WO2001002726A1 - Control valve for variable displacement compressor - Google Patents

Control valve for variable displacement compressor Download PDF

Info

Publication number
WO2001002726A1
WO2001002726A1 PCT/JP2000/004300 JP0004300W WO0102726A1 WO 2001002726 A1 WO2001002726 A1 WO 2001002726A1 JP 0004300 W JP0004300 W JP 0004300W WO 0102726 A1 WO0102726 A1 WO 0102726A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
compressor
ball
discharge pressure
Prior art date
Application number
PCT/JP2000/004300
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Suitou
Kenta Nishimura
Satoshi Inaji
Ryo Matsubara
Morio Kaneko
Ichiro Ohkawara
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Kabushiki Kaisha Saginomiya Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kabushiki Kaisha Saginomiya Seisakusho filed Critical Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Priority to KR1020017002813A priority Critical patent/KR20010079737A/en
Priority to BR0007004-1A priority patent/BR0007004A/en
Priority to EP00940881A priority patent/EP1111237A1/en
Publication of WO2001002726A1 publication Critical patent/WO2001002726A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Definitions

  • the present invention relates to a control valve for a variable displacement compressor, and more particularly to a displacement control valve for a swash plate type variable displacement compressor used in an in-vehicle air conditioner or the like.
  • this displacement control valve reduces the displacement in response to a rise in the pressure in the crankcase of a compressor with a built-in swash plate, and increases the displacement in response to a decrease in the pressure in the crankcase.
  • the communication passage connecting the suction port of the compressor and the crank chamber is provided with a valve opening force of a pressure responsive device that responds to the suction pressure of the compressor and a spring force of a valve closing spring.
  • a control valve that opens and closes with a valve body driven by an equilibrium relationship, and controls a suction pressure of a compressor supplied to a crank chamber, and further exerts a discharge pressure of the compressor in a valve-opening direction. The opening and closing operation point is shifted according to the discharge pressure, and the capacity is controlled in accordance with the external air load (discharge pressure).
  • Diaphragm devices and bellows devices are available as pressure response devices, and the driving force of these pressure response devices must act as an axial force on the valve element. This causes the smoothness of the opening and closing movement of the valve body to be impaired. For this reason, in the conventional displacement control valve, a spring or an automatic A centripetal ball must be provided, which leads to an increase in the number of parts and assembly man-hours. Disclosure of the invention
  • the present invention has been made in view of the above-mentioned problems, and does not require a special automatic centering ball or the like, simplifies the structure, and increases the number of parts and the number of assembling steps.
  • To provide a control valve for a variable displacement compressor which has no complicated passage structure and has a high degree of freedom in the arrangement position in the compressor housing as a compressor housing built-in type. It is an object.
  • a control valve for a variable displacement compressor includes: a valve housing having a communication passage communicating a suction port of a compressor with a crank chamber; and the valve housing.
  • a ball valve body provided in the housing for opening and closing the communication passage; a spring for urging the ball valve body in a valve closing direction; and directly connecting the ball valve body as an automatic centripetal ball to the ball valve body.
  • a pressure responsive device that is driven by the suction pressure of the compressor to drive the ball valve body in the valve opening direction, slidably fitted to the valve housing, and joined at one end to the ball valve body;
  • the other end has a discharge pressure introduction port for the compressor, and has a discharge pressure introduction hollow pipe body for applying the discharge pressure of the compressor to the back surface of the ball valve as a force in the valve opening direction through an internal passage.
  • FIG. 1 is a sectional view showing an embodiment of a variable displacement compressor incorporating a control valve according to the present invention.
  • FIG. 2 is a sectional view showing a first embodiment of a control valve for a variable displacement compressor according to the present invention.
  • FIG. 3 is a graph showing a discharge pressure-suction pressure characteristic of the control valve for a variable displacement compressor according to the first embodiment.
  • FIG. 4 is a sectional view showing a second embodiment of the control valve for a variable displacement compressor according to the present invention.
  • FIG. 5 is a sectional view showing a third embodiment of the control valve for a variable displacement compressor according to the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION Specific Configuration of Control Valve for Variable Displacement Compressor According to First Preferred Embodiment of the Invention
  • the swash plate type variable displacement compressor 1 includes a crank chamber 3 defined by a compressor housing 2 and a crank chamber 3 at one of the stroke ends. And a plurality of cylinder chambers 4 communicating with each other. A piston 5 is slidably fitted in each of the cylinder chambers 4 in the axial direction, and one end of a piston rod 6 is connected to the crank chamber 3 side of each piston 5.
  • the compressor housing 2 rotatably supports a drive shaft 7, and the drive shaft 7 is drivingly connected to an engine (not shown) by a drive belt (not shown) stretched over a pulley 8. Is driven to rotate.
  • the drive shaft 7 is connected to a wobbled plate (swash plate) 9 in the crankcase 3 by a known linking mechanism (not shown) in a torque transmitting relationship so that the mounting angle can be changed.
  • a piston hole 6 is engaged with the side plate surface so that axial force can be transmitted.
  • the pivot 9 is rotated by the drive shaft 7 in an inclined state, so that the piston 5 of each cylinder chamber 4 moves forward and backward with a stroke corresponding to the inclination angle of the movable plate 9, and the inclination angle is reduced.
  • the pressure is automatically adjusted according to the pressure difference between the crankcase pressure Pc and the suction pressure (compressor suction pressure) Ps of each cylinder chamber 4.
  • the compressor 1 reduces the discharge capacity by reducing the inclination angle of the wobble plate 9 and the stroke of the piston 5 in accordance with the rise of the crankcase pressure Pc, thereby reducing the discharge capacity.
  • the tilt angle of the wobble plate 9 increases in accordance with the decrease and the stroke of the piston 5 increases, the discharge capacity increases, and the crank chamber pressure P increases.
  • the pressure becomes substantially equal to the suction pressure Ps, a full load operation state is established.
  • Each cylinder chamber 4 is formed with a suction port 14 having a one-way valve and a discharge port 15 having a discharge valve 13 and a discharge port 15 .
  • the suction port 14 of each cylinder chamber 4 is The suction passage 16 communicates with the suction connection port 17, the discharge port 15 communicates with the discharge connection port 19 via the discharge passage 18, and the suction connection port 17 and the discharge connection port 19 communicate with each other.
  • a circulation line for a refrigeration cycle including an evaporator 20, an expansion valve 21, a condenser 22 and the like is connected.
  • a control valve receiving hole 23 having a bottomed hole is formed in the compressor housing 2, and the control valve 30 according to the present invention is inserted and fixed in the control valve receiving hole 23.
  • the control valve 30 has a cylindrical valve housing 31 inserted into the control valve receiving hole 23.
  • the valve housing 31 includes a crank chamber-side passage 32 and a suction port-side passage 33 extending radially across the middle of the valve housing 31. And a valve chamber 34 existing inside the valve housing 31 and between the crank chamber side passage 32 and the suction port side passage 33.
  • An annular peripheral groove 35 for the crank chamber side passage 32 and an annular peripheral groove 36 for the suction port side passage 33 are formed on the outer peripheral portion of the valve housing 31.
  • a ball valve element 37 is disposed in the valve chamber 34, and the ball valve element 37 is selectively seated on the valve seat portion 38, whereby the crank chamber side passage 32 and the suction port side passage 3 are provided. Communication with 3 is cut off.
  • a bellows housing case 39 is caulked to one end (lower end) of the valve housing 31.
  • a bellows device 40 having a closed structure which is a pressure responsive device, is disposed inside the bellows storage case 39.
  • the bellows device 40 is constituted by a bellows-shaped bellows body 41 having an end plate 43 integrally at one end, and an end plate 42 closing the other end of the bellows body 41. Is at vacuum pressure.
  • a compression coil spring 4 4 for urging the bellows device 40 in the extension direction (valve closing direction) is provided between the end plate 42 and the end plate 43 in the bellows body 41. (Corresponding to a spring).
  • a stopper member 45 is provided on the end plate 43 side of the bellows body 41, and a stopper surface portion 45a of the stopper member 45 and a stopper surface portion 42 of the end plate 42 are provided. By contact with a, the bellows device 40 A large amount of shrinkage is specified.
  • An adjusting screw member 46 is screw-engaged with the bellows housing case 39.
  • the adjusting screw member 46 is formed by a ball 47 and an end plate 4 arranged at the axis of the adjusting screw member 46.
  • One end of the bellows device 40 is held by a spherical joint structure formed by a spherical recess 42b formed in the axial center portion (bellows center) of the stopper surface portion 42a. That is, the bellows device 40 and the bellows housing case 39 are spherically connected by the spherical joint structure via the adjusting screw member 46.
  • the bellows device 40 is directly connected to the ball valve body 37 in a spherical joint manner at a spherical recess 43 a formed in the axial center portion (bellows center) of the end plate 43.
  • the expansion and contraction of the closing device 40 is transmitted to the ball valve element 37 as an axial force.
  • the bellows storage case 39 communicates with the suction port side passageway 33, and the bellows device 40 is connected to the suction pressure introduced into the bellows storage case 39 from the suction port side passageway 33 by the bellows. Expands and contracts according to the pressure difference from the internal pressure.
  • the other end (upper end) of the valve housing 31 is formed with a fitting hole 48 that passes through the center of the valve housing 31 in the axial direction.
  • a discharge pressure introducing hollow tube 49 is fitted in the fitting hole 48 so as to be slidable in the axial direction.
  • One end (lower end) of the discharge pressure introducing hollow tubular body 49 is joined to the ball valve body 37 by welding or the like.
  • the other end (upper end) of the discharge pressure introducing hollow tube 49 is located in the fitting hole 48 and forms an inlet 49 c for the discharge pressure Pd of the compressor 1.
  • the discharge pressure introducing hollow tube 49 is expanded at the joint (lower end) with the ball valve body 37, and the outer diameter D a of the discharge pressure introducing hollow tube 49 and the discharge pressure is being introduced.
