JPH109720A - Thermal expansion valve - Google Patents
Thermal expansion valveInfo
- Publication number
- JPH109720A JPH109720A JP8158406A JP15840696A JPH109720A JP H109720 A JPH109720 A JP H109720A JP 8158406 A JP8158406 A JP 8158406A JP 15840696 A JP15840696 A JP 15840696A JP H109720 A JPH109720 A JP H109720A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- refrigerant
- degree
- valve
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/15—Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
Landscapes
- Temperature-Responsive Valves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷凍サイクル内を
循環する冷媒の循環量を制御する温度式膨張弁に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal expansion valve for controlling the amount of refrigerant circulating in a refrigeration cycle.
【0002】[0002]
【従来の技術】温度式膨張弁は、周知のごとく、蒸発器
出口側の温度を感知する感温筒内のガス圧を第1圧力室
に導入するとともに、蒸発器内の圧力を第2圧力室に導
入し、両圧力室の圧力差が蒸発器出口での冷媒の加熱度
に応じて変化することを利用して絞り通路の開度を調節
するものである。2. Description of the Related Art As is well known, a thermal expansion valve introduces a gas pressure in a temperature-sensitive cylinder, which senses a temperature at an evaporator outlet side, into a first pressure chamber, and changes a pressure in the evaporator to a second pressure chamber. The opening degree of the throttle passage is adjusted by utilizing that the pressure difference between the two pressure chambers is changed according to the degree of heating of the refrigerant at the evaporator outlet.
【0003】つまり、温度式膨張弁は、過熱度が大きい
ときは、冷房負荷(熱負荷)が大きいので、絞り通路の
開度を大きくし、また、加熱度が小さいときは、冷房負
荷が小さいので、絞り通路の開度を小さくすることによ
り、冷凍サイクルの冷房能力を制御するものである。In other words, the thermal expansion valve has a large cooling load (heat load) when the degree of superheat is large, so that the degree of opening of the throttle passage is large, and when the degree of heating is small, the cooling load is small. Therefore, the cooling capacity of the refrigeration cycle is controlled by reducing the opening of the throttle passage.
【0004】[0004]
【発明が解決しようとする課題】ところで、通常、加熱
度の変化に対して絞り通路の開度は線形的に変化し、か
つ、冷媒の循環量の変化量に対する冷凍能力の変化量が
大きいので、特に冷房負荷が小さいときには、絞り通路
が頻繁に開閉されるという、いわゆるハンチング現象が
発生する。Generally, the opening degree of the throttle passage changes linearly with the change in the degree of heating, and the amount of change in the refrigerating capacity with respect to the amount of change in the amount of circulating refrigerant is large. In particular, when the cooling load is small, a so-called hunting phenomenon occurs in which the throttle passage is frequently opened and closed.
【0005】本発明は、上記点に鑑み、ハンチング現象
の発生を防止することができる温度式膨張弁を提供する
ことを目的とする。[0005] In view of the above, it is an object of the present invention to provide a thermal expansion valve capable of preventing occurrence of a hunting phenomenon.
【0006】[0006]
【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1に
記載の発明では、弾性部材(46)は、弁体(44)が
絞り通路(43)を開き始めるた時に、圧力応動部材
(49)が、第1圧力室(50)の体積が縮小する向き
に所定量変位しているように設定されており、かつ、両
圧力室(50、51)の圧力差、圧力応動部材(49)
の剛性および前記弾性部材(46)の弾性係数によって
決定される蒸発器(5)出口側の冷媒の過熱度に対する
圧力応動部材(49)の変位の変化量は、過熱度が高く
なるほど大きくなるように非線形的に変化することを特
徴とする。The present invention uses the following technical means to achieve the above object. According to the first aspect of the present invention, when the valve element (44) starts opening the throttle passage (43), the elastic member (46) allows the pressure responsive member (49) to change the volume of the first pressure chamber (50). Are set so as to be displaced by a predetermined amount in the direction in which they are reduced, and the pressure difference between the two pressure chambers (50, 51) and the pressure responsive member (49) are set.
