JPH0268456A - Cooling device - Google Patents
Cooling deviceInfo
- Publication number
- JPH0268456A JPH0268456A JP21919888A JP21919888A JPH0268456A JP H0268456 A JPH0268456 A JP H0268456A JP 21919888 A JP21919888 A JP 21919888A JP 21919888 A JP21919888 A JP 21919888A JP H0268456 A JPH0268456 A JP H0268456A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- pressure side
- low
- differential pressure
- main valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 26
- 239000002826 coolant Substances 0.000 abstract 3
- 238000007599 discharging Methods 0.000 abstract 2
- 238000013021 overheating Methods 0.000 abstract 2
- 238000000034 method Methods 0.000 abstract 1
- 239000003507 refrigerant Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 206010024229 Leprosy Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、冷却装置、より詳しくは容量可変型のコン
プレッサを有した冷却ザイクルに用いられる膨張弁の改
良に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cooling device, and more particularly to an improvement in an expansion valve used in a cooling cycle having a variable capacity compressor.
(従来の技術)
コンプレッサ、凝縮器、受液器、膨張弁及び蒸発器を順
次配管結合して構成される冷却サイクルにおいては、最
近、コンプレッサに容量可変型のものが用いられつつあ
るが、このような冷却サイクルであっても、膨張弁には
、例えば特開昭6110506号公報や実開昭62−9
3657号公報等に示されるように、コンプレッサの吐
出口に通じる高圧側とコンプレッサの吸入口に通しる低
圧側とを連通ずる連通路に主弁を設け、この主弁により
蒸発器の過熱度(スーパーヒート量)を一定に保つよう
熱負荷の増減に応して連通路の絞り (開口面積)を調
節する形式のものが用いられている。(Prior Art) Recently, variable capacity compressors have been used in cooling cycles that are constructed by sequentially connecting a compressor, condenser, liquid receiver, expansion valve, and evaporator through piping. Even with such a cooling cycle, the expansion valve is disclosed in, for example, Japanese Patent Application Laid-open No. 6110506 or Japanese Utility Model Application No. 62-9.
As shown in Publication No. 3657, a main valve is provided in a communication passage that communicates the high pressure side leading to the discharge port of the compressor and the low pressure side leading to the suction port of the compressor, and this main valve controls the degree of superheating ( In order to maintain a constant amount of superheat (amount of superheat), a system is used that adjusts the aperture (opening area) of the communication path according to increases or decreases in heat load.
(発明が解決しようとする課題)
このため、容量可変ができないコンプレッサのように冷
媒流量が多いときには、第6図に示すように、膨張弁の
開口面積の変化に対する過熱度の変化割合は小さくなる
が、吐出量が小さい場合には冷媒流量が少なくなるので
、開口量の変化に対する過熱度の変化割合は大きくなる
。したがって、何らかの原因で過熱度が変動すると、所
定の過熱度を維持しようとして主弁が振動し、従来の膨
張弁にあってはこの振動に伴って開口量が太き(変動す
るので、吐出量が小さい場合にはハンチングが生して冷
却サイクルの制御性が悪くなる欠点があった。(Problem to be solved by the invention) For this reason, when the refrigerant flow rate is large, such as in a compressor whose capacity cannot be varied, the rate of change in the degree of superheat with respect to the change in the opening area of the expansion valve becomes small, as shown in Figure 6. However, when the discharge amount is small, the refrigerant flow rate decreases, so the rate of change in the degree of superheating with respect to the change in the opening amount becomes large. Therefore, if the degree of superheat fluctuates for some reason, the main valve vibrates in an attempt to maintain the predetermined degree of superheat, and in conventional expansion valves, the opening amount increases (varies) due to this vibration. If it is small, hunting occurs and the controllability of the cooling cycle becomes poor.
そこで、この発明においては、コンプレッサの吐出量が
小さい場合のハンチングを抑え、冷却ザイクルの制御性
を向上させた冷却装置を提供することを課題としでいる
。Therefore, an object of the present invention is to provide a cooling device that suppresses hunting when the discharge amount of the compressor is small and improves the controllability of the cooling cycle.
(課題を解決するだめの手段)
しかして、この発明の要旨とするところは、少なくとも
可変容量コンプレッサ、凝縮器、膨張弁及び蒸発器を順
次配管結合して冷却サイクルを構成し、前記膨張弁には
その高圧側と低圧側とを連通ずる連通路と、この連通路
の開口面積を可変させて前記蒸発器の過熱度を一定に保
つように調節する主弁とが設けられている冷却装置にお
いて、少なくとも熱負荷が小さいときには前記連通路の
開口面積変化を小さくする手段を設けたことにある。(Another Means to Solve the Problem) Therefore, the gist of the present invention is to construct a cooling cycle by sequentially connecting at least a variable capacity compressor, a condenser, an expansion valve, and an evaporator to the expansion valve. In a cooling device, the cooling device is provided with a communication path that communicates the high pressure side and the low pressure side, and a main valve that adjusts the degree of superheat of the evaporator by varying the opening area of the communication path so as to keep the degree of superheat of the evaporator constant. The present invention is characterized in that means is provided for reducing the change in the opening area of the communicating path at least when the heat load is small.