  • the effective diameter Db of the pressure receiving surface portion 37a of the pressure exerted on the ball valve body 37 from the hollow tube body 49 is equal to each other.
  • a compression coil spring 50 that urges the ball valve body 37 in the valve opening direction is provided between the enlarged diameter portion 49 a of the discharge pressure introduction hollow tubular body 49 and the valve housing 31 (in the claims). (Corresponding to the valve urging means).
  • the spring load of the compression coil spring 50 is such that when the ball valve element 37 is opened, the ball valve element 37 and the bellows device 40 rattle due to vibration during operation of the compressor 1. It is set to a value that does not exist.
  • control valve 30 having the above-described configuration includes a compressor housing Crankcase side passageway 3 and annular groove 35 communicate with crankcase 3 via crankcase pressure passageway 2, and suction port side passageway 33 and annular shape.
  • the circumferential groove 36 communicates with the suction port 14 through the suction pressure passage 25, and the fitting hole 48 communicates with the discharge port 15 through the discharge pressure passage 26.
  • crank chamber pressure passage 24, the suction pressure passage 25, and the discharge pressure passage 26 are pressure passages formed inside the compressor housing 2.
  • the suction pressure P s of the compressor 1 passes from the suction port 14 through the suction pressure passage 25 to the annular circumferential groove 36, the suction port side passage 33, and furthermore, the bellows storage case 3 9 Inside, acting on the bellows device 40. Accordingly, the bellows device 40 expands and contracts according to the differential pressure between the suction pressure P s of the compressor 1 and the bellows internal pressure, and piles on the spring force of the compression coil spring 44 as the suction pressure P s increases. Shrink.
  • the ball valve element 37 is opened by the discharge pressure Pd introduced by the discharge pressure introduction hollow pipe 49 acting on the pressure receiving surface 37 a and the spring force of the compression coil spring 50. Since the valve is biased in the valve direction, the valve is opened by contraction of the bellows device 40 due to an increase in the suction pressure Ps.
  • the ball valve element 37 has a valve opening force due to the suction pressure Ps acting on the bellows device 40 and the compression coil spring 44 spring. Opening / closing is driven by an equilibrium relationship with the valve closing force due to the force.
  • the discharge pressure P d of the compressor 1 introduced into the discharge pressure introducing hollow pipe 49 directly acts as a correction pressure on the pressure receiving surface 37 a of the ball valve element 37, and the effective area of the pressure receiving surface 37 a
  • a h be the valve opening force of A h ⁇ P d applied to the ball valve element 37.
  • the discharge pressure Pd of the compressor 1 also acts on the inlet port 49 b of the discharge pressure introducing hollow pipe 49 slidably fitted in the fitting hole 48.
  • the outer diameter D a of the discharge pressure introducing hollow tube 49 is equal to the effective diameter D b of the pressure receiving surface portion 37 a of the ball valve body 37, the discharge pressure introducing hollow tube 49 is used.
  • the discharge pressure Pd of the compressor 1 acting on the end face 49b of the compressor 1 is canceled.
  • the reference set pressure Pss is set in a balanced state at the reference discharge pressure Pds.
  • discharge pressure P d decreases (discharge pressure P d ⁇ reference discharge pressure P ds)
  • the suction pressure P s required to open the valve increases, and the discharge pressure P d increases (discharge pressure P d).
  • the pressure P ds reduces the suction pressure P s required to open the valve.
  • the evaporation load and the condensation load are in a proportional relationship.
  • the evaporation load is proportional to the amount of circulating refrigerant
  • the pressure loss in the evaporator is proportional to the amount of circulating refrigerant.
  • control valve for variable displacement compressor since the ball valve element 37 is directly connected to the bellows device 40 and the ball valve element 37 acts as an automatic centripetal ball of a spherical joint between the valve element and the pressure response device, a special automatic centripetal ball or the like is used.
  • the driving force of the bellows device 40 acts on the ball valve element 37 as an axial force without any need.
  • FIG. 4 shows a second embodiment of the control valve for a variable displacement compressor according to the present invention.
  • parts corresponding to those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof will be omitted.
  • a guide cylinder 52 is inserted and fixed in a hole 51 corresponding to the fitting hole (48) of the first embodiment, and discharge is performed on an outer peripheral portion of the guide cylinder 52.
  • the pressure introducing hollow tube 49 is movably fitted.
  • the discharge pressure Pd of the compressor 1 introduced into the discharge pressure introducing hollow pipe body 49 acts directly as a correction pressure on the pressure receiving surface 37a of the ball valve body 37, The same operation and effect as those of the first embodiment can be obtained, and the control valve characteristics at the time of actual operation can be made the characteristics related to the discharge pressure Pd.
  • the ball valve element 37 is directly connected to the bellows device 40, and the ball valve element 37 acts as an automatic centripetal ball of the spherical joint between the valve element and the pressure response device.
  • the driving force of the bellows device 40 acts on the pawl valve 37 as an axial force without requiring a special automatic centripetal ball or the like.
  • the pressure responsive device has a closed structure.
  • the pressure responsive device is not limited to the bellows device 40 but may be a diaphragm device, etc., for a variable displacement compressor in which the pressure responsive device is constituted by a diaphragm device.
  • An embodiment applied to a control valve will be described below as a third embodiment. Specific Configuration of Control Valve for Variable Displacement Compressor According to Third Preferred Embodiment of the Invention Next, a control valve for a variable displacement compressor according to the third embodiment of the present invention will be described with reference to FIG. Will be explained.
  • FIG. 5 shows a third embodiment of the capacity control valve according to the present invention.
  • parts corresponding to those in FIG. 2 are given the same reference numerals as those in FIG. 2, and description thereof is omitted.
  • the diaphragm device 60 includes a dish-shaped upper lid 61 crimped to the lower end of the valve housing 31, a dish-shaped lower lid 6 3 joined to the upper lid 61 with the diaphragm 62 interposed therebetween, and a lower lid.
  • the spring box 64 includes a cylindrical spring box 64 that is swaged to the spring box 63, and an adjusting screw 65 that is threadedly engaged with the spring box 64.
  • the diaphragm 62 defines a diaphragm chamber 66 on the valve housing 31 side and a sealed chamber 67 on the spring box 64 side, and the holder 6 for the ball valve element 37 on the diaphragm chamber 66 side. Connected to 8.
  • a contact 69, a ball 70, and a spring receiving member 71 are sequentially provided on the closed chamber 67 side of the diaphragm 62, and a diaphragm is provided between the spring receiving member 71 and the adjusting screw 65.
  • a compression coil spring 72 is provided to urge the ball valve element 37 in the valve closing direction (upward) via the element 62.
  • the diaphragm chamber 66 communicates with the valve chamber 34, and is provided with a suction pressure Ps guided to the valve chamber 34.
  • the configuration of the discharge pressure introducing hollow tubular body 49 and the like is the same as that of the first embodiment, so that the third embodiment has the same operation and effect as the first embodiment. can get.
  • the ball valve element 37 is directly connected to the diaphragm device 60 via the holding body 68, and in this case also, the ball valve element 37 is connected to the spherical joint between the valve element and the pressure response device. Since it acts as a dynamic centripetal ball, the driving force of the bellows device 40 acts favorably on the ball valve element 37 as an axial force without requiring a special automatic centripetal ball or the like.
  • one end (lower end) of the discharge pressure introducing hollow tube 49 is joined to the ball valve body 37 by welding or the like, but the urging force of the compression coil spring 50 is used. Accordingly, one end (lower end) of the discharge pressure introducing hollow tubular body 49 may be pressed against the ball valve body 37.
  • the discharge pressure of the compressor is controlled by the discharge pressure introducing hollow tube.
  • the high pressure influence characteristic discharge pressure influence characteristic corresponding to the compressor discharge pressure is set, which acts directly on the ball valve body and correlates with the system load characteristic.
  • an arbitrary high pressure influence characteristic can be obtained by setting the effective diameter of the discharge pressure introducing hollow tube, and the high pressure influence characteristic can be set with a high degree of freedom by selecting the effective diameter of the discharge pressure introducing hollow tube.
  • the discharge pressure of the compressor is directly applied to the ball valve by the discharge pressure introducing hollow tube, the number of parts and assembly man-hours can be reduced compared to the conventional one, and it is directly incorporated into the compressor housing.
  • the structure of the passage for guiding the suction pressure and the discharge pressure to each part of the displacement control valve is not complicated, and the degree of freedom of the arrangement position in the compressor housing is not limited.
  • the ball valve element is directly connected to the pressure response device and the ball valve element acts as an automatic centripetal ball of the spherical joint between the valve element and pressure response device, a special automatic centripetal ball is required. Without this, the driving force of the pressure responsive device acts satisfactorily as an axial force on the ball valve body, so that the number of parts and the number of assembly steps can be reduced.
  • the end face of the discharge pressure introduction hollow tube body slidably fitted in the fitting hole is also provided on the end face on the discharge pressure introduction port side.
  • the outer diameter of the discharge pressure introduction hollow tube is equal to the effective diameter of the pressure receiving surface of the ball valve, so it acts on the end face of the discharge pressure introduction hollow tube at the discharge pressure introduction port side. Yes The discharge pressure of the compressor is canceled, and the required high pressure influence characteristics can be obtained.
  • the discharge pressure introducing hollow tubular body is provided.
  • the discharge pressure of the compressor does not act on the end face of the hollow pipe, and the required high pressure influence characteristics can be obtained without matching the effective diameter and the outer diameter of the discharge pressure introducing hollow tube.
  • the ball valve is biased by the urging force of the valve urging means for urging the ball valve in the valve opening direction via the discharge pressure introducing hollow pipe.
  • the vibration resistance of the body and pressure response device is improved, and a quiet and stable capacity control operation can be obtained.

