applied to the linear object, the fluctuation of the tension becomes small, the fluctuation of the linear object becomes small, and the fusion of the linear object occurs. Since it does not exist, cutting troubles due to fusion can be reduced.

【0021】[0021]

【考案の効果】本考案は、上述の如く被処理物である線
状体を長手方向において均一に、かつ線状体間において
も斑なく均一に加熱することができるという極めて実用
性に富む優れた効果を挙げることが出きるもので、しか
もこのような優れた実用的効果を挙げるのに極めて簡単
な構成、構造でその目的を達成する優れた工業的効果を
挙げうるものである。
EFFECT OF THE INVENTION The present invention is extremely practical and excellent in that it can uniformly heat a linear object, which is an object to be treated, in the longitudinal direction as described above and evenly between the linear objects. It is possible to bring about the above-mentioned effects, and it is possible to mention the excellent industrial effect of achieving the purpose with an extremely simple structure and structure for obtaining such excellent practical effects.

【0022】[0022]

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に係る加熱炉の一実施態様における断面
図。
FIG. 1 is a sectional view of an embodiment of a heating furnace according to the present invention.

【図2】図1のA−A線における断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本案加熱炉を芯鞘フアイバの製造ラインに使用
した場合の全体構成図。
FIG. 3 is an overall configuration diagram when the heating furnace of the present invention is used in a core-sheath fiber production line.

【0023】[0023]

【符号の説明】[Explanation of symbols]

1:加熱炉 2:開口入口 3:開口出口 4:線状体 5:供給ローラ 6:引取ローラ 7:保温ヒータ 8:加熱流体入口 9:加熱流体出口 10:シール 11:突起 12:口金 13:ギヤポンプ 14:ギヤポンプ 15:鞘成分ポリマ 16:芯成分ポリマ 17:冷却風 18:芯鞘フアイバ 19:引取ロール 20:延伸ロール 21:熱処理ロール 22:ボビン 1: Heating furnace 2: Opening inlet 3: Opening outlet 4: Linear body 5: Supply roller 6: Take-off roller 7: Heater heater 8: Heating fluid inlet 9: Heating fluid outlet 10: Seal 11: Protrusion 12: Base 13: Gear pump 14: Gear pump 15: Sheath component polymer 16: Core component polymer 17: Cooling air 18: Core-sheath fiber 19: Take-up roll 20: Stretching roll 21: Heat treatment roll 22: Bobbin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/00 366 G02B 6/00 366 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G02B 6/00 366 G02B 6/00 366

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】連続的に通過する線状体を、可熱流体を用
いて加熱する加熱炉において、加熱炉内壁面の少なくと
も一面に、線状体の配置幅にわたり連続した長さの突起
を設けたことを特徴とする加熱炉。
1. A heating furnace for heating a continuously passing linear body using a heatable fluid, wherein at least one inner wall surface of the heating furnace is provided with a projection having a continuous length over the arrangement width of the linear body. A heating furnace characterized by being provided.
【請求項2】突起の高さ(H)が、突起の先端から線状
体の通過通路までの距離(L)の0.5倍以上である請
求項1記載の加熱炉。
2. The heating furnace according to claim 1, wherein the height (H) of the protrusion is 0.5 times or more the distance (L) from the tip of the protrusion to the passage of the linear body.
【請求項3】突起の数が、炉内長さ1メートルあたり1
ないし10個である請求項1又は請求項2記載の加熱
炉。
3. The number of protrusions is 1 per meter of length inside the furnace.
The heating furnace according to claim 1 or 2, wherein the number is 10 to 10.
JP9943191U 1991-11-07 1991-11-07 heating furnace Expired - Lifetime JP2519692Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9943191U JP2519692Y2 (en) 1991-11-07 1991-11-07 heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9943191U JP2519692Y2 (en) 1991-11-07 1991-11-07 heating furnace

Publications (2)

Publication Number Publication Date
JPH0541737U JPH0541737U (en) 1993-06-08
JP2519692Y2 true JP2519692Y2 (en) 1996-12-11

Family

ID=14247257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9943191U Expired - Lifetime JP2519692Y2 (en) 1991-11-07 1991-11-07 heating furnace

Country Status (1)

Country Link
JP (1) JP2519692Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60042415D1 (en) * 1999-09-09 2009-07-30 Mitsubishi Rayon Co Process for producing a plastic optical fiber

Also Published As

Publication number Publication date
JPH0541737U (en) 1993-06-08

Similar Documents

Publication Publication Date Title
KR100287492B1 (en) Method and apparatus for manufacturing composite tread
US5558825A (en) Method and apparatus for producing polyester fiber
US4973236A (en) Apparatus for melt-spinning thermoplastic polymer fibers
ITMI951970A1 (en) COOLING TUBE TO COOL SYNTHETIC FILAMENTS
US6478996B1 (en) Method and apparatus for producing a highly oriented yarn
US4838918A (en) Inert atmosphere cooler for optical fibers
JP2000503076A (en) Method and apparatus for producing melt spun monofilament
NL8003494A (en) METHOD FOR MANUFACTURING MELTING SPUN AND ORIENTED CRYSTALLINE FILAMENTS
JP2519692Y2 (en) heating furnace
CA1098318A (en) Method and apparatus for draw forming glass fibers
US5928587A (en) Process and apparatus for cooling melt spun filaments during formation of a multi-filament yarn
JP3303387B2 (en) Heating furnace for linear body, apparatus for manufacturing linear body, and method for manufacturing linear body
JP2995920B2 (en) Heat treatment method and apparatus for plastic optical fiber
JPS6366924B2 (en)
JP4128302B2 (en) Method and apparatus for manufacturing plastic optical fiber
JPH04225303A (en) Plastic optical fiber welding and spinning method, cooling air supply device and spinning cooling device used therein
JP2001305353A (en) Heat treatment method and heat treatment device for plastic optical fiber
JPS5951603B2 (en) Method for producing polymeric filamentous material
JPS6128012A (en) Method for melt spinning modified cross section fiber
JP2001049526A (en) Production of polyester fiber
JP2995918B2 (en) Method and apparatus for melt-spinning plastic optical fiber
CA1152273A (en) Process for forming a continuous filament yarn from a melt spinnable synthetic polymer and novel polyester yarns produced by the process
JPS61182925A (en) Manufacture of spiral material made of synthetic resin
RU2020194C1 (en) Method for production of polyamide ultimate fiber with fine denier
JP3259568B2 (en) Synthetic fiber melt spinning method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term