(作用)
したがって、蒸発器の過熱度が変動すると、所定の過熱
度を維持しようとして主弁が作動するが、熱負荷か小さ
い場合には連通路の開口面積の変化量が鈍くなるので、
コンプレッサの小容量時には開口面積の大きな変動を抑
えることができ、そのため、」1記課題を達成すること
ができるものである。(Function) Therefore, when the degree of superheat of the evaporator fluctuates, the main valve operates in an attempt to maintain a predetermined degree of superheat, but if the heat load is small, the amount of change in the opening area of the communication passage slows down.
When the capacity of the compressor is small, large fluctuations in the opening area can be suppressed, and therefore, the problem described in item 1 can be achieved.
(実施例) 以下、この発明の実施例を図面により説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第2図において、冷却サイクルの概略が示され、冷却サ
イクルは可変容量コンブレソザl、凝縮器2、受液器3
、温度作動式膨張弁4及び蒸発器5が配管結合されて構
成されている。可変容量コンプレッサ1は、図示しない
自動車のエンジンに電磁クラッチ6を介して連結され、
この電磁クラッチ6を断続することにより駆動、停止の
制御がなされる。また、該コンプレッサは、熱負荷との
関係で容量が調節され、熱負荷が小さくなるほど容量が
小さく制御され、この結果として、熱負荷にほぼ比例し
て吐出側(高圧側)と吸入側(低圧側)との差圧が変化
されるようになっている。そして、この圧縮機1から吐
出された冷媒ガスは、凝縮器2において、冷却用ファン
7から送られる空気により熱交換されて凝縮され、受液
器3に一時蓄えられて液冷媒となり、膨張弁4により低
温低圧の湿った蒸気となり、蒸発器5において送風機8
からの空気と熱交換して所定の過熱度を持つ冷媒ガスと
なって再び圧縮機1に吸入される。In FIG. 2, an outline of the cooling cycle is shown.
, a temperature-operated expansion valve 4, and an evaporator 5 are connected by piping. The variable capacity compressor 1 is connected to an automobile engine (not shown) via an electromagnetic clutch 6.
Drive and stop are controlled by turning on and off the electromagnetic clutch 6. In addition, the capacity of the compressor is adjusted in relation to the heat load, and the smaller the heat load, the smaller the capacity is controlled. As a result, the discharge side (high pressure side) and suction side (low pressure side) are controlled approximately in proportion to the heat load. The differential pressure between the two sides) can be changed. In the condenser 2, the refrigerant gas discharged from the compressor 1 undergoes heat exchange with the air sent from the cooling fan 7, is condensed, is temporarily stored in the liquid receiver 3, becomes a liquid refrigerant, and is turned into a liquid refrigerant. 4, it becomes low temperature and low pressure moist steam, which is then sent to the evaporator 5 by the blower 8.
The refrigerant gas exchanges heat with the air from the refrigerant gas to become a refrigerant gas having a predetermined degree of superheating, and is sucked into the compressor 1 again.
第1図において、前記膨張弁4の第1の実施例が示され
、弁本体9は、高圧通路10と低圧通路11とが直角方
向に形成され、高圧通路10は冷凍サイクルの受液器3
の出口側の配管に接続され、また、低圧通路11ば冷凍
サイクルの蒸発器5の入口の配管に接続される。この高
圧通路10と低圧通路11とは、弁本体9に形成された
連通路12を介して接続されている。In FIG. 1, a first embodiment of the expansion valve 4 is shown, in which a valve body 9 has a high pressure passage 10 and a low pressure passage 11 formed at right angles, and the high pressure passage 10 is connected to a liquid receiver 3 of a refrigeration cycle.
The low pressure passage 11 is also connected to the inlet pipe of the evaporator 5 of the refrigeration cycle. The high pressure passage 10 and the low pressure passage 11 are connected via a communication passage 12 formed in the valve body 9.
主弁13は、主弁用弁部材14を有し、この主弁用弁部
材14は、ポペット状の弁体部14aとステム部14b
とから構成されている。弁体部14aば、前述した連通
路12の低圧側端に形成された弁座15に着座するよう
になっており、弁本体9に螺合されている調整ねし16
との間に弾装された主弁用スプリング17により」三方
へ押圧されている。弁座15とこの弁座15に接触する
弁体部14aの部分は、急な傾斜を持たせた末広がりな
形状に形成されており、これにより、第3図に示すよう
に、従来の膨張弁に比べて主弁用部材14が大きくスト
ロークしても連通路12の絞り (開口面積)が大きく
変化しないようになっている。また、ステム部14bは
、連通路12を通って上方へ延び、連通路12に続(摺
動孔18内に挿入されている。このステム部14bの上
端にはスリーブ19が軽圧入され、ステム部14bの膨
出部31とスリーブ19の端部との間にシール部材20
が挾まれ、このシール部材20が摺動孔18を摺動し、
下記する第2の室23bの気密を保つようになっている
。The main valve 13 has a main valve valve member 14, which includes a poppet-shaped valve body portion 14a and a stem portion 14b.
It is composed of. The valve body portion 14a is configured to sit on a valve seat 15 formed at the low-pressure side end of the communication passage 12 described above, and has an adjustment screw 16 screwed into the valve body 9.