Abstract

A control valve for variable displacement compressor, comprising a ball valve disc (37) which opens and closes communication passages (32, 34, 33) communicating a suction port with a crank chamber of a compressor and is energized in the valve closing direction by a spring force of a compressive coil spring (44), a bellows device (40) driving the ball valve disc (37) in the valve opening direction by the application of a suction pressure of the compressor, the ball valve disc (37) being connected directly with the bellows device (40) with the ball valve disc (37) used as a self-centering ball, and a delivery pressure leading hollow tube body (49) connected to the ball valve disc (37) at one end and applying a delivery pressure of the compressor directly in the valve opening direction of the ball valve disc (37) which is disposed in a valve housing (31), a compressive coil spring (50) energizing the ball valve disc (37) in the valve opening direction through the delivery pressure leading hollow tube body (49).

Description

明 細 書 容量可変型圧縮機用制御弁 技術分野  Description Control valve for variable displacement compressor Technical field
この発明は、 容量可変型圧縮機用制御弁に関し、 特に、 車載空調装置などにて 使用される斜板式容量可変型圧縮機のための容量制御弁に関するものである。 背景技術  The present invention relates to a control valve for a variable displacement compressor, and more particularly to a displacement control valve for a swash plate type variable displacement compressor used in an in-vehicle air conditioner or the like. Background art
斜板式容量可変型圧縮機のための容量制御弁として、 特公平 3— 5 3 4 7 4号 公報、 実公平 6 - 1 7 0 1 0号公報、 特開平 8— 1 7 7 7 3 5号公報に示されて いる容量制御弁が従来より知られている。  As a capacity control valve for a swash plate type variable displacement compressor, Japanese Patent Publication No. 3-530474, Japanese Utility Model Publication No. 6-17010, Japanese Patent Publication No. The displacement control valve disclosed in the publication is conventionally known.
この容量制御弁は、 基本的には、 斜板を内蔵した圧縮機のクランク室の圧力の 上昇に応じて吐出容量を低減し、 クランク室の圧力の低下に応じて吐出容量を増 大する容量可変型圧縮機において、 圧縮機の吸入ポ一トとクランク室とを連通す る連通路を、 圧縮機の吸入圧力に応動する圧力応動装置の開弁力と閉弁ばねのば ね力との平衡関係により駆動される弁体により開閉し、 クランク室に対して供給 する圧縮機の吸入圧力を制御する制御弁であり、 更に、 圧縮機の吐出圧力を開弁 方向に及ぼし、 前記弁体の開閉動作点を吐出圧力に応じて偏移させ、 外気負荷 ( 吐出圧力) に相関した容量制御を行うよう構成されている。  Basically, this displacement control valve reduces the displacement in response to a rise in the pressure in the crankcase of a compressor with a built-in swash plate, and increases the displacement in response to a decrease in the pressure in the crankcase. In a variable compressor, the communication passage connecting the suction port of the compressor and the crank chamber is provided with a valve opening force of a pressure responsive device that responds to the suction pressure of the compressor and a spring force of a valve closing spring. A control valve that opens and closes with a valve body driven by an equilibrium relationship, and controls a suction pressure of a compressor supplied to a crank chamber, and further exerts a discharge pressure of the compressor in a valve-opening direction. The opening and closing operation point is shifted according to the discharge pressure, and the capacity is controlled in accordance with the external air load (discharge pressure).
上述の従来の容量制御弁は、 いずれも、 一応、 所期の目的を達成するが、 しか し、 部品点数、 組付工数が増えたりし、 また、 圧縮機ハウジングに直接組み込む ものでは、 容量制御弁の各部に吸入圧力や吐出圧力を導くための通路構造が複雑 になったり、 圧縮機ハウジングにおける配置位置の自由度が制限されたりし、 こ れらのことについて充分に満足できるものではない。  The above-mentioned conventional capacity control valves all achieve the intended purpose, but the number of parts and the number of assembling man-hours are increased, and capacity control is not possible if the valve is directly incorporated into the compressor housing. The passage structure for guiding the suction pressure and the discharge pressure to each part of the valve is complicated, and the degree of freedom of the arrangement position in the compressor housing is limited, so that these points cannot be sufficiently satisfied.
圧力応動装置として、 ダイヤフラム装置やべローズ装置等があり、 これら圧力 応動装置による駆動力は、 弁体に対して軸力として作用する必要があり、 さもな いと、 弁体の移動に対してこじりが生じ、 弁体の開閉移動の円滑性が損なわれる 。 このため、 従来の容量制御弁では、 弁体と圧力応動装置との間に、 ばねや自動 求心ボールを設けなくてはならず、 部品点数、 組付工数の増加を招く。 発明の開示 Diaphragm devices and bellows devices are available as pressure response devices, and the driving force of these pressure response devices must act as an axial force on the valve element. This causes the smoothness of the opening and closing movement of the valve body to be impaired. For this reason, in the conventional displacement control valve, a spring or an automatic A centripetal ball must be provided, which leads to an increase in the number of parts and assembly man-hours. Disclosure of the invention
この発明は、 上述の如き問題点に着目してなされたものであり、 特別な自動求 心ボール等を必要とすることがなく、 構造簡単にして、 部品点数、 組付工数を増 加することがなく、 また、 圧縮機ハウジング組込式のものとして、 通路構造を複 雑にすることがなく、 圧縮機ハウジングにおける配置位置の自由度に優れた容量 可変型圧縮機用制御弁を提供することを目的としている。  The present invention has been made in view of the above-mentioned problems, and does not require a special automatic centering ball or the like, simplifies the structure, and increases the number of parts and the number of assembling steps. To provide a control valve for a variable displacement compressor, which has no complicated passage structure and has a high degree of freedom in the arrangement position in the compressor housing as a compressor housing built-in type. It is an object.
上述の如き目的を達成するため、 クレーム 1に記載の発明による容量可変型圧 縮機用制御弁は、 圧縮機の吸入ポートとクランク室とを連通する連通路を有する 弁ハウジングと、 前記弁ハウジング内に設けられて前記連通路を開閉するボール 弁体と、 前記ボール弁体を閉弁方向へ付勢するばねと、 前記ボール弁体を自動求 心ボールとして当該ボール弁体と直接的に接続され、 圧縮機の吸入圧力を及ぼさ れて前記ボール弁体を開弁方向へ駆動する圧力応動装置と、 前記弁ハウジングに 摺動可能に嵌合し、 一端にて前記ボール弁体と接合され、 他端に圧縮機の吐出圧 力の導入口を有し、 内部通路を通して圧縮機の吐出圧力を前記ボール弁体の背面 に開弁方向の力として作用させる吐出圧力導入中空管体と有しているものである  In order to achieve the above object, a control valve for a variable displacement compressor according to the invention described in claim 1 includes: a valve housing having a communication passage communicating a suction port of a compressor with a crank chamber; and the valve housing. A ball valve body provided in the housing for opening and closing the communication passage; a spring for urging the ball valve body in a valve closing direction; and directly connecting the ball valve body as an automatic centripetal ball to the ball valve body. A pressure responsive device that is driven by the suction pressure of the compressor to drive the ball valve body in the valve opening direction, slidably fitted to the valve housing, and joined at one end to the ball valve body; The other end has a discharge pressure introduction port for the compressor, and has a discharge pressure introduction hollow pipe body for applying the discharge pressure of the compressor to the back surface of the ball valve as a force in the valve opening direction through an internal passage. Is what
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図はこの発明による制御弁を組み込まれた容量可変型圧縮機の一つの実施 の形態を示す断面図である。  FIG. 1 is a sectional view showing an embodiment of a variable displacement compressor incorporating a control valve according to the present invention.
第 2図はこの発明による容量可変型圧縮機用制御弁の第 1実施例を示す断面図 である。  FIG. 2 is a sectional view showing a first embodiment of a control valve for a variable displacement compressor according to the present invention.
第 3図は第 1実施例による容量可変型圧縮機用制御弁の吐出圧力一吸入圧力特 性を示すグラフである。  FIG. 3 is a graph showing a discharge pressure-suction pressure characteristic of the control valve for a variable displacement compressor according to the first embodiment.
第 4図はこの発明による容量可変型圧縮機用制御弁の第 2実施例を示す断面図 である。  FIG. 4 is a sectional view showing a second embodiment of the control valve for a variable displacement compressor according to the present invention.
第 5図はこの発明による容量可変型圧縮機用制御弁の第 3実施例を示す断面図 である。 発明を実施するための最良の形態 本発明の第 1の好適実施例による容量可変型圧縮機用制御弁の具体的構成 FIG. 5 is a sectional view showing a third embodiment of the control valve for a variable displacement compressor according to the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION Specific Configuration of Control Valve for Variable Displacement Compressor According to First Preferred Embodiment of the Invention
まず、 本発明の第 1実施例に係る容量可変型圧縮機用制御弁の構成について、 第 1図乃至第 3図を参照して説明する。  First, a configuration of a control valve for a variable displacement compressor according to a first embodiment of the present invention will be described with reference to FIG. 1 to FIG.
第 1図に示されているように、 斜板式容量可変型圧縮機 1は、 圧縮機ハウジン グ 2により画定されたクランク室 3と、 各々一方のス トロ一クエンド部にてクラ ンク室 3に連通している複数個のシリンダ室 4とを有している。 シリンダ室 4の 各々にはビス トン 5が軸線方向に摺動自在に嵌合しており、 各ピス トン 5のクラ ンク室 3側にはビストンロッ ド 6の一端が連結されている。  As shown in FIG. 1, the swash plate type variable displacement compressor 1 includes a crank chamber 3 defined by a compressor housing 2 and a crank chamber 3 at one of the stroke ends. And a plurality of cylinder chambers 4 communicating with each other. A piston 5 is slidably fitted in each of the cylinder chambers 4 in the axial direction, and one end of a piston rod 6 is connected to the crank chamber 3 side of each piston 5.