The amount of change in the displacement of the pressure responsive member (49) with respect to the degree of superheat of the refrigerant at the outlet of the evaporator (5), which is determined by the rigidity of the elastic member and the elastic coefficient of the elastic member (46), increases as the degree of superheat increases. It is characterized by changing non-linearly.
【0007】これにより、後述するように、冷房負荷の
小さい状態では、過熱度の変化量に対して圧力応動部材
(49)の変位の変化量が小さくなるので、絞り通路
(43)が頻繁に開閉することを防止することができ
る。つまり、ハンチング現象を防止することができる。
なお、上記各手段の括弧内の符号は、後述する実施形態
記載の具体的手段との対応関係を示すものである。Accordingly, as will be described later, when the cooling load is small, the amount of change in the displacement of the pressure responsive member (49) is small with respect to the amount of change in the degree of superheat. Opening and closing can be prevented. That is, the hunting phenomenon can be prevented.
In addition, the code | symbol in the parenthesis of each said means shows the correspondence with the concrete means of embodiment mentioned later.
【0008】[0008]
【発明の実施の形態】以下、本発明を図に示す実施の形
態について説明する。 (実施形態)図1は、本発明を自動車空調用冷凍サイク
ルの温度式膨張弁(以下、膨張弁と略す。)に適用した
実施形態を例示するもので、冷凍サイクルは、自動車エ
ンジンにより駆動される圧縮機1、この圧縮機1から吐
出されたガス冷媒を冷却、凝縮する凝縮器2、この凝縮
器2からの冷媒を溜めて、冷媒の気液を分離し、液冷媒
のみを導出する受液器3、本発明による膨張弁4、およ
びこの温度式膨張弁4で減圧、膨張した低温低圧の気液
2相冷媒を蒸発させる蒸発器5とから構成されている。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; (Embodiment) FIG. 1 illustrates an embodiment in which the present invention is applied to a temperature-type expansion valve (hereinafter, abbreviated as an expansion valve) of a refrigeration cycle for automobile air conditioning. The refrigeration cycle is driven by an automobile engine. Compressor 1, a condenser 2 for cooling and condensing the gas refrigerant discharged from the compressor 1, a refrigerant for storing the refrigerant from the condenser 2, separating the refrigerant from gas and liquid, and extracting only the liquid refrigerant. It comprises a liquid device 3, an expansion valve 4 according to the present invention, and an evaporator 5 for evaporating a low-temperature and low-pressure gas-liquid two-phase refrigerant decompressed and expanded by the thermal expansion valve 4.
【0009】次に、膨張弁4について詳述すると、40
はアルミニュウム等の金属で成形された弁ハウジング
で、受液器3からの液冷媒が導入される円筒状の冷媒入
口41、および蒸発器5の入口側に連通する円筒状の冷
媒出口42を有している。そして、この冷媒入口41と
冷媒出口42との間に、冷媒を減圧する絞り通路43が
設けられており、この絞り通路43の開度は球状の金属
製弁体44により調整できるようになっている。Next, the expansion valve 4 will be described in detail.
Is a valve housing formed of metal such as aluminum, and has a cylindrical refrigerant inlet 41 into which the liquid refrigerant from the receiver 3 is introduced, and a cylindrical refrigerant outlet 42 communicating with the inlet side of the evaporator 5. doing. A throttle passage 43 for reducing the pressure of the refrigerant is provided between the refrigerant inlet 41 and the refrigerant outlet 42. The opening of the throttle passage 43 can be adjusted by a spherical metal valve body 44. I have.
【0010】球状の弁体44は図1の上下方向に移動可
能なもので、その下側にはスプリング受け座45が配設
されており、この受け座45にコイルバネ(弾性部材)
46の一端が当接し、支持されている。このコイルバネ
46の他端は、円筒状の冷媒入口41の内壁面にねじ止
めにより移動可能に装着された取付荷重調整板(図示せ
ず)に当接し、支持されている。The spherical valve element 44 is movable in the vertical direction in FIG. 1, and a spring receiving seat 45 is disposed below the spherical valve element 44. A coil spring (elastic member) is provided on the receiving seat 45.