It is pressed in three directions by the main valve spring 17, which is loaded between the main valve spring 17 and the main valve spring 17. The valve seat 15 and the portion of the valve body 14a that contacts the valve seat 15 are formed in a shape that has a steep slope and widens toward the end. Even if the main valve member 14 makes a large stroke compared to the above, the throttle (opening area) of the communication passage 12 does not change significantly. The stem portion 14b extends upward through the communicating path 12, and is inserted into the sliding hole 18. A sleeve 19 is lightly press-fitted into the upper end of the stem portion 14b. A sealing member 20 is provided between the bulging portion 31 of the portion 14b and the end of the sleeve 19.
is held, and this sealing member 20 slides through the sliding hole 18,
The second chamber 23b, which will be described below, is kept airtight.
尚、前記弁体部14aとステム部14bの膨出部31と
には、互いに対向する部分に対称的な平坦面32a、3
2bが形成され、高圧通路10の冷媒ガスから受ける圧
力を同しにし、このガス圧でば主弁用弁部材14が動か
ないようにしである。The valve body portion 14a and the bulging portion 31 of the stem portion 14b have symmetrical flat surfaces 32a, 3 at opposing portions.
2b is formed to equalize the pressure received from the refrigerant gas in the high pressure passage 10, and to prevent the main valve valve member 14 from moving under this gas pressure.
ダイヤフラム21は、弁本体9の上部で弁本体9にかし
められた蓋体22により該ダイヤフラム2の周縁が固定
され、弁本体9と蓋体22で形成される空間を第1及び
第2の室23a、23bの二つに分けている。第1の室
23aは、連結管24の一端が接続され、この連結管2
4の他端は蒸発器5の出口側に設けられた感温筒に接続
され、蒸発器5の出口側の温度に応じて該第1の室23
aの圧力が変化するようになっている。また、第2の室
23bは、外部均圧管25を介して低圧側配管に接続さ
れ、この第2の室23bの圧力を低圧通路11の圧力と
等しくする、いわゆる外部均圧式としである。The periphery of the diaphragm 21 is fixed by a cover body 22 caulked to the valve body 9 at the upper part of the valve body 9, and the space formed by the valve body 9 and the cover body 22 is divided into first and second chambers. It is divided into two parts, 23a and 23b. One end of the connecting pipe 24 is connected to the first chamber 23a, and the first chamber 23a is connected to one end of the connecting pipe 24.
The other end of 4 is connected to a temperature-sensitive cylinder provided on the outlet side of the evaporator 5, and the temperature of the first chamber 23 is adjusted according to the temperature on the outlet side of the evaporator 5.
The pressure at a is changed. Further, the second chamber 23b is connected to the low pressure side piping via an external pressure equalizing pipe 25, and is of a so-called external pressure equalizing type in which the pressure in the second chamber 23b is made equal to the pressure in the low pressure passage 11.
したがって、前記主弁用弁部材14は、感温筒からの温
度に対する圧力と外部均圧管25からの低圧側の冷媒圧
力及び前記主弁用スプリング17の押圧力とがつり合う
位置に移動し、連通路12を通過する冷媒流量を調節し
、前記蒸発器5の過熱度を一定に保つようにしている。Therefore, the main valve valve member 14 moves to a position where the pressure relative to the temperature from the temperature sensing cylinder, the low pressure side refrigerant pressure from the external pressure equalizing pipe 25, and the pressing force of the main valve spring 17 are balanced, and the valve member 14 is connected. The flow rate of refrigerant passing through the passage 12 is adjusted to keep the degree of superheat of the evaporator 5 constant.
また、前記主弁用弁部材14には、ステム部14bの径
方向に形成された第1の横孔26a、この横孔26aか
ら弁体部14,1の下端にかけて設げられた縦孔26b
、及びこの縦孔26bに対して直角に設けられた第2の
横孔26Cをもって構成された差圧開閉通路26が形成
され、この差圧開閉通路26に差圧弁27が設けられて
いる。The main valve member 14 also includes a first horizontal hole 26a formed in the radial direction of the stem portion 14b, and a vertical hole 26b provided from the horizontal hole 26a to the lower end of the valve body portions 14,1.
, and a second horizontal hole 26C provided perpendicular to the vertical hole 26b, a differential pressure opening/closing passage 26 is formed, and a differential pressure valve 27 is provided in this differential pressure opening/closing passage 26.
差圧弁27は、縦孔26b内に配置された差圧弁用弁部
材30を有し、その上端に形成された球面状の弁体部3
0aが、前記主弁用弁部材14の弁体部14aの内部に
形成された差圧弁用弁座33に着座するようになってい
る。そして、主弁用弁部材14の弁体部14aの下方に
螺合されたスプリング受け28と差圧弁用弁部材30の
基部との間に差圧弁用スプリング29が弾装され、この
差圧弁用スプリング29により、差圧弁用弁部材30の
弁体部30aを所定圧PI (例えば3kg/cシ)
で差圧弁用弁座33に押し付けている。The differential pressure valve 27 has a differential pressure valve valve member 30 disposed in the vertical hole 26b, and a spherical valve body portion 3 formed at the upper end thereof.
0a is seated on a differential pressure valve valve seat 33 formed inside the valve body portion 14a of the main valve valve member 14. A differential pressure valve spring 29 is elastically mounted between the spring receiver 28 screwed below the valve body 14a of the main valve valve member 14 and the base of the differential pressure valve valve member 30. The spring 29 keeps the valve body 30a of the differential pressure valve valve member 30 at a predetermined pressure PI (for example, 3 kg/c).
is pressed against the differential pressure valve seat 33.