圧縮機ハウジング 2は駆動軸 7を回転可能に支持しており、 駆動軸 7は、 プ一 リ 8に掛け渡された図示されていない駆動ベルトにより図示されていないェンジ ンと駆動連結され、 エンジンによって回転駆動される。  The compressor housing 2 rotatably supports a drive shaft 7, and the drive shaft 7 is drivingly connected to an engine (not shown) by a drive belt (not shown) stretched over a pulley 8. Is driven to rotate.
駆動軸 7はクランク室 3内においてゥォブル板 (斜板) 9を公知の連繋機構 ( 図示省略) により取付角度変更可能にトルク伝達関係にて連結されており、 ゥォ ブル板 9のシリンダ室 4側の板面にはビストン口ッ ド 6が軸力伝達可能に係合し ている。  The drive shaft 7 is connected to a wobbled plate (swash plate) 9 in the crankcase 3 by a known linking mechanism (not shown) in a torque transmitting relationship so that the mounting angle can be changed. A piston hole 6 is engaged with the side plate surface so that axial force can be transmitted.
ゥォブル板 9が傾斜状態にて駆動軸 7により回転駆動されることにより、 各シ リンダ室 4のビストン 5がゥォブル板 9の傾斜角に応じたストロ一クをもって往 復動し、 その傾斜角がクランク室圧力 P cと各シリンダ室 4の吸入圧力 (圧縮機 吸入圧力) P s との差圧に応じて自動調整される。  The pivot 9 is rotated by the drive shaft 7 in an inclined state, so that the piston 5 of each cylinder chamber 4 moves forward and backward with a stroke corresponding to the inclination angle of the movable plate 9, and the inclination angle is reduced. The pressure is automatically adjusted according to the pressure difference between the crankcase pressure Pc and the suction pressure (compressor suction pressure) Ps of each cylinder chamber 4.
この場合、 圧縮機 1は、 クランク室圧力 P cの上昇に応じてゥォブル板 9の傾 斜角が減少してビストン 5のストロークが低減することにより吐出容量を低減し 、 クランク室圧力 P cの低下に応じてゥォブル板 9の傾斜角が増大してビストン 5のストロークが増大することにより吐出容量を増大し、 クランク室圧力 P。が 吸入圧力 P sに実質的に等しい圧力になることによってフルロード運転状態にな る。 各シリンダ室 4には各々一方向弁による吸入弁 1 2、 吐出弁 1 3を有する吸入 ポート 1 4と吐出ポート 1 5とが形成されており、 各シリンダ室 4の吸入ポ一卜 1 4は吸入通路 1 6によって吸入接続ポート 1 7に連通し、 吐出ポート 1 5は吐 出通路 1 8によって吐出接続ポート 1 9に連通しており、 吸入接続ポ一ト 1 7と 吐出接続ポート 1 9とに、 蒸発器 2 0、 膨張弁 2 1、 凝縮器 2 2などを含む冷凍 サイクル用循環管路が接続されている。 In this case, the compressor 1 reduces the discharge capacity by reducing the inclination angle of the wobble plate 9 and the stroke of the piston 5 in accordance with the rise of the crankcase pressure Pc, thereby reducing the discharge capacity. As the tilt angle of the wobble plate 9 increases in accordance with the decrease and the stroke of the piston 5 increases, the discharge capacity increases, and the crank chamber pressure P increases. When the pressure becomes substantially equal to the suction pressure Ps, a full load operation state is established. Each cylinder chamber 4 is formed with a suction port 14 having a one-way valve and a discharge port 15 having a discharge valve 13 and a discharge port 15 .The suction port 14 of each cylinder chamber 4 is The suction passage 16 communicates with the suction connection port 17, the discharge port 15 communicates with the discharge connection port 19 via the discharge passage 18, and the suction connection port 17 and the discharge connection port 19 communicate with each other. In addition, a circulation line for a refrigeration cycle including an evaporator 20, an expansion valve 21, a condenser 22 and the like is connected.
圧縮機ハウジング 2には有底孔による制御弁受入孔 2 3が形成されており、 こ の制御弁受入孔 2 3内にこの発明による制御弁 3 0が挿入固定されている。  A control valve receiving hole 23 having a bottomed hole is formed in the compressor housing 2, and the control valve 30 according to the present invention is inserted and fixed in the control valve receiving hole 23.
制御弁 3 0は、 制御弁受入孔 2 3に挿入される円柱状の弁ハウジング 3 1を有 している。  The control valve 30 has a cylindrical valve housing 31 inserted into the control valve receiving hole 23.
第 2図に示されているように、 弁ハウジング 3 1には、 弁ハウジング 3 1の中 間部を径方向に横切つて各々延在するクランク室側通路 3 2および吸入ポート側 通路 3 3と、 弁ハウジング 3 1の内部であってクランク室側通路 3 2と吸入ポ一 ト側通路 3 3との間に存在する弁室 3 4とが形成されている。 また、 弁ハウジン グ 3 1の外周部にはクランク室側通路 3 2のための環状周溝 3 5と吸入ポ一ト側 通路 3 3のための環状周溝 3 6が形成されている。  As shown in FIG. 2, the valve housing 31 includes a crank chamber-side passage 32 and a suction port-side passage 33 extending radially across the middle of the valve housing 31. And a valve chamber 34 existing inside the valve housing 31 and between the crank chamber side passage 32 and the suction port side passage 33. An annular peripheral groove 35 for the crank chamber side passage 32 and an annular peripheral groove 36 for the suction port side passage 33 are formed on the outer peripheral portion of the valve housing 31.
弁室 3 4にはボール弁体 3 7が配置されており、 ボール弁体 3 7は弁座部 3 8 に選択的に着座することによりクランク室側通路 3 2と吸入ポ一ト側通路 3 3と の連通、 遮断を行う。  A ball valve element 37 is disposed in the valve chamber 34, and the ball valve element 37 is selectively seated on the valve seat portion 38, whereby the crank chamber side passage 32 and the suction port side passage 3 are provided. Communication with 3 is cut off.
弁ハウジング 3 1の一端部 (下端部) にはべローズ収容ケース 3 9がかしめ結 合されている。  A bellows housing case 39 is caulked to one end (lower end) of the valve housing 31.
ベロ一ズ収容ケース 3 9内には圧力応動装置である密閉構造のベローズ装置 4 0が配置されている。 ベローズ装置 4 0は、 一端に端板 4 3を一体に有している 蛇腹状のベロ一ズ本体 4 1 と、 ベロ一ズ本体 4 1の他端を閉じる端板 4 2により 構成され、 内部は真空圧になっている。 ベロ一ズ本体 4 1内の端板 4 2と端板 4 3との間にはべローズ装置 4 0を伸張方向 (閉弁方向) に付勢する圧縮コイルば ね 4 4 (請求項中のばねに相当) が設けられている。 また、 ベロ一ズ本体 4 1内 の端板 4 3側には当金部材 4 5が設けられており、 当金部材 4 5のストツパ面部 4 5 aと端板 4 2のス トッパ面部 4 2 aとの当接により、 ベローズ装置 4 0の最 大収縮量が規定されている。 Inside the bellows storage case 39, a bellows device 40 having a closed structure, which is a pressure responsive device, is disposed. The bellows device 40 is constituted by a bellows-shaped bellows body 41 having an end plate 43 integrally at one end, and an end plate 42 closing the other end of the bellows body 41. Is at vacuum pressure. A compression coil spring 4 4 for urging the bellows device 40 in the extension direction (valve closing direction) is provided between the end plate 42 and the end plate 43 in the bellows body 41. (Corresponding to a spring). A stopper member 45 is provided on the end plate 43 side of the bellows body 41, and a stopper surface portion 45a of the stopper member 45 and a stopper surface portion 42 of the end plate 42 are provided. By contact with a, the bellows device 40 A large amount of shrinkage is specified.
ベロ一ズ収容ケース 3 9には調整ねじ部材 4 6がねじ係合しており、 調整ねじ 部材 4 6は、 当該調整ねじ部材 4 6の軸心部に配置されたボール 4 7と端板 4 2 のス トッパ面部 4 2 aの軸心部 (ベロ一ズ中心) に形成された球面状窪み 4 2 b とによる球面継手構造により、 ベローズ装置 4 0の一端を保持している。 すなわ ち、 ベローズ装置 4 0とべローズ収容ケース 3 9とが調整ねじ部材 4 6を介して 球面継手構造によって球面接続されている。  An adjusting screw member 46 is screw-engaged with the bellows housing case 39. The adjusting screw member 46 is formed by a ball 47 and an end plate 4 arranged at the axis of the adjusting screw member 46. One end of the bellows device 40 is held by a spherical joint structure formed by a spherical recess 42b formed in the axial center portion (bellows center) of the stopper surface portion 42a. That is, the bellows device 40 and the bellows housing case 39 are spherically connected by the spherical joint structure via the adjusting screw member 46.
ベロ一ズ装置 4 0は端板 4 3の軸心部 (ベローズ中心) に形成された球面状窪 み 4 3 aにて球面継手式にボール弁体 3 7に直接接続されており、 ベロ一ズ装置 4 0の伸縮がボール弁体 3 7に軸力として伝えられようになつている。  The bellows device 40 is directly connected to the ball valve body 37 in a spherical joint manner at a spherical recess 43 a formed in the axial center portion (bellows center) of the end plate 43. The expansion and contraction of the closing device 40 is transmitted to the ball valve element 37 as an axial force.
ベロ一ズ収納ケース 3 9は吸入ポート側通路 3 3と連通し、 ベロ一ズ装置 4 0 は吸入ポ一ト側通路 3 3よりべローズ収納ケース 3 9内に導入される吸入圧力と ベロ一ズ内圧との差圧に応じて伸縮する。  The bellows storage case 39 communicates with the suction port side passageway 33, and the bellows device 40 is connected to the suction pressure introduced into the bellows storage case 39 from the suction port side passageway 33 by the bellows. Expands and contracts according to the pressure difference from the internal pressure.
弁ハウジング 3 1の他端部 (上端部) には弁ハウジング 3 1の中心部を軸線方 向に貫通する嵌合孔 4 8が形成されている。 嵌合孔 4 8には吐出圧力導入中空管 体 4 9が軸線方向に摺動可能に嵌合している。 吐出圧力導入中空管体 4 9は一端 (下端) をボール弁体 3 7と溶接等により接合されている。 吐出圧力導入中空管 体 4 9の他端側 (上端側) は、 嵌合孔 4 8内にあり、 圧縮機 1の吐出圧力 P dの 導入口 4 9 cをなしている。 吐出圧力導入中空管体 4 9はボール弁体 3 7 との接 合部 (下端部) において拡径され、 吐出圧力導入中空管体 4 9の外径寸法 D aと 、 吐出圧力導入中空管体 4 9よりボール弁体 3 7に及ぼす圧力の受圧面部 3 7 a の有効径 D bとが互いに等しくなつている。  The other end (upper end) of the valve housing 31 is formed with a fitting hole 48 that passes through the center of the valve housing 31 in the axial direction. A discharge pressure introducing hollow tube 49 is fitted in the fitting hole 48 so as to be slidable in the axial direction. One end (lower end) of the discharge pressure introducing hollow tubular body 49 is joined to the ball valve body 37 by welding or the like. The other end (upper end) of the discharge pressure introducing hollow tube 49 is located in the fitting hole 48 and forms an inlet 49 c for the discharge pressure Pd of the compressor 1. The discharge pressure introducing hollow tube 49 is expanded at the joint (lower end) with the ball valve body 37, and the outer diameter D a of the discharge pressure introducing hollow tube 49 and the discharge pressure is being introduced. The effective diameter Db of the pressure receiving surface portion 37a of the pressure exerted on the ball valve body 37 from the hollow tube body 49 is equal to each other.
吐出圧力導入中空管体 4 9の拡径部 4 9 a と弁ハウジング 3 1 との間にはボー ル弁体 3 7を開弁方向に付勢する圧縮コイルばね 5 0 (請求項中の弁体付勢手段 に相当) が設けられている。  A compression coil spring 50 that urges the ball valve body 37 in the valve opening direction is provided between the enlarged diameter portion 49 a of the discharge pressure introduction hollow tubular body 49 and the valve housing 31 (in the claims). (Corresponding to the valve urging means).
尚、 前記圧縮コイルばね 5 0のばね荷重は、 ボール弁体 3 7の弁開時において 、 ボール弁体 3 7及びべローズ装置 4 0が圧縮機 1の運転中の振動によりガタっ くことがないような値に設定されている。  The spring load of the compression coil spring 50 is such that when the ball valve element 37 is opened, the ball valve element 37 and the bellows device 40 rattle due to vibration during operation of the compressor 1. It is set to a value that does not exist.
上述の構成による制御弁 3 0は、 第 1図に示されているように、 圧縮機ハウジ ング 2の制御弁受入孔 2 3に挿入固定され、 クランク室側通路 3 2、 環状周溝 3 5はクランク室圧力通路 2 によってクランク室 3に連通し、 吸入ポ一ト側通路 3 3、 環状周溝 3 6は吸入圧力通路 2 5によって吸入ポート 1 4に連通し、 嵌合 孔 4 8は吐出圧力通路 2 6によって吐出ポ一ト 1 5に連通している。 As shown in FIG. 1, the control valve 30 having the above-described configuration includes a compressor housing Crankcase side passageway 3 and annular groove 35 communicate with crankcase 3 via crankcase pressure passageway 2, and suction port side passageway 33 and annular shape. The circumferential groove 36 communicates with the suction port 14 through the suction pressure passage 25, and the fitting hole 48 communicates with the discharge port 15 through the discharge pressure passage 26.
なお、 クランク室圧力通路 2 4、 吸入圧力通路 2 5、 吐出圧力通路 2 6は、 圧 縮機ハウジング 2の内部に形成されている圧力通路である。  The crank chamber pressure passage 24, the suction pressure passage 25, and the discharge pressure passage 26 are pressure passages formed inside the compressor housing 2.
次に上述の構成よりなる制御弁 3 0の動作を説明する。  Next, the operation of the control valve 30 having the above configuration will be described.
圧縮機 1の吸入圧力 P sが、 吸入ポ一ト 1 4より吸入圧力通路 2 5を経て環状 周溝 3 6、 吸入ポート側通路 3 3に至り、 これより更に、 ベロ一ズ収納ケース 3 9内に入り、 ベロ一ズ装置 4 0に作用する。 これにより、 ベローズ装置 4 0は、 圧縮機 1の吸入圧力 P s とべローズ内圧との差圧に応じて伸縮し、 吸入圧力 P s の増大に伴い圧縮コイルばね 4 4のばね力に杭して収縮する。 ボール弁体 3 7は 、 吐出圧力導入中空管体 4 9によって導入される圧縮機の吐出圧力 P dが受圧面 部 3 7 aに作用することと、 圧縮コイルばね 5 0のばね力によって開弁方向に付 勢されているから、 吸入圧力 P sの増大によるべローズ装置 4 0の収縮により開 弁する。  The suction pressure P s of the compressor 1 passes from the suction port 14 through the suction pressure passage 25 to the annular circumferential groove 36, the suction port side passage 33, and furthermore, the bellows storage case 3 9 Inside, acting on the bellows device 40. Accordingly, the bellows device 40 expands and contracts according to the differential pressure between the suction pressure P s of the compressor 1 and the bellows internal pressure, and piles on the spring force of the compression coil spring 44 as the suction pressure P s increases. Shrink. The ball valve element 37 is opened by the discharge pressure Pd introduced by the discharge pressure introduction hollow pipe 49 acting on the pressure receiving surface 37 a and the spring force of the compression coil spring 50. Since the valve is biased in the valve direction, the valve is opened by contraction of the bellows device 40 due to an increase in the suction pressure Ps.
受圧面部 3 7 aに補正圧として作用する吐出圧 P dを一定とすると、 ボール弁 体 3 7は、 ベローズ装置 4 0に作用する吸入圧力 P sによる開弁力と圧縮コイル ばね 4 4のばね力による閉弁力との平衡関係により開閉駆動される。  Assuming that the discharge pressure Pd acting as a correction pressure on the pressure-receiving surface 37a is constant, the ball valve element 37 has a valve opening force due to the suction pressure Ps acting on the bellows device 40 and the compression coil spring 44 spring. Opening / closing is driven by an equilibrium relationship with the valve closing force due to the force.
従って、 吸入圧力 P sが圧縮コイルばね 4 4の設定荷重により決まる制御弁設 定圧 (基準設定圧力 P s s ) 以下であると、 圧縮コイルばね 4 4のばね力によつ てボール弁体 3 7が閉弁移動し、 弁座部 3 8に着座して閉弁する。 これにより、 クランク室 3に対する吸入圧力 P sの供給が停止され、 クランク室圧力 P cが上 昇し、 圧縮機 1はアンロード運転状態になる。  Therefore, if the suction pressure P s is equal to or lower than the control valve set pressure (reference set pressure P ss) determined by the set load of the compression coil spring 44, the ball valve element 37 is actuated by the spring force of the compression coil spring 44. The valve moves to close and seats on the valve seat 38 to close the valve. As a result, the supply of the suction pressure Ps to the crankcase 3 is stopped, the crankcase pressure Pc increases, and the compressor 1 enters the unload operation state.
これに対し、 吸入圧力 P sが制御弁設定圧 (基準設定圧力 P s s ) 以上になる と、 圧縮コイルばね 4 4のばね力に抗してボール弁体 3 7が開弁移動し、 弁座部 3 8より離間して開弁する。 これにより、 クランク室 3に対して吸入圧力 P sが 供給され、 クランク室圧力 P cが吸入圧力 P s と同じ圧力になり、 圧縮機 1はフ ルロード運転状態になる。 上述のように、 受圧面部 3 7 aに補正圧として作用する吐出圧 P dを一定にし た場合には、 すなわち、 高圧補正を行わない場合には、 圧縮機 1は、 第 3図にて 破線により示されているように、 吸入圧力 P sが基準設定圧力 P s sで一定とな る容量制御運転となる。 On the other hand, when the suction pressure P s exceeds the control valve set pressure (reference set pressure P ss), the ball valve element 37 moves to open against the spring force of the compression coil spring 44, and the valve seat moves. Open the valve away from part 38. As a result, the suction pressure Ps is supplied to the crank chamber 3, the crank chamber pressure Pc becomes the same pressure as the suction pressure Ps, and the compressor 1 enters the full load operation state. As described above, when the discharge pressure Pd acting as the correction pressure on the pressure receiving surface portion 37a is fixed, that is, when the high pressure correction is not performed, the compressor 1 is moved by a broken line in FIG. As shown by, the displacement control operation is performed in which the suction pressure Ps is constant at the reference set pressure Pss.
ボール弁体 3 7の受圧面部 3 7 aには補正圧として吐出圧力導入中空管体 4 9 に導入された圧縮機 1の吐出圧力 P dが直接作用し、 受圧面部 3 7 aの有効面積 を A hとすると、 A h · P dによる開弁力がボール弁体 3 7に付加される。 なお、 嵌合孔 4 8に摺動可能に嵌合している吐出圧力導入中空管体 4 9の導入 口 4 9 c側の端面 4 9 bにも圧縮機 1の吐出圧力 P dが作用するが、 吐出圧力導 入中空管体 4 9の外径寸法 D aとボール弁体 3 7の受圧面部 3 7 aの有効径 D b とが等しいから、 吐出圧力導入中空管体 4 9の端面 4 9 bに作用する圧縮機 1の 吐出圧力 P dはキャンセルされる。  The discharge pressure P d of the compressor 1 introduced into the discharge pressure introducing hollow pipe 49 directly acts as a correction pressure on the pressure receiving surface 37 a of the ball valve element 37, and the effective area of the pressure receiving surface 37 a Let A h be the valve opening force of A h · P d applied to the ball valve element 37. The discharge pressure Pd of the compressor 1 also acts on the inlet port 49 b of the discharge pressure introducing hollow pipe 49 slidably fitted in the fitting hole 48. However, since the outer diameter D a of the discharge pressure introducing hollow tube 49 is equal to the effective diameter D b of the pressure receiving surface portion 37 a of the ball valve body 37, the discharge pressure introducing hollow tube 49 is used. The discharge pressure Pd of the compressor 1 acting on the end face 49b of the compressor 1 is canceled.
ボール弁体 3 7には吐出圧力 P dに相関する A h · P dによる開弁力が作用す るから、 基準吐出圧力 P d sにおけるバランス状態にて基準設定圧力 P s sを設 定しておくと、 吐出圧力 P dの低下 (吐出圧力 P d <基準吐出圧力 P d s ) によ り開弁に必要な吸入圧力 P sが高くなり、 吐出圧力 P dの上昇 (吐出圧力 P d〉 基準吐出圧力 P d s ) により開弁に必要な吸入圧力 P sが低くなる。  Since the valve opening force due to AhPd that is correlated to the discharge pressure Pd acts on the ball valve element 37, the reference set pressure Pss is set in a balanced state at the reference discharge pressure Pds. When the discharge pressure P d decreases (discharge pressure P d <reference discharge pressure P ds), the suction pressure P s required to open the valve increases, and the discharge pressure P d increases (discharge pressure P d). The pressure P ds) reduces the suction pressure P s required to open the valve.
即ち、 吐出圧力 P dが P d 'にまで低下すると、 開弁力は A h ( P d - P d ' ) 分、 小さくなり、 この開弁力とベローズ装置 4 0の有効受圧面積 A d との比率 から、 開弁圧が A h ( P d— P d , ) ZA dに応じて上昇する圧力特性が得られ る。  That is, when the discharge pressure P d decreases to P d ′, the valve opening force decreases by A h (P d −P d ′), and the valve opening force and the effective pressure receiving area A d of the bellows device 40 are reduced. From this ratio, a pressure characteristic is obtained in which the valve opening pressure rises according to Ah (Pd-Pd,) ZAd.
このことは下式により示され、 受圧面部 3 7 aの有効面積 A hを決定する吐出 圧力導入中空管体 4 9の有効径を選定することにより目的とする高圧影響特性が 得られる。  This is expressed by the following equation. By selecting the effective diameter of the discharge pressure introduction hollow tube 49 that determines the effective area Ah of the pressure receiving surface portion 37a, the desired high pressure influence characteristic can be obtained.
P s = P s s - A h ( P d - P d s ) /A d  P s = P s s-A h (P d-P d s) / A d
これにより、 第 3図に実線により示されているように、 吐出圧力 P dの増加に 比例して吸入圧力 P sが低下する制御特性が得られ、 システム負荷特性に相関す る吐出圧力 P dにより容量制御圧縮機の制御特性を合わすことができる。  As a result, as shown by the solid line in FIG. 3, a control characteristic is obtained in which the suction pressure Ps decreases in proportion to the increase in the discharge pressure Pd, and the discharge pressure Pd correlated with the system load characteristic is obtained. Thereby, the control characteristics of the displacement control compressor can be matched.
このことは、 冷媒回路システムにおいては、 蒸発負荷と凝縮負荷とは比例関係 にあり、 蒸発負荷は冷媒循環量に比例し、 蒸発器内圧力損失は冷媒循環量に比例 すると云うことにおいて、 効率よい省エネルギシステムとする容量制御圧縮機の 容量制御に叶うことになる。 This means that in the refrigerant circuit system, the evaporation load and the condensation load are in a proportional relationship. In that, the evaporation load is proportional to the amount of circulating refrigerant, and the pressure loss in the evaporator is proportional to the amount of circulating refrigerant.
また、 ボール弁体 3 7がべローズ装置 4 0と直接接続され、 ボール弁体 3 7が 弁体一圧力応動装置間の球面継手の自動求心ボールとして作用するから、 特別な 自動求心ボール等を必要とすることなく、 ベローズ装置 4 0の駆動力がボール弁 体 3 7に軸力として良好に作用する。 本発明の第 2の好適実施例による容量可変型圧縮機用制御弁の具体的構成 次に、 本発明の第 2実施例に係る容量可変型圧縮機用制御弁について、 第 4図 を参照して説明する。  Also, since the ball valve element 37 is directly connected to the bellows device 40 and the ball valve element 37 acts as an automatic centripetal ball of a spherical joint between the valve element and the pressure response device, a special automatic centripetal ball or the like is used. The driving force of the bellows device 40 acts on the ball valve element 37 as an axial force without any need. Specific configuration of control valve for variable displacement compressor according to second preferred embodiment of the present invention Next, a control valve for variable displacement compressor according to the second embodiment of the present invention will be described with reference to FIG. Will be explained.
第 4図はこの発明による容量可変型圧縮機用制御弁の第 2実施例を示している 。 なお、 第 4図において、 第 2図に対応する部分は、 第 2図に付した符号と同一 の符号を付けて、 その説明を省略する。  FIG. 4 shows a second embodiment of the control valve for a variable displacement compressor according to the present invention. In FIG. 4, parts corresponding to those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof will be omitted.
この第 2実施例では、 第 1実施例の嵌合孔 (4 8 ) に相当する孔 5 1にガイ ド 筒体 5 2が挿入固定されており、 ガイ ド筒体 5 2の外周部に吐出圧力導入中空管 体 4 9が搢動可能に嵌合している。  In the second embodiment, a guide cylinder 52 is inserted and fixed in a hole 51 corresponding to the fitting hole (48) of the first embodiment, and discharge is performed on an outer peripheral portion of the guide cylinder 52. The pressure introducing hollow tube 49 is movably fitted.
この第 2実施例でも、 ボール弁体 3 7の受圧面部 3 7 aには補正圧として吐出 圧力導入中空管体 4 9に導入された圧縮機 1の吐出圧力 P dが直接作用し、 第 1 実施例と同等の作用、 効果が得られ、 実運転時の制御弁特性を吐出圧力 P dに相 関した特性とすることができる。  Also in the second embodiment, the discharge pressure Pd of the compressor 1 introduced into the discharge pressure introducing hollow pipe body 49 acts directly as a correction pressure on the pressure receiving surface 37a of the ball valve body 37, The same operation and effect as those of the first embodiment can be obtained, and the control valve characteristics at the time of actual operation can be made the characteristics related to the discharge pressure Pd.
なお、 この第 2実施例では、 吐出圧力導入中空管体 4 9の端面 4 9 aに圧縮機 1の吐出圧力 P dが作用することがないから、 吐出圧力導入中空管体 4 9の有効 径と外径寸法とを合わせる必要がない。  In the second embodiment, since the discharge pressure Pd of the compressor 1 does not act on the end face 49a of the discharge pressure introducing hollow tube 49, the discharge pressure introducing hollow tube 49 There is no need to match the effective diameter with the outer diameter.
なお、 この第 2実施例でも、 ボール弁体 3 7はべローズ装置 4 0と直接接続さ れ、 ボール弁体 3 7が弁体一圧力応動装置間の球面継手の自動求心ボールとして 作用するから、 特別な自動求心ボ一ル等を必要とすることなく、 ベローズ装置 4 0の駆動力がポール弁体 3 7に軸力として良好に作用する。  In the second embodiment as well, the ball valve element 37 is directly connected to the bellows device 40, and the ball valve element 37 acts as an automatic centripetal ball of the spherical joint between the valve element and the pressure response device. The driving force of the bellows device 40 acts on the pawl valve 37 as an axial force without requiring a special automatic centripetal ball or the like.
上述した第 1及び第 2の何れの実施例においても、 圧力応動装置は密閉構造の ベローズ装置 4 0としたが、 圧力応動装置は、 ベロ一ズ装置 4 0に限られること はなく、 ダイヤフラム装置等であってもよく、 圧力応動装置をダイヤフラム装置 で構成した容量可変型圧縮機用制御弁に適用した実施例を第 3実施例として以下 に説明する。 本発明の第 3の好適実施例による容量可変型圧縮機用制御弁の具体的構成 次に、 本発明の第 3実施例に係る容量可変型圧縮機用制御弁について、 第 5図 を参照して説明する。 In any of the first and second embodiments described above, the pressure responsive device has a closed structure. Although the bellows device 40 was used, the pressure responsive device is not limited to the bellows device 40 but may be a diaphragm device, etc., for a variable displacement compressor in which the pressure responsive device is constituted by a diaphragm device. An embodiment applied to a control valve will be described below as a third embodiment. Specific Configuration of Control Valve for Variable Displacement Compressor According to Third Preferred Embodiment of the Invention Next, a control valve for a variable displacement compressor according to the third embodiment of the present invention will be described with reference to FIG. Will be explained.
第 5図はこの本発明による容量制御弁の第 3実施例を示している。 なお、 第 5 図において、 第 2図に対応する部分は、 第 2図に付した符号と同一の符号を付け て、 その説明を省略する。  FIG. 5 shows a third embodiment of the capacity control valve according to the present invention. In FIG. 5, parts corresponding to those in FIG. 2 are given the same reference numerals as those in FIG. 2, and description thereof is omitted.
ダイヤフラム装置 6 0は、 弁ハウジング 3 1の下端部にかしめ結合された皿状 の上蓋 6 1 と、 ダイヤフラム 6 2を挟んで上蓋 6 1 と結合された皿状の下蓋 6 3 と、 下蓋 6 3にかしめ結合された円筒状のばね箱 6 4と、 ばね箱 6 4にねじ係合 した調整ねじ 6 5とを有している。  The diaphragm device 60 includes a dish-shaped upper lid 61 crimped to the lower end of the valve housing 31, a dish-shaped lower lid 6 3 joined to the upper lid 61 with the diaphragm 62 interposed therebetween, and a lower lid. The spring box 64 includes a cylindrical spring box 64 that is swaged to the spring box 63, and an adjusting screw 65 that is threadedly engaged with the spring box 64.
ダイヤフラム 6 2は、 弁ハウジング 3 1側にダイヤフラム室 6 6を、 ばね箱 6 4側に密閉室 6 7を各々画定しており、 ダイヤフラム室 6 6側にてボール弁体 3 7の保持体 6 8と接続されている。  The diaphragm 62 defines a diaphragm chamber 66 on the valve housing 31 side and a sealed chamber 67 on the spring box 64 side, and the holder 6 for the ball valve element 37 on the diaphragm chamber 66 side. Connected to 8.
ダイヤフラム 6 2の密閉室 6 7側には当金 6 9、 ボール 7 0、 ばね受け部材 7 1が順に設けられており、 ばね受け部材 7 1 と調整ねじ 6 5との間には、 ダイヤ フラム 6 2を介してボール弁体 3 7を閉弁方向 (上向き) へ付勢する圧縮コイル ばね 7 2が設けられている。  A contact 69, a ball 70, and a spring receiving member 71 are sequentially provided on the closed chamber 67 side of the diaphragm 62, and a diaphragm is provided between the spring receiving member 71 and the adjusting screw 65. A compression coil spring 72 is provided to urge the ball valve element 37 in the valve closing direction (upward) via the element 62.
ダイヤフラム室 6 6は弁室 3 4と連通しており、 弁室 3 4に導かれる吸入圧力 P sを与えられる。  The diaphragm chamber 66 communicates with the valve chamber 34, and is provided with a suction pressure Ps guided to the valve chamber 34.
この第 3実施例でも、 吐出圧力導入中空管体 4 9等の構成は実施の形態 1の同 等に構成されているから、 第 3実施例において第 1実施例と同等の作用、 効果が 得られる。  Also in the third embodiment, the configuration of the discharge pressure introducing hollow tubular body 49 and the like is the same as that of the first embodiment, so that the third embodiment has the same operation and effect as the first embodiment. can get.
また、 ボール弁体 3 7は保持体 6 8を介してダイヤフラム装置 6 0と直接的に 接続され、 この場合も、 ボール弁体 3 7が弁体一圧力応動装置間の球面継手の自 動求心ボールとして作用するから、 特別な自動求心ボール等を必要とすることな く、 ベロ一ズ装置 4 0の駆動力がボール弁体 3 7に軸力として良好に作用する。 尚、 上述した各実施例では、 吐出圧力導入中空管体 4 9の一端 (下端) をボ一 ル弁体 3 7と溶接等により接合するものとしたが、 圧縮コイルばね 5 0の付勢力 により吐出圧力導入中空管体 4 9の一端 (下端) をボール弁体 3 7に圧接させる ようにしてもよレ、。 産業上の利用可能性 Further, the ball valve element 37 is directly connected to the diaphragm device 60 via the holding body 68, and in this case also, the ball valve element 37 is connected to the spherical joint between the valve element and the pressure response device. Since it acts as a dynamic centripetal ball, the driving force of the bellows device 40 acts favorably on the ball valve element 37 as an axial force without requiring a special automatic centripetal ball or the like. In each of the embodiments described above, one end (lower end) of the discharge pressure introducing hollow tube 49 is joined to the ball valve body 37 by welding or the like, but the urging force of the compression coil spring 50 is used. Accordingly, one end (lower end) of the discharge pressure introducing hollow tubular body 49 may be pressed against the ball valve body 37. Industrial applicability
以上に説明した第 1乃至第 3の各実施例からも明らかなように、 本発明の容量 可変型圧縮機用制御弁によれば、 圧縮機の吐出圧力が吐出圧力導入中空管体によ つてボール弁体に直接作用し、 システム負荷特性に相関する圧縮機吐出圧力に応 じた高圧影響特性 (吐出圧力影響特性) が設定される。 この場合、 吐出圧力導入 中空管体の有効径の設定により任意の高圧影響特性が得られ、 この高圧影響特性 は吐出圧力導入中空管体の有効径の選定により自由度を高く設定できる。  As is clear from the first to third embodiments described above, according to the control valve for a variable displacement compressor of the present invention, the discharge pressure of the compressor is controlled by the discharge pressure introducing hollow tube. Thus, the high pressure influence characteristic (discharge pressure influence characteristic) corresponding to the compressor discharge pressure is set, which acts directly on the ball valve body and correlates with the system load characteristic. In this case, an arbitrary high pressure influence characteristic can be obtained by setting the effective diameter of the discharge pressure introducing hollow tube, and the high pressure influence characteristic can be set with a high degree of freedom by selecting the effective diameter of the discharge pressure introducing hollow tube.
また、 圧縮機の吐出圧力が吐出圧力導入中空管体によってボール弁体に直接作 用するから、 従来のものに比して部品点数、 組付工数を削減でき、 圧縮機ハウジ ングに直接組み込む場合において容量制御弁の各部に吸入圧力や吐出圧力を導く ための通路構造を複雑にしたり、 圧縮機ハウジングにおける配置位置の自由度を 制限されることがない。  In addition, since the discharge pressure of the compressor is directly applied to the ball valve by the discharge pressure introducing hollow tube, the number of parts and assembly man-hours can be reduced compared to the conventional one, and it is directly incorporated into the compressor housing. In this case, the structure of the passage for guiding the suction pressure and the discharge pressure to each part of the displacement control valve is not complicated, and the degree of freedom of the arrangement position in the compressor housing is not limited.
また、 ボール弁体が圧力応動装置と直接的に接続され、 ボール弁体が弁体一圧 カ応動装置間の球面継手の自動求心ボールとして作用するから、 特別な自動求心 ボール等を必要とすることなく、 圧力応動装置の駆動力がボール弁体に軸力とし て良好に作用するから、 このことによつても部品点数、 組付工数を削減できる。 また、 本発明の容量可変型圧縮機用制御弁によれば、 嵌合孔に摺動可能に嵌合 している吐出圧力導入中空管体の吐出圧力導入口側の端面にも圧縮機の吐出圧力 が作用するが、 吐出圧力導入中空管体の外径寸法とボール弁体の受圧面部の有効 径とが等しいから、 吐出圧力導入中空管体の吐出圧力導入口側の端面に作用する 圧縮機の吐出圧力がキャンセルされ、 所要の高圧影響特性が得られる。  In addition, since the ball valve element is directly connected to the pressure response device and the ball valve element acts as an automatic centripetal ball of the spherical joint between the valve element and pressure response device, a special automatic centripetal ball is required. Without this, the driving force of the pressure responsive device acts satisfactorily as an axial force on the ball valve body, so that the number of parts and the number of assembly steps can be reduced. According to the control valve for a variable displacement compressor of the present invention, the end face of the discharge pressure introduction hollow tube body slidably fitted in the fitting hole is also provided on the end face on the discharge pressure introduction port side. Although the discharge pressure acts, the outer diameter of the discharge pressure introduction hollow tube is equal to the effective diameter of the pressure receiving surface of the ball valve, so it acts on the end face of the discharge pressure introduction hollow tube at the discharge pressure introduction port side. Yes The discharge pressure of the compressor is canceled, and the required high pressure influence characteristics can be obtained.
さらに、 本発明の容量可変型圧縮機用制御弁によれば、 吐出圧力導入中空管体 の端面に圧縮機の吐出圧力が作用することがなく、 吐出圧力導入中空管体の有効 径と外径寸法とを合わせることなく所要の高圧影響特性が得られる。 Further, according to the control valve for a variable displacement compressor of the present invention, the discharge pressure introducing hollow tubular body is provided. The discharge pressure of the compressor does not act on the end face of the hollow pipe, and the required high pressure influence characteristics can be obtained without matching the effective diameter and the outer diameter of the discharge pressure introducing hollow tube.
また、 本発明の容量可変型圧縮機用制御弁によれば、 吐出圧力導入中空管体を 介してボール弁体を開弁方向に付勢する弁体付勢手段の付勢力により、 ボール弁 体及び圧力応動装置の耐振動性が向上し、 静粛で安定した容量制御動作が得られ る。  Further, according to the control valve for a variable displacement compressor of the present invention, the ball valve is biased by the urging force of the valve urging means for urging the ball valve in the valve opening direction via the discharge pressure introducing hollow pipe. The vibration resistance of the body and pressure response device is improved, and a quiet and stable capacity control operation can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 圧縮機の吸入ポートとクランク室とを連通する連通路を有する弁ハウジング と、 1. A valve housing having a communication passage communicating the suction port of the compressor with the crank chamber;
前記弁ハウジング内に設けられて前記連通路を開閉するボール弁体と、 前記ボール弁体を閉弁方向へ付勢するばねと、  A ball valve body provided in the valve housing to open and close the communication path; and a spring for biasing the ball valve body in a valve closing direction;
前記ボール弁体を自動求心ボールと して当該ボール弁体と直接的に接続され、 圧縮機の吸入圧力を及ぼされて前記ボール弁体を開弁方向へ駆動する圧力応動装 置と、  A pressure responsive device that is directly connected to the ball valve body as the automatic centripetal ball as the automatic centripetal ball, is driven by a suction pressure of a compressor, and drives the ball valve body in a valve opening direction;
前記弁ハゥジングに摺動可能に嵌合し、 一端にて前記ボール弁体と接合され、 他端に圧縮機の吐出圧力の導入口を有し、 内部通路を通して圧縮機の吐出圧力を 前記ボール弁体の背面に開弁方向の力として作用させる吐出圧力導入中空管体と を有していることを特徴とする容量可変型圧縮機用制御弁。  The ball valve is slidably fitted to the valve housing, is joined at one end to the ball valve body, has an inlet for the discharge pressure of the compressor at the other end, and controls the discharge pressure of the compressor through an internal passage. And a discharge pressure introducing hollow tubular body acting as a force in a valve opening direction on a back surface of the body.
2 . クレーム 1記載の容量可変型圧縮機用制御弁であって、 前記吐出圧力導入中 空管体は前記弁ハウジングに形成された嵌合孔に摺動可能に嵌合しており、 外径 寸法と前記ボール弁体に圧縮機の吐出圧力を及ぼす受圧面部の有効径とが等しい ことを特徴とする容量可変型圧縮機用制御弁。 2. The control valve for a variable displacement compressor according to claim 1, wherein the hollow pipe is slidably fitted in a fitting hole formed in the valve housing during the discharge pressure introduction. A control valve for a variable displacement compressor, wherein a dimension and an effective diameter of a pressure receiving surface portion for exerting a discharge pressure of the compressor on the ball valve body are equal.
3 . クレーム 1記載の容量可変型圧縮機用制御弁であって、 前記吐出圧力導入中 空管体は前記弁ハウジングに固定されたガイ ド筒体の外周部に摺動可能に嵌合し ていることを特徴とする容量可変型圧縮機用制御弁。 3. The control valve for a variable displacement compressor according to claim 1, wherein, during the introduction of the discharge pressure, the hollow pipe is slidably fitted to an outer peripheral portion of a guide cylinder fixed to the valve housing. A control valve for a variable displacement compressor.
4 . クレーム 1乃至 3のいずれかに記載の容量可変型圧縮機用制御弁であって、 前記吐出圧力導入中空管体を介して前記ボール弁体を開弁方向に付勢する弁体付 勢手段をさらに備えることを特徴とする容量可変型圧縮機用制御弁。 4. The control valve for a variable displacement compressor according to any one of claims 1 to 3, further comprising a valve body for urging the ball valve body in a valve opening direction via the discharge pressure introducing hollow pipe body. A control valve for a variable displacement compressor, further comprising a biasing means.
PCT/JP2000/004300 1999-07-05 2000-06-29 Control valve for variable displacement compressor WO2001002726A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020017002813A KR20010079737A (en) 1999-07-05 2000-06-29 Control valve for variable displacement compressor
BR0007004-1A BR0007004A (en) 1999-07-05 2000-06-29 Control valve for variable capacity compressor
EP00940881A EP1111237A1 (en) 1999-07-05 2000-06-29 Control valve for variable displacement compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/189979 1999-07-05
JP11189979A JP2001020857A (en) 1999-07-05 1999-07-05 Control valve for variable displacement type compressor

Publications (1)

Publication Number Publication Date
WO2001002726A1 true WO2001002726A1 (en) 2001-01-11

Family

ID=16250385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004300 WO2001002726A1 (en) 1999-07-05 2000-06-29 Control valve for variable displacement compressor

Country Status (6)

Country Link
EP (1) EP1111237A1 (en)
JP (1) JP2001020857A (en)
KR (1) KR20010079737A (en)
CN (1) CN1317073A (en)
BR (1) BR0007004A (en)
WO (1) WO2001002726A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10227817A1 (en) * 2002-02-28 2003-09-11 Taiheiyo Kogyo Kk Control valve for compressors and its manufacturing process
JP2004162567A (en) * 2002-11-12 2004-06-10 Fuji Koki Corp Control valve for variable displacement compressor
CN101762130B (en) * 2008-12-24 2013-12-18 上海三电贝洱汽车空调有限公司 Control valve
JP5424397B2 (en) * 2009-12-04 2014-02-26 サンデン株式会社 Control valve and swash plate type variable capacity compressor with control valve
JP5443444B2 (en) * 2011-07-06 2014-03-19 株式会社鷺宮製作所 Pressure sensitive control valve
KR101462418B1 (en) * 2011-12-02 2014-11-19 주식회사 퍼시픽콘트롤즈 A Variable Capacity Control Valve
US11821540B2 (en) * 2019-04-03 2023-11-21 Eagle Industry Co., Ltd. Capacity control valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200875A (en) * 1993-01-08 1994-07-19 Toyota Autom Loom Works Ltd Rocking swash plate type variable displacement compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200875A (en) * 1993-01-08 1994-07-19 Toyota Autom Loom Works Ltd Rocking swash plate type variable displacement compressor

Also Published As

Publication number Publication date
EP1111237A1 (en) 2001-06-27
BR0007004A (en) 2001-06-19
JP2001020857A (en) 2001-01-23
CN1317073A (en) 2001-10-10
KR20010079737A (en) 2001-08-22

Similar Documents

Publication Publication Date Title
JP5699259B2 (en) Control valve for variable capacity compressor
JP3432995B2 (en) Control valve for variable displacement compressor
EP1059443B1 (en) Displacement control valve
JP4436295B2 (en) Variable capacity compressor
EP1039129A2 (en) Device and method for controlling displacement of variable displacement compressor
US20060039798A1 (en) Control valve for variable displacement compressor
JP4779095B2 (en) Control valve for variable capacity compressor
WO2009150959A1 (en) Variable displacement compressor
EP1024286A2 (en) Control valve for variable displacement compressor
JP4055410B2 (en) Capacity control device for variable capacity compressor
WO2001002726A1 (en) Control valve for variable displacement compressor
US20040057840A1 (en) Capacity control valve for variable displacement compressor
US7021901B2 (en) Variable displacement compressor
JP2002021720A (en) Control valve for variable displacement compressor
JP2000249050A (en) Displacement control valve for variable displacement compressor
JP2000320464A (en) Control valve for variable displacement compressor
JP3987269B2 (en) Control valve for variable capacity compressor
JP2002021722A (en) Capacity control valve for piston type variable displacement compressor
US6332757B1 (en) Control valve for variable displacement compressor
JP3603107B2 (en) Displacement control valve for variable displacement compressor
JP3952425B2 (en) Control valve for variable capacity compressor, variable capacity compressor, and method for assembling control valve for variable capacity compressor
JP4474697B2 (en) Control valve
JPH0921384A (en) Pressure regulating valve
JP2002364534A (en) Pressure sensitive solenoid control valve
JP2001193640A (en) Control valve for variable displacement type compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801324.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020017002813

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09786620

Country of ref document: US

Ref document number: 2000940881

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000940881

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017002813

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 2000940881

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017002813

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000940881

Country of ref document: EP