One end of 46 contacts and is supported. The other end of the coil spring 46 is in contact with and supported by a mounting load adjusting plate (not shown) movably mounted on the inner wall surface of the cylindrical refrigerant inlet 41 by screwing.
【0011】球状の弁体44の図1の上側には、金属製
の弁作動棒(弁作動部材)47の一端が溶接等により接
合されており、この弁作動棒47の他端はストッパー部
材48に当接している。このストッパー部材48はダイ
ヤフラム(圧力応動部材)49に常時当接して、ダイヤ
フラム49の変位を弁作動棒47に伝達するものであ
る。One end of a metal valve operating rod (valve operating member) 47 is joined to the upper side of the spherical valve body 44 in FIG. 1 by welding or the like, and the other end of the valve operating rod 47 is connected to a stopper member. 48. The stopper member 48 is always in contact with a diaphragm (pressure responsive member) 49 to transmit the displacement of the diaphragm 49 to the valve operating rod 47.
【0012】ダイヤフラム49の上下には、第1、第2
圧力室50、51が形成されており、第1圧力室50に
はキャピラリチューブ52を介して、蒸発器5出口の冷
媒温度を感知する感温筒53が連通しており、この感温
筒53内のガス圧力(蒸発器5出口の冷媒温度に応じた
ガス飽和圧力)が第1圧力室50に導入されるようにな
っている。First and second diaphragms 49 are provided above and below the diaphragm 49.
Pressure chambers 50 and 51 are formed. The first pressure chamber 50 communicates via a capillary tube 52 with a temperature sensing tube 53 that senses the temperature of the refrigerant at the outlet of the evaporator 5. The internal gas pressure (gas saturation pressure corresponding to the refrigerant temperature at the outlet of the evaporator 5) is introduced into the first pressure chamber 50.
【0013】また、第2圧力室51には、弁ハウジング
40に開けられた連通穴(内部均圧通路)54を通し
て、絞り通路43下流の低圧側冷媒圧力が導入されるよ
うになっている。上記第1、第2圧力室50、51は、
ダイヤフラム49と、受け部材55および蓋部材56と
のサンドウイッチ構造により構成されており、このサン
ドウイッチ構造にて、膨張弁4のエレメント部4Aが構
成される。なお、本実施形態では、ダイヤフラム49の
外縁部に、図1、4に示すように、波形状の折曲部が形
成されているが、これは、ダイヤフラム49の機械的強
度を低下させることなく、ダイヤフラム49を撓み易く
するため(剛性を小さくするため)の形状である。した
がって、後述するように、ダイヤフラム49に折曲部を
形成せず、単純な円盤形状としてもよい。The low pressure side refrigerant pressure downstream of the throttle passage 43 is introduced into the second pressure chamber 51 through a communication hole (internal pressure equalizing passage) 54 opened in the valve housing 40. The first and second pressure chambers 50 and 51 are
The diaphragm 49, the receiving member 55, and the lid member 56 have a sandwich structure, and the sandwich structure constitutes the element portion 4A of the expansion valve 4. In the present embodiment, as shown in FIGS. 1 and 4, a wavy bent portion is formed at the outer edge of the diaphragm 49, but this does not reduce the mechanical strength of the diaphragm 49. , In order to make the diaphragm 49 easy to bend (to reduce rigidity). Therefore, as described later, the diaphragm 49 may be formed in a simple disk shape without forming a bent portion.
【0014】次に、膨張弁4の作動および特徴について
述べる。図2の複数本の曲線(以下、ダイヤフラム特性
線DLと呼ぶ。)は、加熱度をパラメータとして、ダイ
ヤフラム49の変位と両圧力室50、51の圧力差によ
って弁作動部材47に及ぼす荷重との関係を示してお
り、直線(ばね特性線SLと呼ぶ。)は、コイルバネ4
6の弾性力(荷重)と変形量との関係を示している。Next, the operation and characteristics of the expansion valve 4 will be described. A plurality of curves (hereinafter, referred to as a diaphragm characteristic line DL) in FIG. 2 represent a relationship between the displacement of the diaphragm 49 and the load acting on the valve operating member 47 due to the pressure difference between the two pressure chambers 50 and 51 with the heating degree as a parameter. The relationship shows a straight line (referred to as a spring characteristic line SL).