したがって、差圧弁用弁部材30は、第4図に示すよう
に、高圧側と低圧側の差圧ΔPが差圧弁用スプリング2
9の所定圧よりも太き(なった時点で下方ヘリフトし始
め、開口面積は差圧ΔPが大きくなるにつれて大きくな
っていく。尚、差圧弁の開口面積は、前記スプリング受
け28に形成されたストッパ28aで差圧弁用弁部材3
0のリフト量を規制することにより制限され、主弁13
の最大開口面積S2と差圧弁の最大開口面積S3との和
S2+S3は、従来の膨張弁の最大開口面積SIと一致
させである(Sl =32 +33 )。Therefore, as shown in FIG. 4, in the differential pressure valve valve member 30, the differential pressure ΔP between the high pressure side and the low pressure side is
9, the pressure starts to lift downward, and the opening area increases as the differential pressure ΔP increases. Valve member 3 for differential pressure valve with stopper 28a
It is limited by regulating the lift amount of 0, and the main valve 13
The sum S2+S3 of the maximum opening area S2 of the differential pressure valve and the maximum opening area S3 of the differential pressure valve is made to match the maximum opening area SI of the conventional expansion valve (Sl = 32 + 33).
上記構成において、コンプレッサ1の吐出容量が小さい
場合には、高圧側と低圧側との圧力差が小さく、差圧弁
27は開口されずに主弁13のみが開口され、差圧ΔP
がP、より小さい限り第3図の実線の特性を維持する(
第5図)。このため、第6図に示すように、ストローク
変化に対する過熱度の変化割合は、破線で示すように従
来と比べて小さくなるので、何らかの原因で過熱度が変
化して主弁が大きく振動しても開口面積はあまり変動せ
ず、ハンチングを起こすのを防ぐ。In the above configuration, when the discharge capacity of the compressor 1 is small, the pressure difference between the high pressure side and the low pressure side is small, the differential pressure valve 27 is not opened, only the main valve 13 is opened, and the differential pressure ΔP
As long as is smaller than P, the characteristics of the solid line in Fig. 3 are maintained (
Figure 5). For this reason, as shown in Figure 6, the rate of change in the degree of superheat with respect to the change in stroke is smaller than in the conventional case, as shown by the broken line, so the degree of superheat changes for some reason and the main valve vibrates greatly. However, the opening area does not change much, which prevents hunting.
これに対して、熱負荷の増大に伴いコンプレッサ1の吐
出量が大きくなった場合には、主弁13のみをもって冷
媒流量を調節しようとしても開口面積が大きくならない
ので冷却能力に不足を生じてしまうが、このようなとき
には高圧側と低圧側との冷媒ガスの差圧ΔPが大きくな
るので、差圧弁27も開口し、低圧側へ流れる冷媒流量
が全体的に多くなって第5図の特性線が上方へ移動する
。On the other hand, when the discharge amount of the compressor 1 increases due to an increase in heat load, even if an attempt is made to adjust the refrigerant flow rate using only the main valve 13, the opening area will not become large, resulting in insufficient cooling capacity. However, in such a case, the differential pressure ΔP of the refrigerant gas between the high-pressure side and the low-pressure side increases, so the differential pressure valve 27 also opens, and the overall flow rate of refrigerant flowing to the low-pressure side increases, resulting in the characteristic line in FIG. 5. moves upward.
これにより、吐出量が多くなっても冷却能力の不足を防
くことができる。Thereby, even if the discharge amount increases, insufficient cooling capacity can be prevented.
第7図において、膨張弁4の第2の実施例が示され、弁
本体9には二つに分かれた高圧通路10と共通の低圧通
路11とが形成され、これらは連通路12.35を介し
て接続されている。高圧通路10の一方の分路10aと
低圧通路11とを接続する連通路12は、前記実施例と
同様の主弁13で開閉され、高圧通路IOの他方の分路
10bと低圧通路11とを接続する連通路35は、以下
に述べる差圧弁27により開閉される。In FIG. 7, a second embodiment of the expansion valve 4 is shown, in which the valve body 9 is formed with a high pressure passage 10 divided into two and a common low pressure passage 11, which are connected to a communication passage 12.35. connected via. A communication passage 12 connecting one shunt 10a of the high-pressure passage 10 and the low-pressure passage 11 is opened and closed by a main valve 13 similar to the embodiment described above, and connects the other shunt 10b of the high-pressure passage IO and the low-pressure passage 11. The connecting communication path 35 is opened and closed by a differential pressure valve 27 described below.
差圧弁27は、差圧弁用弁部材30を有し、この弁部材
30は主弁用弁部材14から下方へ延びるロッド14C
に外嵌されている。このロッド14Cの下端にはスプリ
ング受け37が当接され、このスプリング受け37と弁
本体9を閉塞するねし蓋38との間にスプリング39が
介在され、このスプリング39により差圧弁用弁部材3
0が主弁用弁部材14と共に上方へ押圧されている。連
通路35には弁座体40が配され、前記ロッド14Cば
この弁座体40に形成された貫通孔41を介して下方へ
延びている。この弁座体40は、周囲に取付けられた○
−リング42を介して連通路35を摺動できるようにな
っており、貫通孔41の下端周囲に前記差圧弁用弁部材
30が着座する弁座43が形成されている。そして、連
通路35に形成された段部44と弁座体40との間に設
けられた差圧弁用スプリング45により、弁座43と差
圧弁用弁部材30が強く押圧されている。The differential pressure valve 27 has a differential pressure valve valve member 30, and this valve member 30 has a rod 14C extending downward from the main valve valve member 14.
is fitted externally. A spring receiver 37 is brought into contact with the lower end of the rod 14C, and a spring 39 is interposed between the spring receiver 37 and a lid 38 that closes off the valve body 9.