6 shows the relationship between the elastic force (load) and the amount of deformation.
【0015】なお、ダイヤフラム特性線DLは、第1圧
力室50内の冷媒の飽和蒸気密度、冷媒の温度およびダ
イヤフラム49の剛性によって決定するものである。す
なわち、複数本のダイヤフラム特性線DLのうち、紙面
上方側の曲線ほど過熱度が大きい。また、図2中、ダイ
ヤフラム49の正(+)方向の変位とは、第1圧力室5
0の体積が縮小する方向(紙面上方)、つまり、絞り通
路43の開度を小さくする方向の変位をいい、変位0の
状態を中立状態と呼ぶ(図4の49’の状態)。The diaphragm characteristic line DL is determined by the saturated vapor density of the refrigerant in the first pressure chamber 50, the temperature of the refrigerant, and the rigidity of the diaphragm 49. That is, of the plurality of diaphragm characteristic lines DL, the degree of superheat is greater as the curve is on the upper side of the drawing. Further, in FIG. 2, the displacement of the diaphragm 49 in the positive (+) direction means the displacement of the first pressure chamber 5.
The displacement in the direction in which the volume of 0 is reduced (upward on the paper), that is, the direction in which the opening degree of the throttle passage 43 is reduced, is referred to as a neutral state (the state of 49 'in FIG. 4).
【0016】ところで、上述の説明からも明らかなよう
に、弁体44には、両圧力室50、51の圧力差による
圧力荷重(圧力差とダイヤフラムの面積との積)F
1 と、これと対抗する向きにコイルバネ46の弾性力F
2 が作用しているので、弁体44は、両者F1 、F2 と
が釣り合う位置、すなわちダイヤフラム特性線DLと、
ばね特性線SLとの交点で停止する。By the way, as is clear from the above description, the pressure load (the product of the pressure difference and the area of the diaphragm) F due to the pressure difference between the two pressure chambers 50 and 51 is applied to the valve body 44.
1 and the elastic force F of the coil spring 46 in the opposite direction.
2 is acting, the valve body 44 is located at a position where both F 1 and F 2 are balanced, that is, the diaphragm characteristic line DL,
It stops at the intersection with the spring characteristic line SL.
【0017】つまり、膨張弁4は、両圧力室50、51
の圧力差を機械的に検出することにより、蒸発器4の出
口側での過熱度を検出し、後述するように、この圧力差
を弁体44に直接作用させて絞り通路43の開度を調節
するものである。そこで、例えばコイルバネ46のばね
定数kを1kgf/mmとし、ダイヤフム49が+0.
5mm変位した状態でコイルバネ46の弾性力F2 が1
3kgfとなるように設定した場合(以下、この状態で
の弾性力F2 を初期設定値と呼ぶ。)、蒸発器5の出口
での冷媒の過熱度に対するダイヤフム49の変位(弁体
44のリフト量)は、図3に示すように、過熱度が大き
くなるほど、過熱度の変化量に対するダイヤフム49の
変位の変化量が大きくなように非線形的に変化する。That is, the expansion valve 4 is connected to both pressure chambers 50 and 51.
, The degree of superheat at the outlet side of the evaporator 4 is detected, and as described later, this pressure difference is applied directly to the valve body 44 to reduce the degree of opening of the throttle passage 43. To adjust. Therefore, for example, the spring constant k of the coil spring 46 is set to 1 kgf / mm, and the diaphragm 49 is set to +0.
When the coil spring 46 is displaced by 5 mm, the elastic force F 2 is 1
If set to be 3 kgf (hereinafter, the elastic force F 2 in this state is called initial setting value.), Lift displacement (the valve body 44 of Daiyafumu 49 for the degree of superheat of the refrigerant at the outlet of the evaporator 5 3), as shown in FIG. 3, the degree of change in the displacement of the diaphragm 49 with respect to the degree of change in the degree of superheat increases in a nonlinear manner as the degree of superheat increases.
【0018】したがって、絞り通路43が開き始めるた
時に、ダイヤフラム49の変位が中立状態より正方向に
所定量変位しているするように弁作動棒47の長さを選
定することにより、絞り通路43の開き始めでは、過熱
度の変化量に対するダイヤフム49の変位の変化量は小
さくなる。ところで、膨張弁4は、従来の技術の欄で述
べたように、過熱度に応じて絞り通路43の開度を調節
するものであるから、冷房負荷の小さい状態は、絞り通
路43の開き始めに相当する。したがって、冷房負荷の
小さい状態では、過熱度の変化量に対してダイヤフム4
9の変位の変化量が小さくなるので、絞り通路43が頻
繁に開閉することを防止することができる。延いては、
ハンチング現象を防止することができる。Accordingly, by selecting the length of the valve operating rod 47 so that the displacement of the diaphragm 49 is displaced by a predetermined amount in the positive direction from the neutral state when the throttle passage 43 starts to open, the throttle passage 43 is selected. At the beginning of opening, the amount of change in the displacement of the diaphragm 49 with respect to the amount of change in the degree of superheat is small. By the way, the expansion valve 4 adjusts the opening degree of the throttle passage 43 according to the degree of superheat as described in the section of the prior art. Is equivalent to Therefore, in a state where the cooling load is small, the diaphragm
Since the change amount of the displacement of the throttle valve 9 is small, it is possible to prevent the throttle passage 43 from frequently opening and closing. In the end,
The hunting phenomenon can be prevented.
【0019】以上に述べたように、本発明は、コイルバ
ネ46のばね定数kおよび初期設定値を適切に選定する
ことにより、過熱度に対する弁体4を非線形的に変位
(リフト)させてハンチング現象を防止するものである
ので、例えば特公昭52−32117号公報に記載のよ
うに、ハンチング現象を防止するために弁体をテーパー
状に加工したり、補助バネ等を用いる必要がない。した
がって、部品点数が増加しないので、膨張弁4の製造原
価上昇を防止しつつ、ハンチング現象を防止することが
できる。As described above, according to the present invention, by appropriately selecting the spring constant k and the initial set value of the coil spring 46, the valve body 4 is non-linearly displaced (lifted) with respect to the degree of superheat, thereby causing a hunting phenomenon. Therefore, as described in JP-B-52-32117, for example, it is not necessary to process the valve body into a tapered shape or use an auxiliary spring or the like in order to prevent a hunting phenomenon. Therefore, since the number of parts does not increase, the hunting phenomenon can be prevented while preventing an increase in the manufacturing cost of the expansion valve 4.
【0020】ところで、本発明は、上述のように、コイ
ルバネ46のばね定数kおよび初期設定値を適切に選定
することにより、ハンチング現象を防止するものである
から、ダイヤフラム49の形状には影響されない。した
がって、図5に示すように、単純な円盤状のダイヤフラ
ムを用いても本発明を実施することができる。As described above, the present invention prevents the hunting phenomenon by appropriately selecting the spring constant k and the initial set value of the coil spring 46. Therefore, the present invention is not affected by the shape of the diaphragm 49. . Therefore, as shown in FIG. 5, the present invention can be carried out using a simple disk-shaped diaphragm.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の実施形態を示す膨張弁の半断面正面図
と冷凍サイクル図とを組み合わせた図である。FIG. 1 is a view in which a half cross-sectional front view and a refrigeration cycle diagram of an expansion valve according to an embodiment of the present invention are combined.
【図2】ダイヤフラム特性線DLおよびばね特性線SL
を示すグラフである。FIG. 2 shows a diaphragm characteristic line DL and a spring characteristic line SL
FIG.