0 is pressed upward together with the main valve valve member 14. A valve seat body 40 is disposed in the communication passage 35 and extends downward through a through hole 41 formed in the valve seat body 40 of the rod 14C. This valve seat body 40 is
- The valve seat 43 can be slid in the communication path 35 via the ring 42, and the valve seat 43 on which the differential pressure valve valve member 30 is seated is formed around the lower end of the through hole 41. The valve seat 43 and the differential pressure valve member 30 are strongly pressed by the differential pressure valve spring 45 provided between the step portion 44 formed in the communication passage 35 and the valve seat body 40 .
このような構成においても、高圧側と低圧側の差圧が小
さいとき、即ちコンプレッサの吐出量が少ないときには
、主弁13のみが開口し、第8図に示すようにストロー
クが増しても開口面積があまり大きくならないのでハン
チングを防止でき、差圧が大きいとき、即ちコンプレッ
サの吐出量が大きいときには、弁座体40が上方へ押し
上げられて差圧弁27も開口するので、開口面積が大き
くなって冷却能力が確保される。Even in this configuration, when the differential pressure between the high pressure side and the low pressure side is small, that is, when the discharge amount of the compressor is small, only the main valve 13 opens, and as shown in Fig. 8, even if the stroke increases, the opening area remains small. does not become too large, so hunting can be prevented. When the differential pressure is large, that is, when the discharge amount of the compressor is large, the valve seat body 40 is pushed upward and the differential pressure valve 27 is also opened, so the opening area becomes large and cooling is facilitated. Capacity is ensured.
第9図において、膨張弁4の第3の実施例が示され、こ
の膨張弁4において主弁用弁部材14と差圧弁用弁部材
30は、ボール弁体14d、30dと、このボール弁体
14d、30dがら延びるロソF14e、30eとから
構成されている。弁本体9内には主弁用弁座体50が固
装されており、この主弁用弁座体50に形成された連通
路51には、その高圧側端に主弁用弁部材14のボール
弁体14dが着座する弁座52が形成されている。In FIG. 9, a third embodiment of the expansion valve 4 is shown, and in this expansion valve 4, the main valve valve member 14 and the differential pressure valve valve member 30 are composed of ball valve bodies 14d, 30d and the ball valve body. It is composed of rotors F14e and 30e extending from 14d and 30d. A valve seat body 50 for the main valve is fixedly mounted in the valve body 9, and a communication passage 51 formed in the valve seat body 50 for the main valve has a valve member 14 for the main valve at its high pressure side end. A valve seat 52 is formed on which the ball valve body 14d is seated.
主弁用弁部材14は、高圧側に配された主弁用スプリン
グ53により上方へ押圧されており、そのロッド14.
eば連通路51を通って上方へ延び、スリーブ19に
圧入されているステム54に当接されている。The main valve valve member 14 is pressed upward by a main valve spring 53 disposed on the high pressure side.
e, it extends upward through the communication path 51 and abuts against a stem 54 that is press-fitted into the sleeve 19 .
また、主弁用弁座体50にはバレル56が固装され、こ
のバレル56に設けられた差圧弁用弁座体57と調整ね
じ58とを介して差圧開閉通路59が形成されている。Further, a barrel 56 is fixed to the main valve seat body 50, and a differential pressure opening/closing passage 59 is formed via a differential pressure valve seat body 57 provided on the barrel 56 and an adjustment screw 58. .
差圧弁用弁座体57はバレル56に形成された孔60に
摺動自在に挿入されており、調整ねじ58との間に配さ
れたスプリング61により下方へ押圧され、この弁座体
57の基部57aをバレル56内の段部に当接させてい
る。The valve seat body 57 for the differential pressure valve is slidably inserted into a hole 60 formed in the barrel 56, and is pressed downward by a spring 61 disposed between the adjustment screw 58 and the valve seat body 57. The base portion 57a is brought into contact with a stepped portion within the barrel 56.
そして、差圧弁用弁座体57の高圧側端には弁座62が
形成され、この弁座62に差圧弁用弁部材30のボール
弁体30dが高圧側に配された差圧弁用スプリング63
により押し付けられている。A valve seat 62 is formed at the high-pressure side end of the differential pressure valve seat body 57, and a differential pressure valve spring 63 in which the ball valve body 30d of the differential pressure valve valve member 30 is disposed on the high pressure side is formed on the valve seat 62.
is pressed by.
また、差圧弁用弁部材30のロッド30eは、差圧開閉
通路59を通って上方へ延び、ステム54に当接されて
いる。Further, the rod 30e of the differential pressure valve member 30 extends upward through the differential pressure opening/closing passage 59 and is in contact with the stem 54.
尚、前記主弁用弁部材14のロッド14eの径は、第3
図の実線の特性が得られるように予め決められており、
また、差圧が小さいときには主弁13の主弁用弁部材1
4が所定量β以上ストロークしなければ差圧弁27が開
口しないようになっている。The diameter of the rod 14e of the main valve valve member 14 is the same as that of the third valve member 14.
It is predetermined to obtain the characteristics shown by the solid line in the figure.
Moreover, when the differential pressure is small, the main valve valve member 1 of the main valve 13
4 is not stroked by a predetermined amount β or more, the differential pressure valve 27 will not open.
しかして、差圧が小さいときには、第10図に示される
ようにストローク量が所定量lになるまでは主弁13の
みが開口されて緩やかに開口面積が増加していくが、ス
トローク量がβ以上になれば差圧弁27も開いて開口面
積は急速に増加してい(。また、差圧が大きいときには
、差圧弁用弁座体57が押し上げられるので、所定量β
だけストロークしなくても差圧弁は開口し、開口面積が
急速に増加して低圧側への冷媒流量が増える。However, when the differential pressure is small, only the main valve 13 is opened and the opening area gradually increases until the stroke amount reaches a predetermined amount l, as shown in FIG. If the pressure difference is higher than that, the differential pressure valve 27 will also open and the opening area will increase rapidly.
The differential pressure valve opens without a single stroke, and the opening area rapidly increases, increasing the flow rate of refrigerant to the low pressure side.
第11図において、膨張弁4の第4の実施例が示されて
いる。この膨張弁4は、弁本体9内に同じ構造の主弁1
3と副弁70が設けられ、それぞれの弁には第3図の実
線で示されるような特性を持たせてあり、高圧側と低圧
倒はそれぞれ高圧連結路71と低圧連結路72によって
接続されている。高圧連結路71には差圧開閉機構73
が設けられ、この差圧開閉機構73は連結路71.72
を直角に貫(挿入孔74を存し、この挿入孔74に弁体
75を摺動自在に配したもので、この弁体75を低圧連
結路側に設i)lられたスプリング76により高圧連結
路71を閉鎖する方向に付勢し、高圧側の冷媒ガス圧と
スプリング圧のつり合った位置に移動させるようにして
いる。In FIG. 11 a fourth embodiment of the expansion valve 4 is shown. This expansion valve 4 has a main valve 1 of the same structure inside the valve body 9.
3 and an auxiliary valve 70 are provided, and each valve has characteristics as shown by the solid line in FIG. ing. The high pressure connection path 71 has a differential pressure opening/closing mechanism 73.
is provided, and this differential pressure opening/closing mechanism 73 is connected to connecting paths 71 and 72.
The valve body 75 is slidably disposed in the insertion hole 74, and the valve body 75 is installed on the low pressure connection path side. The passage 71 is biased in the direction of closing, and moved to a position where the refrigerant gas pressure on the high pressure side and the spring pressure are balanced.
主弁13及び副弁70を構成するそれぞれの弁部材14
.77は、スリーブ19.78に軽圧入され、それぞれ
のスリーブ19.78は、弁本体9に設けられたダイヤ
フラム21,79に別々に当接されている。そして、ダ
イヤフラムと蓋体22゜80で形成された第1の室23
a、81aは連通管82を介して、またダイヤフラム2
1.79と弁本体9で形成された第2の室23b、81
bは均圧通路83を介してそれぞれ連通され、主弁13
と副弁70は同時に開閉されるようになっている。Each valve member 14 that constitutes the main valve 13 and the sub-valve 70
.. 77 is lightly press-fitted into the sleeves 19.78, and each sleeve 19.78 is separately abutted on diaphragms 21 and 79 provided on the valve body 9. The first chamber 23 is formed by the diaphragm and the lid 22°80.
a, 81a is connected to the diaphragm 2 via the communication pipe 82.
1.79 and the second chamber 23b, 81 formed by the valve body 9
b are connected to each other via a pressure equalizing passage 83, and are connected to the main valve 13.
and the sub-valve 70 are opened and closed at the same time.
このような構成では、差圧が小さい場合には、差圧開閉
機構73の弁体75により高圧連結路71が閉鎖されて
いるので、主弁13のみから冷媒が流れ、差圧が大きい
場合には、高圧側のガス圧で弁体75がスプリング76
に抗して押し下げられ、冷媒ガスは主弁13と副弁7o
の両方を介して低圧側へ流れる。このため、この場合に
も、第8図で示される特性が得られる。In such a configuration, when the differential pressure is small, the high pressure connecting path 71 is closed by the valve body 75 of the differential pressure opening/closing mechanism 73, so the refrigerant flows only from the main valve 13, and when the differential pressure is large, the high pressure connecting path 71 is closed. In this case, the valve body 75 is moved by the spring 76 due to the gas pressure on the high pressure side.
The refrigerant gas is pushed down against the main valve 13 and the sub valve 7o.
flows to the low pressure side through both. Therefore, also in this case, the characteristics shown in FIG. 8 are obtained.
第12図において、膨張弁4の第5の実施例が示されて
いる。この膨張弁4においては、主弁13を構成する主
弁用弁部材14の弁体部14aの外形が第1の実施例と
若干界なっており、ステム部14bの平坦面32aに対
して弁体部14aの平坦面32bを大きくし、高圧側と
低圧側との差圧が直接影響するようにしである。このた
め、主弁用弁部材14のストローク変化に対する開口面
積の変化割合を従来に比べて小さくしておけば、第13
図から分かるように、差圧が小さいときにはストローク
量も小さいので開口面積はあまり大きくならず、差圧が
大きいときにはストローク量も大きくなるので、開口面
積が大きくなる。したがって、開口面積を大きくするた
めには従来よりもストローク量を多くする必要はあるが
、差圧に応じて開口面積の変化特性を途中で変えなくて
も前述までの実施例と同様の効果が得られるものであ]
5
る。In FIG. 12 a fifth embodiment of the expansion valve 4 is shown. In this expansion valve 4, the outer shape of the valve body portion 14a of the main valve valve member 14 constituting the main valve 13 is slightly different from that of the first embodiment, and The flat surface 32b of the body portion 14a is made large so that the differential pressure between the high pressure side and the low pressure side directly affects the flat surface 32b. Therefore, if the rate of change in the opening area with respect to the stroke change of the main valve valve member 14 is made smaller than in the past, the 13th
As can be seen from the figure, when the differential pressure is small, the stroke amount is also small, so the opening area is not very large, and when the differential pressure is large, the stroke amount is also large, so the opening area becomes large. Therefore, in order to increase the opening area, it is necessary to increase the stroke amount than before, but the same effect as in the previous embodiments can be obtained without changing the change characteristics of the opening area depending on the differential pressure. It's something you can get]
5.
第14図において、膨張弁4の第6の実施例が示され、
従来の主弁用弁部材14の低圧側にスプリング受け90
を設け、このスプリング受け90と調整ねじ16との間
に主弁用スプリング17が弾装され、この主弁用スプリ
ング17により弁体部14aを弁座15方向に押圧して
いる。また、弁体部9とスプリング受しり90との間に
調節スプリング91が弾装され、この調節スプリング9
1により弁体部14aが弁座15から離反する方向に押
圧されている。In FIG. 14 a sixth embodiment of the expansion valve 4 is shown,
A spring receiver 90 is installed on the low pressure side of the conventional main valve valve member 14.
A main valve spring 17 is mounted between the spring receiver 90 and the adjusting screw 16, and the main valve spring 17 presses the valve body portion 14a toward the valve seat 15. Further, an adjustment spring 91 is elastically mounted between the valve body portion 9 and the spring receiver 90, and this adjustment spring 9
1, the valve body portion 14a is pressed in a direction away from the valve seat 15.
このため、第1の室23aと第2の室23bの圧力差Δ
P゛が小さく、主弁用弁部材14があまりリフl−して
いないときには、主弁用スプリング17と調節用スプリ
ング91との相反する力がスプリング受け90に加わり
、第15図に示すように、調節用スプリング91がない
従来の膨張弁に比べてΔP゛が多少変動しても主弁用弁
部材14の変動を小さく抑えることができる。これに対
して、ΔP”が大きくなって主弁用弁部材14のストロ
ーク量が大きくなると、調節用スプリング91が伸びき
ってスプリング受け9oを押圧しなくなるので、従来の
膨張弁と同様の特性を有する。Therefore, the pressure difference Δ between the first chamber 23a and the second chamber 23b
When P is small and the main valve valve member 14 is not refluxed much, the opposing forces of the main valve spring 17 and the adjustment spring 91 are applied to the spring receiver 90, as shown in FIG. Compared to the conventional expansion valve without the adjustment spring 91, even if ΔP'' changes somewhat, the fluctuation of the main valve valve member 14 can be suppressed to a small level. On the other hand, when ΔP'' becomes large and the stroke amount of the main valve valve member 14 becomes large, the adjustment spring 91 is fully extended and no longer presses the spring receiver 9o, so it maintains the same characteristics as the conventional expansion valve. have
(発明の効果)
以上述べたように、この発明によれば、熱負荷が小さい
ときには膨張弁の連通路の開口面積変化を小さくしたの
で、コンプレッサの小容量時には開口面積の大きな変動
を防くことができ、ハンチングが防止されて冷房サイク
ルの制御性が向上するものである。(Effects of the Invention) As described above, according to the present invention, when the heat load is small, the change in the opening area of the communication passage of the expansion valve is reduced, so that when the capacity of the compressor is small, large fluctuations in the opening area can be prevented. This prevents hunting and improves the controllability of the cooling cycle.
第1図はこの発明の冷却装置の用いられる膨張弁の第1
の実施例を示す断面図、第2図は冷却サイクルを示す構
成図、第3図は主弁のストローク量に対する開口面積の
特性を示す線図、第4図は差圧弁の高圧側と低圧側との
差圧に対する開口面積の特性を示す線図、第5図は膨張
弁全体の開口面積の特性を示す線図、第6図は過熱度特
性を示す線図、第7図はこの発明の冷却装置に用いられ
る膨張弁の米2の実施例を示す断面図、第8図は同上に
おける膨張弁の開口面積の特性を示す線図、第9図は膨
張弁の第3の実施例を示す断面図、第10図は同上にお
ける膨張弁の開口面積の特性を示す線図、第11閏は膨
張弁の第4の実施例を示す断面図、第12図は膨張弁の
第5の実施例を示す断面図、第13図は同上における膨
張弁の開口面積の特性を示す線図、第14図は膨張弁の
第6の実施例を示す断面図、第15図は同上における膨
張弁の開口面積の特性を示す線図である。
1・・・コンプレッサ、2・・、凝縮器、401.膨張
弁、5・・・蒸発器、12・・・連通路、13・・・主
弁。
特 許 出 願 人 ヂーゼル機器株式会社108
癩
旨庫勢
−顆口18軒
13図
15図
第
14図FIG. 1 shows the first expansion valve used in the cooling device of the present invention.
Fig. 2 is a configuration diagram showing the cooling cycle, Fig. 3 is a diagram showing the characteristics of the opening area with respect to the stroke amount of the main valve, and Fig. 4 shows the high pressure side and low pressure side of the differential pressure valve. Figure 5 is a diagram showing the opening area characteristics of the entire expansion valve, Figure 6 is a diagram showing the superheat degree characteristics, and Figure 7 is a diagram showing the characteristics of the opening area of the entire expansion valve. A cross-sectional view showing a second embodiment of an expansion valve used in a cooling device, FIG. 8 is a line diagram showing characteristics of the opening area of the expansion valve in the above, and FIG. 9 shows a third embodiment of the expansion valve. A sectional view, FIG. 10 is a diagram showing the characteristics of the opening area of the expansion valve in the same as above, the 11th leap is a sectional view showing the fourth embodiment of the expansion valve, and FIG. 12 is a diagram showing the fifth embodiment of the expansion valve. 13 is a diagram showing the characteristics of the opening area of the expansion valve in the same as above, FIG. 14 is a sectional view showing the sixth embodiment of the expansion valve, and FIG. 15 is a diagram showing the opening area of the expansion valve in the same as above. FIG. 3 is a diagram showing characteristics of area. 1...Compressor, 2..., Condenser, 401. Expansion valve, 5... Evaporator, 12... Communication path, 13... Main valve. Patent applicant: Diesel Equipment Co., Ltd. 108
Leprosy storage - Condyle mouth 18 houses 13 Figure 15 Figure 14
Claims (1)
蒸発器を順次配管結合して冷却サイクルを構成し、前記
膨張弁にはその高圧側と低圧側とを連通する連通路と、
この連通路の開口面積を可変させて前記蒸発器の過熱度
を一定に保つように調節する主弁とが設けられている冷
却装置において、少なくとも熱負荷が小さいときには前
記連通路の開口面積変化を小さくする手段を設けたこと
を特徴とする冷却装置。At least a variable capacity compressor, a condenser, an expansion valve, and an evaporator are sequentially connected via piping to form a cooling cycle, and the expansion valve has a communication passage communicating its high pressure side and low pressure side;
In a cooling device that is provided with a main valve that adjusts the opening area of the communication passage to maintain a constant degree of superheating of the evaporator, the change in the opening area of the communication passage is controlled at least when the heat load is small. A cooling device characterized by being provided with a means for reducing the size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21919888A JPH0268456A (en) | 1988-09-01 | 1988-09-01 | Cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21919888A JPH0268456A (en) | 1988-09-01 | 1988-09-01 | Cooling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0268456A true JPH0268456A (en) | 1990-03-07 |
Family
ID=16731744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21919888A Pending JPH0268456A (en) | 1988-09-01 | 1988-09-01 | Cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0268456A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009063179A (en) * | 2007-09-04 | 2009-03-26 | Sanden Corp | Drive torque arithmetic unit for compressor and capacity control system of variable displacement compressor |
-
1988
- 1988-09-01 JP JP21919888A patent/JPH0268456A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009063179A (en) * | 2007-09-04 | 2009-03-26 | Sanden Corp | Drive torque arithmetic unit for compressor and capacity control system of variable displacement compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0744775Y2 (en) | Compressor capacity control device | |
US6485267B1 (en) | Control valve for variable capacity compressors | |
US7036527B2 (en) | Composite valve | |
JP4111782B2 (en) | Proportional valve | |
US7263857B2 (en) | Constant flow rate expansion value | |
US20050053474A1 (en) | Capacity control valve for variable displacement compressor | |
US20050066674A1 (en) | Refrigeration cycle | |
US4500035A (en) | Expansion valve | |
WO2007111040A1 (en) | Control valve for variable displacement compressor | |
JP2004142701A (en) | Refrigeration cycle | |
US6305179B1 (en) | Expansion valve of refrigerating cycle consisting of capacity variable compressor | |
US6626000B1 (en) | Method and system for electronically controlled high side pressure regulation in a vapor compression cycle | |
JP4122736B2 (en) | Control valve for variable capacity compressor | |
JPH0268456A (en) | Cooling device | |
WO2001002726A1 (en) | Control valve for variable displacement compressor | |
JP2002349732A (en) | Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system | |
JPH02254270A (en) | Temperature actuating type expansion valve | |
JP2001116400A (en) | Refrigeration cycle | |
JPH0211869A (en) | Pressure regulator valve for variable displacement compressor | |
JPH01148614A (en) | Air-cooling device for automobile | |
JPH02115578A (en) | Variable capacity type swingable compressor | |
JPH109720A (en) | Thermal expansion valve | |
JPH0646264U (en) | Expansion valve | |
JPH0617010Y2 (en) | Variable capacity compressor pressure control valve | |
JPS631155Y2 (en) |