【図3】過熱度とダイヤフラムの変位量との関係を示す
グラフである。FIG. 3 is a graph showing the relationship between the degree of superheat and the amount of displacement of a diaphragm.
【図4】エレメント部(A部)の拡大図である。FIG. 4 is an enlarged view of an element portion (A portion).
【図5】ダイヤフラムの変形例を示すエレメント部(A
部)の拡大図である。FIG. 5 shows an element (A) showing a modification of the diaphragm.
FIG.
4A…エレメント部、43…絞り通路、44…弁体、4
6…コイルバネ(弾性部材)、47…弁作動棒(弁作動
部材)、49…ダイヤフラム(圧力応動部材)、50…
第1圧力室、51…第2圧力室。4A: element portion, 43: throttle passage, 44: valve body, 4
6 ... Coil spring (elastic member), 47 ... Valve operating rod (Valve operating member), 49 ... Diaphragm (Pressure responsive member), 50 ...
1st pressure chamber, 51 ... 2nd pressure chamber.
Claims (1)
る冷媒の過熱度に応答して、高圧側冷媒を減圧し、膨張
させる温度式膨張弁であって、 ハウジング(40)と、 前記ハウジング(40)に設けられ、前記高圧側冷媒を
減圧し膨張させる絞り通路(43)と、 前記ハウジング(40)に設けられ、前記絞り通路(4
3)の開度を調整する弁体(44)と、 前記蒸発器(5)出口側の冷媒温度に応じて内圧が変化
する第1圧力室(50)、および前記蒸発器(5)内の
圧力が導入される第2圧力室(51)が形成されたエレ
メント部(4A)と、 前記エレメント部(4A)内に設けられ、前記両圧力室
(50、51)の圧力差に応じて変位する圧力応動部材
(49)と、 前記圧力応動部材(49)の変位に連動して前記弁体
(44)を作動させる弁作動部材(47)と、 前記第1圧力室(50)内の圧力が前記弁作動部材(4
7)を介して前記弁体(44)に及ぼす作動力に対抗す
る弾性力を発生する弾性部材(46)とを備え、 前記弾性部材(46)は、前記弁体(44)が前記絞り
通路(43)を開き始めるた時に、前記圧力応動部材
(49)が、第1圧力室(50)の体積が縮小する向き
に所定量変位しているように設定されており、 さらに、前記両圧力室(50、51)の圧力差、前記圧
力応動部材(49)の剛性および前記弾性部材(46)
の弾性係数によって決定される前記蒸発器(5)出口側
の冷媒の過熱度に対する前記圧力応動部材(49)の変
位の変化量は、前記過熱度が高くなるほど大きくなるよ
うに非線形的に変化することを特徴とする温度式膨張
弁。1. A temperature type expansion valve for reducing and expanding a high pressure side refrigerant in response to a degree of superheating of a refrigerant at an outlet of an evaporator (5) of a refrigeration cycle, comprising: a housing (40); A throttle passage (43) provided in the housing (40) for reducing pressure and expanding the high-pressure side refrigerant; and a throttle passage (4) provided in the housing (40).
3) a valve body (44) for adjusting the opening degree; a first pressure chamber (50) whose internal pressure changes according to the refrigerant temperature at the outlet side of the evaporator (5); An element part (4A) in which a second pressure chamber (51) into which pressure is introduced is formed, and the element part (4A) is provided in the element part (4A), and is displaced according to a pressure difference between the two pressure chambers (50, 51). A pressure responsive member (49), a valve operating member (47) for operating the valve element (44) in conjunction with the displacement of the pressure responsive member (49), and a pressure in the first pressure chamber (50). Is the valve operating member (4)
7) an elastic member (46) for generating an elastic force opposing an operating force applied to the valve element (44) via the valve element (44). When the opening of (43) is started, the pressure responsive member (49) is set so as to be displaced by a predetermined amount in a direction to reduce the volume of the first pressure chamber (50). The pressure difference between the chambers (50, 51), the rigidity of the pressure responsive member (49) and the elasticity of the elastic member (46)
The amount of change in the displacement of the pressure responsive member (49) with respect to the degree of superheating of the refrigerant at the outlet side of the evaporator (5), which is determined by the elastic coefficient of the evaporator (5), changes non-linearly so as to increase as the degree of superheating increases. A temperature-type expansion valve characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15840696A JP3661280B2 (en) | 1996-06-19 | 1996-06-19 | Thermal expansion valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15840696A JP3661280B2 (en) | 1996-06-19 | 1996-06-19 | Thermal expansion valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH109720A true JPH109720A (en) | 1998-01-16 |
JP3661280B2 JP3661280B2 (en) | 2005-06-15 |
Family
ID=15671064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15840696A Expired - Fee Related JP3661280B2 (en) | 1996-06-19 | 1996-06-19 | Thermal expansion valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3661280B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011104831A1 (en) * | 2010-02-24 | 2011-09-01 | トヨタ自動車株式会社 | Internal combustion engine control device |
WO2021106933A1 (en) * | 2019-11-25 | 2021-06-03 | 株式会社不二工機 | Power element and expansion valve using same |
CN114754157A (en) * | 2022-04-29 | 2022-07-15 | 中国电子科技集团公司第十四研究所 | Anti-overheating dynamic flow adjusting device applied to two-phase flow system |
-
1996
- 1996-06-19 JP JP15840696A patent/JP3661280B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011104831A1 (en) * | 2010-02-24 | 2011-09-01 | トヨタ自動車株式会社 | Internal combustion engine control device |
WO2021106933A1 (en) * | 2019-11-25 | 2021-06-03 | 株式会社不二工機 | Power element and expansion valve using same |
JP2021085547A (en) * | 2019-11-25 | 2021-06-03 | 株式会社不二工機 | Power element and expansion valve using the same |
CN114667424A (en) * | 2019-11-25 | 2022-06-24 | 株式会社不二工机 | Power element and expansion valve using the same |
CN114667424B (en) * | 2019-11-25 | 2023-09-15 | 株式会社不二工机 | Power element and expansion valve using the same |
EP4067715A4 (en) * | 2019-11-25 | 2024-02-07 | Fujikoki Corporation | Power element and expansion valve using same |
CN114754157A (en) * | 2022-04-29 | 2022-07-15 | 中国电子科技集团公司第十四研究所 | Anti-overheating dynamic flow adjusting device applied to two-phase flow system |
Also Published As
Publication number | Publication date |
---|---|
JP3661280B2 (en) | 2005-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE42908E1 (en) | Vapor-compression-type refrigerating machine | |
JP4045654B2 (en) | Supercritical refrigeration cycle | |
US20080053125A1 (en) | Expansion device | |
JPH02166367A (en) | Temperature expansion valve | |
US5642858A (en) | Thermal expansion valve | |
US5943871A (en) | Thermal expansion valve | |
US7536872B2 (en) | High pressure control valve | |
JP2010112616A (en) | Thermal expansion valve | |
JP2004142701A (en) | Refrigeration cycle | |
JPH10288411A (en) | Vapor pressure compression type refrigerating cycle | |
JPH109720A (en) | Thermal expansion valve | |
JP2006266568A (en) | Expansion valve | |
JP2002061989A (en) | Expansion valve for air conditioner | |
JP3987983B2 (en) | Thermal expansion valve | |
EP0255035B1 (en) | Refrigeration circuit | |
JP3932621B2 (en) | Thermal expansion valve | |
JP2001241812A (en) | Expansion valve | |
JP2000186870A (en) | Control valve for refrigeration cycle | |
JP4077308B2 (en) | Expansion valve | |
JPH0979703A (en) | Thermo-sensitive expansion valve | |
JP2003090648A (en) | Expansion valve | |
JP3952598B2 (en) | Expansion valve | |
JPH10185336A (en) | Refrigerating cycle equipment | |
JP2001108308A (en) | Supercritical refrigerating cycle | |
JPH0275858A (en) | Refrigerating air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050314 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |