JPH0267957A - Ultrasonic flaw detecting method for welded part of steel pipe - Google Patents

Ultrasonic flaw detecting method for welded part of steel pipe

Info

Publication number
JPH0267957A
JPH0267957A JP63219835A JP21983588A JPH0267957A JP H0267957 A JPH0267957 A JP H0267957A JP 63219835 A JP63219835 A JP 63219835A JP 21983588 A JP21983588 A JP 21983588A JP H0267957 A JPH0267957 A JP H0267957A
Authority
JP
Japan
Prior art keywords
steel pipe
ultrasonic
beams
probe
welded part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63219835A
Other languages
Japanese (ja)
Other versions
JP2552178B2 (en
Inventor
Youichi Fujikake
洋一 藤懸
Kiyomi Horikoshi
清美 堀越
Kiyohide Tamaki
清英 玉木
Yoshio Udagawa
義夫 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Toshiba Corp
Nippon Steel Corp
KJTD Co Ltd
Original Assignee
NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Toshiba Corp
Nippon Steel Corp
KJTD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KURAUTO KUREEMAA FUERUSUTAA KK, Toshiba Corp, Nippon Steel Corp, KJTD Co Ltd filed Critical NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Priority to JP63219835A priority Critical patent/JP2552178B2/en
Publication of JPH0267957A publication Critical patent/JPH0267957A/en
Application granted granted Critical
Publication of JP2552178B2 publication Critical patent/JP2552178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform correct flaw detection of a target region when the flow detection of a part beneath a welded part is performed at a 0.5 skip by setting a position where ultrasonic wave beams are transmitted and received and a gate which receives the ultrasonic wave beams from the position of the welded part of a steel pipe. CONSTITUTION:Ultrasonic wave beams 61-69 are transmitted in a sector scanning pattern by a command from a CPU 5 based on the flowing conditions: the outer diameter and the thickness of a steel pipe 11; the position and the inclination of a probe 1; and the setting of a desired incident angle. The beams 61-69 are propagated in the steel pipe 11 and a welded part 12. When there is a defect in the path, the beam is reflected at the defect and returned. The entire flaw detecting range of the beams 61-69 is divided into several ranges. A gate is provided in every flaw detecting range. The maximum echo height in each gate is computed in the CPU 5 among the ultrasonic wave beams which are set so as to reach each flaw detecting region and the ultrasonic wave beams in the vicinity of the region. When the beam exceeds the predetermined threshold value, it is judged that there is a defect in the part beneath the welded part 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼管の溶接部の超音波探傷方法およびその装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection method and apparatus for a welded portion of a steel pipe.

〔従来の技術〕[Conventional technology]

第2図は、一般に使用されている超音波フェイズドアレ
イ装置の構成例を示すものであり、その構成及び動作は
、例えば特開昭57−147053に開示されている。
FIG. 2 shows an example of the configuration of a commonly used ultrasonic phased array device, and its configuration and operation are disclosed in, for example, Japanese Patent Laid-Open No. 57-147053.

第2図において、まず、Nチャンネルの幅の狭い短冊形
の振動子11+ 1 !+・・・・・・r  INで構
成されるアレイ形プローブ1は、各振動子11,1□、
・・・・・・l、lに夫々付随したNチャンネルの超音
波送信器2++2z+・・・・・・、2Nを含む超音波
送信器群2と、Nチャンネルの超音波受信器3□3g+
・・・・・・+3Nを含む超音波受信器群3とに結合さ
れている。
In FIG. 2, first, an N-channel narrow rectangular vibrator 11+ 1! The array type probe 1 composed of +...r IN includes each vibrator 11, 1□,
...... N-channel ultrasonic transmitter group 2 including N-channel ultrasonic transmitters 2++2z+..., 2N attached to l, l, respectively, and N-channel ultrasonic receiver 3□3g+
...+3N is coupled to the ultrasonic receiver group 3.

また、上記超音波送信器群2には各超音波送信器2++
2g+・・・・・・+2Nから超音波送信パルスを発生
せしめるための外部トリガー信号を送信制御器4から入
力可能としており、送信制御器4には超音波を送信する
ために使われる超音波送信器のチャンネルとそれら各々
に与える外部トリガー信号の遅延時間設定値がコンピュ
ータ5によりあらかじめプログラム設定される。これに
より超音波の送信方向および超音波の集束距離に応じて
設定された遅延時間に従って、プログラム設定された各
振動子から超音波を所定の繰り返し周期に放射し得る。
In addition, each ultrasonic transmitter 2++ is included in the ultrasonic transmitter group 2.
It is possible to input an external trigger signal from the transmission controller 4 to generate an ultrasonic transmission pulse from 2g+...+2N. The channels of the device and the delay time settings of the external trigger signals applied to each of them are programmed in advance by the computer 5. As a result, ultrasonic waves can be emitted from each of the programmed transducers at a predetermined repetition period according to the delay time set according to the ultrasonic transmission direction and the ultrasonic focusing distance.

一方、受信動作はまず、アレイ形プローブ1と超音波受
信器群3とにより超音波を受信する。この受信された信
号は超音波受信器33,3□、・・・・・・。
On the other hand, in the receiving operation, first, the array type probe 1 and the ultrasonic receiver group 3 receive ultrasonic waves. This received signal is sent to the ultrasonic receivers 33, 3□, . . .

3NでN個の受信々号となり、さらに各受信々号は増幅
後、A/D変換器7において、受信制御器6からの信号
によりデジタル変換開始時間をずらしながらデジタル化
され、加算器8に入力される。
3N becomes N received signals, and each received signal is further amplified and then digitized in the A/D converter 7 while shifting the digital conversion start time according to the signal from the reception controller 6, and then sent to the adder 8. is input.

加算器8では、受信制御器6からの信号により加算され
るチャンネルが選択され、選択されたチャンネルの信号
を加算し、表示装置9に結果が表示され受信動作が完了
する。ここで、受信制御器6には、A/D変換器7にお
けるデジタル変換開始を決定する遅延時間設定値と加算
器8において選択されるチャンネルがコンピュータ5に
よりあらかじめプログラム設定される。また、この遅延
時間は超音波の受信方向および集束距離に応じてコンピ
ュータ5で計算される。
The adder 8 selects the channels to be added based on the signal from the reception controller 6, adds the signals of the selected channels, displays the result on the display device 9, and completes the reception operation. Here, a delay time setting value for determining the start of digital conversion in the A/D converter 7 and a channel to be selected in the adder 8 are programmed in advance in the reception controller 6 by the computer 5. Further, this delay time is calculated by the computer 5 according to the receiving direction and focusing distance of the ultrasonic waves.

つまり、超音波フェイズドアレイ装置は、遅延時間設定
により任意の方向に超音波ビーム°を偏向でき、任意の
位置に超音波ビームを集束できる。
In other words, the ultrasonic phased array device can deflect the ultrasonic beam in any direction by setting the delay time, and can focus the ultrasonic beam at any position.

また、プローブを走査せずに(機械的に移動させずに)
超音波ビームの走査ができる。このような走査法を一般
に電子走査法というが、この電子走査法には、第3図(
a)のように超音波送受信用の複数個の振動子ブロック
を順次切り換えながら超音波ビームを実線、破線、・・
・・・・、−点鎖線というように直線上に走査させるリ
ニア走査法と、第3図(b)のように複数個の振動子ブ
ロックによる超音波送受信方向を順次変更しながら超音
波ビームを実線、破線、・・・・・・、−点鎖線という
ように扇形上に走査させるセクタ走査法とがある。
Also, without scanning the probe (without moving it mechanically)
Ultrasonic beam scanning is possible. This type of scanning method is generally called the electronic scanning method, and this electronic scanning method includes the method shown in Figure 3 (
As shown in a), while sequentially switching multiple transducer blocks for ultrasonic transmission and reception, the ultrasonic beam is changed to solid lines, broken lines, etc.
..., - Linear scanning method that scans on a straight line as shown by the dotted chain line, and ultrasound beam transmission method that sequentially changes the direction of ultrasound transmission and reception using multiple transducer blocks as shown in Figure 3 (b). There is a sector scanning method in which a sector scan is performed using solid lines, broken lines, . . . , -dotted and dashed lines.

以下、リニア走査法やセクタ走査法を用いた方法の説明
が出てくるが、超音波ビームの伝播の様子は、実際は第
3図(a) (b)の実線2点線、−点鎖線のように幅
をもって表現すべきであるが、多数のビームが出て重な
り合うとわかりにくくなるので、今後比てくる図は全て
、第4図(a)(b)の実線1点線。
Below, methods using the linear scanning method and sector scanning method will be explained, but the propagation of the ultrasonic beam is actually as shown in the solid two-dot line and -dot-dashed line in Figures 3 (a) and (b). However, it becomes difficult to understand when a large number of beams come out and overlap, so all the figures that will be compared from now on will be the solid one-dot line in Figures 4 (a) and (b).

−点鎖線のようにビームの中心の軌跡を表す線によって
表現することとする。
-It shall be expressed by a line representing the locus of the center of the beam, such as a dotted chain line.

鋼管の探傷に超音波フェイズドアレイ装置を適用する場
合リニア走査法で探傷することが一般的であり、その−
例が特開昭61−18860に開示されており、それで
は、屈折角θr従って入射角θiが全て同じになるよう
に、偏向角αを変えることが考えられている。偏向角α
は振動子群に与える超音波送信パルスの遅延時間設定に
より変えることができ、そしてθlを同じにするαi 
 (i−1+2、・・・・・・)は鋼管とプローブの幾
何学的条件(即ち、例えば鋼管の中心0を原点とするX
−Y座標系におけるアレイ形プローブ1の中心位置とそ
の超音波送受信面の傾き、前記振動子群の振動子の個数
とその間隔、鋼管11の外径R)により求めることがで
き、フェイズドアレイではこのα1を任意に設定できる
ので、屈折角θ、が全で同じになるということである。
When using an ultrasonic phased array device to detect flaws in steel pipes, it is common to use a linear scanning method.
An example is disclosed in JP-A-61-18860, in which it is considered to change the deflection angle α so that the refraction angle θr and therefore the incident angle θi are all the same. Deflection angle α
can be changed by setting the delay time of the ultrasonic transmission pulse given to the transducer group, and αi to keep θl the same
(i-1+2,...) is the geometrical condition of the steel pipe and probe (i.e., for example,
- It can be determined from the center position of the array type probe 1 in the Y coordinate system, the inclination of its ultrasonic transmitting and receiving surface, the number of transducers in the transducer group and their spacing, and the outer diameter R of the steel pipe 11. Since α1 can be set arbitrarily, all refraction angles θ are the same.

しかしながら実際の鋼管の場合、鋼管の横断面即ち超音
波ビームの伝播経路が含まれる面の形状は必ずしも真円
ではなく実際の探傷ラインで自動探傷を行う場合、搬送
時の鋼管の振動やスパッタ等の鋼管表面上の付着物によ
り鋼管表面に対する超音波送受信面の傾きを一定にする
ことは難しい。
However, in the case of actual steel pipes, the shape of the cross section of the steel pipe, that is, the surface that includes the propagation path of the ultrasonic beam, is not necessarily a perfect circle. Due to deposits on the steel pipe surface, it is difficult to maintain a constant inclination of the ultrasonic transmitting and receiving surface with respect to the steel pipe surface.

従ってプローブの傾きが設定からず・れてしまい超音波
ビームは鋼管溶接部の目標の領域を正しく狙わなくなっ
てしまうことが考えられる。即ち入射角θゑが狂い、ひ
いては、屈折角θいが狂うが、スネルの法則かられかる
ように、水から鋼に超音波を入射する場合は、θ五のわ
ずかな狂いがθ、を大きく狂わせることになってしまい
、超音波ビームが目標の探傷領域を太き(外れてしまう
ことが起こりうる。そこで発明者らは鋼管断面が非円形
であっても、プローブの傾きが設定通りでなくても、鋼
管溶接部の目標の領域を正しく探傷できるようにしよう
とする方法を特願昭61−237722号公報に開示し
ている。該特願昭61−237722号公報における実
施例を第6図(a)〜(C)および第7図に示す。第6
図(a)はカップリング装置10により接触媒質の水と
カップリングされたアレイ形プローブlを用いて鋼管1
1の溶接部12の上部を、1スキップで探傷する様子を
示している。また、第6図(b)は第6図(a)の中で
超音波ビームが鋼管へ入射する部分の拡大図である。
Therefore, it is conceivable that the inclination of the probe deviates from the setting and the ultrasonic beam does not correctly aim at the target area of the steel pipe weld. In other words, the angle of incidence θ is distorted, which in turn causes the angle of refraction θ to be distorted, but as we know from Snell's law, when an ultrasonic wave is incident on steel from water, a slight deviation in θ will greatly increase θ. This could cause the ultrasonic beam to miss the target flaw detection area.Therefore, the inventors discovered that even if the cross section of the steel pipe is non-circular, the inclination of the probe may not be as set. However, Japanese Patent Application No. 61-237722 discloses a method for correctly detecting flaws in the target area of a steel pipe weld. Shown in Figures (a) to (C) and Figure 7.
Figure (a) shows a steel pipe 1 using an array type probe l coupled with couplant water by a coupling device 10.
The upper part of the welded part 12 of No. 1 is detected with one skip. Further, FIG. 6(b) is an enlarged view of the portion in FIG. 6(a) where the ultrasonic beam is incident on the steel pipe.

鋼管11の外径・肉厚、プローブ1の位置・傾き、所望
入射角等の設定条件に基づき、コンピュータ5の指令に
より、第6図(b)の如きセクタ走査で超音波ビーム2
1.・・・・・・、29を送信する。その際のセクタ走
査は目標の探傷領域に到達するように設定された所望入
射角を中心に広範囲に渡る多数の超音波ビームが送受信
できるようにする。
Based on the setting conditions such as the outer diameter and wall thickness of the steel pipe 11, the position and inclination of the probe 1, and the desired angle of incidence, the ultrasonic beam 2 is scanned in sectors as shown in FIG. 6(b) according to instructions from the computer 5.
1. ......, 29 is sent. Sector scanning at this time allows a large number of ultrasonic beams to be transmitted and received over a wide range around a desired angle of incidence set to reach the target flaw detection area.

超音波ビーム21.・・・・・・、29は鋼管11に入
射するとスネルの法則に基づいて屈折して超音波ビーム
31.・・・・・・、39となるが、その屈折角は鋼管
の形状やプローブの傾き等で変動する。該超音波ビーム
31.・・・・・・、39は鋼管11および溶接部12
の中を伝播し、伝播経路に欠陥があるとそこで反射して
戻ってくる。
Ultrasonic beam 21. When the beam 29 enters the steel pipe 11, it is refracted based on Snell's law and becomes an ultrasonic beam 31. ..., 39, but the refraction angle varies depending on the shape of the steel pipe, the inclination of the probe, etc. The ultrasonic beam 31. ..., 39 is the steel pipe 11 and the welded part 12
If there is a defect in the propagation path, it will be reflected back.

受信動作は、前述の第2図の説明の如き方法で行い、セ
クタ走査で送信した全超音波ビームの受信を行い、探傷
データを得る。
The reception operation is performed in the same manner as described above in FIG. 2, and all the ultrasonic beams transmitted by sector scanning are received to obtain flaw detection data.

しかしながらこのようなセクタ走査による探傷を行った
だけでは、前述の如く屈折角は鋼管の形状やプローブの
傾き等で変動するので超音波ビームは設定通り伝播して
いるか不明である。そこで、モニター用受信プローブ1
3を溶接部12の近(に配置し、該送信制御器4からの
信号によりタイミングをとりながら超音波受信器14で
該超音波ビーム31.・・・・・・、39を受信し、ア
レイ形プローブ1とモニター用受信プローブ13の幾何
学的配置から計算されたビーム路程により設定されたゲ
ート内の信号についてピーク検出器15でピーク検出を
行いそのデータをコンピュータ5に入力する。コンビエ
ータ5は該送信制御器4を制御しているためピーク検出
器15のデータは該超音波ビーム31.・・・・・・、
39に対応して入力される。
However, if flaw detection is only performed by such sector scanning, it is unclear whether the ultrasonic beam is propagating as set because the refraction angle varies depending on the shape of the steel pipe, the inclination of the probe, etc. as described above. Therefore, monitor reception probe 1
3 is placed near the welding part 12, and the ultrasonic beams 31, 39 are received by the ultrasonic receiver 14 while being timed by the signal from the transmission controller 4, and the array The peak detector 15 performs peak detection on the signal within the gate set by the beam path calculated from the geometric arrangement of the shaped probe 1 and the monitoring receiving probe 13, and inputs the data to the computer 5.The combiator 5 Since the transmission controller 4 is controlled, the data of the peak detector 15 is the ultrasonic beam 31.
It is input corresponding to No. 39.

コンピュータ5では第6図(C)に示すように該ピーク
検出器のデータの大小判定を行い、最大値を演算しく5
−1)、最大値に対応した超音波ビームをモニター用受
信プローブ13により受信したビーム(以後パイロット
ビームと称す)とする(5−2)、さらにコンピュータ
5ではアレイ形プローブ1とモニター用受信プローブ1
3の位置、セクタ走査の走査ピッチ、鋼管の外径および
肉厚等のデータを人力しく5−3)、これらのデータに
より幾何学的にパイロットビームを基準として何番目の
超音波ビーム(オフセットビームと称す)から何本の超
音波ビーム(有効ビーム本数と称す)が目標の鋼管溶接
部12の上部に達する超音波ビームかを演算しく5−4
)、この演算結果に一致した超音波ビームによる探傷デ
ータを、既に人力されている超音波ビーム31.・・・
・・・ 39による探傷データ(5−6)の中から選択
しく5−5)、これを用いて欠陥検査をする。
The computer 5 determines the magnitude of the data of the peak detector as shown in FIG. 6(C), and calculates the maximum value.
-1), the ultrasonic beam corresponding to the maximum value is the beam received by the monitor receiving probe 13 (hereinafter referred to as the pilot beam) (5-2), and the computer 5 further uses the array probe 1 and the monitor receiving probe 1
Manually input the data such as the position of step 3, the scanning pitch of the sector scan, the outer diameter and wall thickness of the steel pipe 5-3), and use these data to geometrically calculate the number of ultrasonic beams (offset beams) with respect to the pilot beam. Calculate how many ultrasonic beams (referred to as the effective number of beams) reach the upper part of the target steel pipe welded part 12 from the number of ultrasonic beams (referred to as 5-4)
), the flaw detection data using the ultrasonic beam that matches this calculation result is transferred to the ultrasonic beam 31. ...
... Select from the flaw detection data (5-6) according to 39 (5-5), and perform defect inspection using this.

第6図(a)の場合では、超音波ビーム37がパイロッ
トビーム、オフセットビームは34で、探傷データとし
て選択される超音波ビームは34,35.36で、有効
ビーム本数3となる。
In the case of FIG. 6(a), the ultrasonic beam 37 is the pilot beam, the offset beam is 34, and the ultrasonic beams selected as flaw detection data are 34, 35.36, making the number of effective beams 3.

ところが、鋼管溶接部の下部を0.5スキツプ(鋼管内
外面で反射させずに、直接超音波ビームを欠陥に当てる
)で探傷する場合は、モニタープローブを鋼管の内側に
配置することが難しい(鋼管は長いので、例えば長い棒
でモニタープローブを支えることになる)ので、鋼管の
外側にモニタープローブを配置するとなると、該特願昭
61−237722号公報に開示した、第7図のような
方法が考えられる。
However, when detecting the lower part of a steel pipe weld with a 0.5 skip (directly applying the ultrasonic beam to the defect without reflecting it on the inner and outer surfaces of the steel pipe), it is difficult to place the monitor probe inside the steel pipe ( Since the steel pipe is long, the monitor probe must be supported by a long rod, for example). Therefore, if the monitor probe is to be placed outside the steel pipe, a method as shown in Fig. 7 disclosed in Japanese Patent Application No. 61-237722 is used. is possible.

この方法では、モニター用受信プローブ13を溶接部1
2をはさんでアレイ形プローブ1と反対側に配置し、そ
れにより超音波ビームの方向を監視し、その結果に基づ
いて目標の鋼管溶接部の下部に到達する超音波ビームを
判定し、そのビームによる探傷データを用いて欠陥検査
をするものである。
In this method, the monitoring receiving probe 13 is
It monitors the direction of the ultrasonic beam, determines the ultrasonic beam that will reach the lower part of the target steel pipe weld based on the results, and Defect inspection is performed using beam-based flaw detection data.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

鋼管溶接部上部の探傷である第6図(a)の場合あるい
は鋼管溶接部下部の探傷でも1.5スキツプで行う第8
図のような場合は、溶接部12に達する前の超音波をモ
ニター用受信プローブ13でモニターするので問題ない
が、鋼管溶接部下部を0.5スキツプで探傷する第7図
のような場合は、溶接部12を通過した後の超音波をモ
ニター用受信プローブ13で受信することになり、特に
UO鋼管のように溶接部が盛り上がっているものに対し
ては正確にモニターできないことも起こりうる。第7図
の場合では、モニター用受信プローブ13で47の超音
波ビームが最大となり、44〜46の超音波ビームによ
る探傷結果を用いて検査すればよいが、例えば第9図の
ように溶接部下部で45の超音波ビームが矢印のように
反射して、47の超音波ビームよりモニター用受信プロ
ーブ13で強く受信したために、42〜44の超音波ビ
ームによる探傷結果で検査してしまい、目標の溶接部下
部が正しく探傷できないということも起こりうる。
In the case of Fig. 6 (a), which is the flaw detection of the upper part of a steel pipe weld, or the flaw detection of the lower part of a steel pipe weld, 1.5 skips are used.
In the case shown in the figure, there is no problem because the ultrasonic waves before reaching the weld 12 are monitored by the monitoring receiving probe 13, but in the case shown in Fig. 7, where the lower part of the steel pipe weld is detected with 0.5 skips, Since the ultrasonic waves that have passed through the welded portion 12 are received by the monitoring receiving probe 13, it may not be possible to accurately monitor the welded portion, especially for UO steel pipes where the welded portion is raised. In the case of Fig. 7, the ultrasonic beam of 47 is the maximum in the monitoring receiving probe 13, and inspection can be performed using the flaw detection results of ultrasonic beams of 44 to 46. For example, as shown in Fig. 9, the welded part The ultrasonic beam 45 was reflected at the bottom as shown by the arrow, and was received more strongly by the monitoring receiving probe 13 than the ultrasonic beam 47, so the inspection was performed using the flaw detection results from ultrasonic beams 42 to 44, and the target was not detected. It is also possible that the lower part of the weld cannot be detected correctly.

そこで本発明では、鋼管溶接部下部を0.5スキツプで
探傷する場合でも、目標の領域を正しく探傷できるよう
にしようとするものである。
Therefore, in the present invention, even when testing the lower part of a steel pipe weld with 0.5 skips, it is possible to accurately test the target area.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、超音波フェイズドアレイ装置を用いて鋼管溶
接部下部を斜角探傷する方法において、セクタ走査で多
数の超音波ビームを送受信し、超音波ビームを送受信す
る位置と、鋼管溶接部の位置から反射超音波ビームを受
信するゲートを設定し、該ゲート内で最大エコー高さの
反射超音波ビームを選定し、該反射超音波ビームがあら
かじめ定められたスレッシュレベル以上のとき鋼管溶接
下部に欠陥があると判断することを特徴とするものであ
る。
The present invention is a method for angle inspection of the lower part of a steel pipe weld using an ultrasonic phased array device, in which a large number of ultrasonic beams are transmitted and received by sector scanning, and the position at which the ultrasonic beam is transmitted and received and the position of the steel pipe weld are disclosed. Set a gate to receive the reflected ultrasonic beam from the gate, select the reflected ultrasonic beam with the maximum echo height within the gate, and detect a defect at the bottom of the steel pipe weld when the reflected ultrasonic beam is above a predetermined threshold level. It is characterized by determining that there is.

〔作用〕[Effect]

本発明によれば、鋼管溶接部下部を0.5スキツプで探
傷する場合に、鋼管の探傷断面の非円形性およびプロー
ブの傾きの変化により超音波ビームの伝播方向に変動が
あっても、目標の探傷領域を確実に検査できる。
According to the present invention, when detecting the lower part of a steel pipe weld in 0.5 skips, even if there is a variation in the propagation direction of the ultrasonic beam due to the non-circularity of the test cross section of the steel pipe and the change in the inclination of the probe, the target The flaw detection area can be reliably inspected.

以下、具体的実施例について図面を参照して詳細に説明
する。
Hereinafter, specific examples will be described in detail with reference to the drawings.

第1図は前述の第2図に示す超音波フェイズドアレイ装
置を用いて行った本発明の一実施例を示す模式図であり
、カップリング装置10により接触媒質の水とカップリ
ングされたアレイ形プローブlを用いて鋼管11の溶接
部12の下部を、探傷する様子を示している。
FIG. 1 is a schematic diagram showing an embodiment of the present invention carried out using the ultrasonic phased array device shown in FIG. It shows how the lower part of the welded part 12 of the steel pipe 11 is detected using the probe l.

鋼管11の外径・肉厚、プローブlの位置・傾き、所望
入射角等の設定条件に基づき、コンピュータ50指令に
より、セクタ走査で超音波ビームを送信する。その際の
セクタ走査は目標の探傷領域に到達するように設定され
た所望入射角を中心に広範囲に渡る多数の超音波ビーム
が送受信できるようにする。該超音波ビームは第6図(
b)と同様に鋼管11に入射するとスネルの法則に基づ
いて屈折して超音波ビーム61.・・・・・・、69と
なるが、その屈折角は鋼管の形状やプローブの傾き等で
変動する。該超音波ビーム61.・・・・・・、69は
鋼管11および溶接部12の中を伝播し、伝播経路に欠
陥があるとそこで反射して戻ってくる。
Based on setting conditions such as the outer diameter and wall thickness of the steel pipe 11, the position and inclination of the probe l, and the desired angle of incidence, an ultrasonic beam is transmitted in sector scanning according to a command from the computer 50. Sector scanning at this time allows a large number of ultrasonic beams to be transmitted and received over a wide range around a desired angle of incidence set to reach the target flaw detection area. The ultrasonic beam is shown in Fig. 6 (
Similarly to b), when the ultrasonic beam is incident on the steel pipe 11, it is refracted based on Snell's law and becomes an ultrasonic beam 61. ..., 69, but the refraction angle varies depending on the shape of the steel pipe, the inclination of the probe, etc. The ultrasonic beam 61. ..., 69 propagates inside the steel pipe 11 and the welded part 12, and if there is a defect in the propagation path, it is reflected there and returns.

受信動作は、前述の第2図の説明の如き方法で行い、セ
クタ走査で送信した全超音波ビームの受信を行い、探傷
データを得る。
The reception operation is performed in the same manner as described above in FIG. 2, and all the ultrasonic beams transmitted by sector scanning are received to obtain flaw detection data.

このようなセクタ走査による探傷を行っただけでは、前
述の如く屈折角は鋼管の形状やプローブの傾き等で変動
するので超音波ビームは設定通り伝播しているか不明で
あるが、0.5スキツプでの探傷の場合、超音波ビーム
は、鋼管内側で反射することもなく、直接欠陥に当たる
わけであるから、鋼管の形状やプローブの傾き等による
変動が増長されることはないので、該変動による影響は
小さいものと考えられる。つまり、鋼管の内外面で反射
させる1、0. 1.5.2.0スキツプ等の探傷に比
べ、0.5スキツプの超音波ビームは、目標の探傷範囲
から少しは外れることがあるが、大きく外れることはな
いと考えられる。
If flaw detection is only performed by sector scanning, it is unclear whether the ultrasonic beam is propagating as set because the refraction angle varies depending on the shape of the steel pipe and the inclination of the probe, as mentioned above. In the case of flaw detection at The impact is thought to be small. In other words, 1, 0. Compared to flaw detection with 1.5, 2.0 skips, etc., the ultrasonic beam with 0.5 skips may deviate slightly from the target flaw detection range, but it is thought that it will not deviate significantly.

このことを図で表したのが第10図であり、(a)0.
5スキツプと、(b) 1.0スキツプの比較を示す。
This is illustrated in Figure 10, where (a) 0.
A comparison between 5 skip and (b) 1.0 skip is shown.

第10画帳)の1.0スキツプでは、設定通りの超音波
ビーム73に対し、アレイ形プローブlが+0゜5傾い
た場合の超音波ビーム74は大きく離れてしまうが、第
1θ図(a)の0,5スキツプでは、設定通りの超音波
ビーム71に対し、同じくアレイ形プローブ1が+〇、
 5°傾いた場合に、超音波ビーム72はそれほど離れ
ないのがわかる。
With a skip of 1.0 in Figure 10), the ultrasonic beam 74 when the array probe l is tilted +0°5 will be far apart from the ultrasonic beam 73 as set, but as shown in Figure 1θ (a). In the 0,5 skip, the array type probe 1 is also +〇,
It can be seen that when tilted by 5 degrees, the ultrasonic beam 72 does not move far apart.

そこで、超音波ビーム61,63. ・・・・・・、6
9による全探傷範囲をいくつかの範囲に分け、各探傷範
囲毎にゲートを設け、各探傷範囲到達するように設定し
た超音波ビームとその周辺の超音波ビームの中から、コ
ンピュータ5において、各ゲート内の最大エコー高さを
算出し、そのエコー高さをもとに各探傷範囲の検査を行
うものとする。即ち、0.5スキツプの探傷では、超音
波ビームが目標の探傷範囲から少し外れることがあるが
、それは常に最大エコーを監視することでカバーするわ
けである。
Therefore, the ultrasonic beams 61, 63 .・・・・・・、6
The total flaw detection range according to 9 is divided into several ranges, a gate is provided for each flaw detection range, and the computer 5 selects each of the ultrasonic beams set to reach each flaw detection range and the surrounding ultrasonic beams. The maximum echo height within the gate will be calculated, and each flaw detection range will be inspected based on that echo height. That is, in flaw detection with 0.5 skips, the ultrasonic beam may deviate slightly from the target flaw detection range, but this is compensated for by always monitoring the maximum echo.

第1図において、61,62.63の超音波ビームによ
る探傷データを、全て62の超音波ビームの設定伝播経
路に基づきゲートをかけてピークエコー高さを求め、そ
れらの3つの最大エコー高さを算出し、その結果を62
のビームが探傷する範囲の探傷結果とする。同様に62
.63.64のビームにより63のビームが探傷する範
囲の探傷結果を求めるというようにして、最後に67゜
68.69のビームにより68のビームが探傷する範囲
の探傷結果を求めるという使い方が一例として考えられ
る。
In Figure 1, the flaw detection data from ultrasonic beams 61, 62, and 63 are all gated based on the set propagation path of the 62 ultrasonic beams to obtain the peak echo height, and the peak echo height is determined by the three maximum echo heights. Calculate the result as 62
This is the flaw detection result for the range detected by the beam. Similarly 62
.. As an example, use a beam of 63.64 to obtain the flaw detection results for the range detected by beam 63, and finally use a beam of 67°68.69 to obtain the flaw detection results for the range detected by beam 68. Conceivable.

また、もっと多数の振動子を有するアレイ形プローブを
用いて、前述の屈折角を全て同じにするリニア走査を行
い、各リニア走査点でセクタ走査を行い、各セクタ走査
における最大エコーで探傷する方法でもよい。
Another method is to use an array type probe with a larger number of transducers to perform linear scanning with all the refraction angles the same, perform sector scanning at each linear scanning point, and detect defects using the maximum echo in each sector scanning. But that's fine.

〔実施例〕〔Example〕

外径76cm(30インチ)、肉厚17.5rImのU
O鋼管の溶接部にノツチ状の人工欠陥を施したサンプル
に対して、本発明による方法と従来法とで繰り返し探傷
を行い比較した。
U with outer diameter 76 cm (30 inches) and wall thickness 17.5 rIm
Samples of O-steel pipes with notch-shaped artificial defects in the welded portions were subjected to repeated flaw detection using the method of the present invention and the conventional method, and were compared.

アレイ形プローブは、周波数4MHz、エレメントピッ
チ0.8国、駆動チャンネル数24チヤンネルのものを
用い、セクタ走査の真中のビームが偏向角o0で屈折角
53°となるようにプローブを(頃けた。また、さらに
プローフ゛を0.5〜1°1頃けて人為的に変動を設け
た。
The array type probe used had a frequency of 4 MHz, an element pitch of 0.8 mm, and a drive channel number of 24 channels, and the probe was rotated so that the beam in the middle of sector scanning had a deflection angle of 0 and a refraction angle of 53°. In addition, the probe was further changed artificially by 0.5 to 1°.

その探傷波形の結果の一例を第11図に示す。An example of the result of the flaw detection waveform is shown in FIG.

(a)が本発明の方法によるもので、(ロ)通常法によ
るものである。本発明による方法は、通常法に比べ、再
現性が非常に良くなっていることがわかる。
(a) is obtained by the method of the present invention, and (b) is obtained by the conventional method. It can be seen that the method according to the present invention has much better reproducibility than the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、0.5スキツプで鋼管
溶接部を探傷する場合、鋼管探傷断面の非円形性および
プローブの傾きの変化による超音波ビームの伝播方向の
変動があっても、目標の探傷領域を確実に検査でき、検
査の信顛性・再現性が大幅に向上する。
As described above, according to the present invention, when a steel pipe weld is tested with 0.5 skips, even if there is a variation in the propagation direction of the ultrasonic beam due to the non-circularity of the steel pipe test cross section and the change in the probe inclination, , the target flaw detection area can be reliably inspected, greatly improving the reliability and reproducibility of inspection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す模式図、第2図は超音
波フェイズドアレイ装置の説明図、第3図および第4図
はリニア走査、セクタ走査の説明図、 第5図はリニア走査法による鋼管探傷方法の説明図、 第6図(a)〜(C)および第7図〜9図は先順におけ
る一実施例を示す図、 第10図は0.5スキツプと1.0スキツプでの変動程
度の比較を示す図、 第11図は本発明の実施例における結果の一例を示す図
である。 1ニアレイ形プローブ、 2:超音波送信器群、3:超
音波受信器群、 4:送信制御器、 5:コンピュータ
、 6:受信制御器、 7:A/D変換器、 8:加算
器、 9:表示装置、10:カップリング装置、 11
:鋼管、 12:鋼管溶接部、 13:モニター用受信
プローブ、14:超音波受信器、 15;ピーク検出器
、21.22.・・・・・・29:超音波ビーム、 3
1,32.・・・・・・39:超音波ビーム、41.4
2.・・・・・・49 : ti音波ヒーム、51.5
2.・・・・・・59:超音波ビーム、 61.62.
・・・・・・69:超音波ビーム、 71.72,73
.74:超音波ビーム。
Fig. 1 is a schematic diagram showing the implementation state of the present invention, Fig. 2 is an explanatory diagram of an ultrasonic phased array device, Figs. 3 and 4 are explanatory diagrams of linear scanning and sector scanning, and Fig. 5 is linear scanning. Fig. 6 (a) to (C) and Fig. 7 to 9 are diagrams showing an example of the method for flaw detection of steel pipes, Fig. 10 is a 0.5 skip and a 1.0 skip. FIG. 11 is a diagram showing an example of the results in an example of the present invention. 1 Near array probe, 2: Ultrasonic transmitter group, 3: Ultrasonic receiver group, 4: Transmission controller, 5: Computer, 6: Reception controller, 7: A/D converter, 8: Adder, 9: Display device, 10: Coupling device, 11
: Steel pipe, 12: Steel pipe welded part, 13: Receiving probe for monitoring, 14: Ultrasonic receiver, 15; Peak detector, 21.22. ...29: Ultrasonic beam, 3
1,32. ...39: Ultrasonic beam, 41.4
2.・・・・・・49: ti sound wave heem, 51.5
2. ...59: Ultrasonic beam, 61.62.
...69: Ultrasonic beam, 71.72,73
.. 74: Ultrasonic beam.

Claims (1)

【特許請求の範囲】[Claims] 1、超音波フェイズドアレイ装置を用いて鋼管溶接部下
部を斜角探傷する方法において、セクタ走査で多数の超
音波ビームを送受信し、超音波ビームを送受信する位置
と、鋼管溶接部の位置から反射超音波ビームを受信する
ゲートを設定し、該ゲート内で最大エコー高さの反射超
音波ビームを選定し、該反射超音波ビームがあらかじめ
定められたスレッシュレベル以上のとき鋼管溶接下部に
欠陥があると判断することを特徴とする鋼管溶接部の超
音波探傷方法。
1. In a method of angle inspection of the lower part of a steel pipe weld using an ultrasonic phased array device, a large number of ultrasonic beams are transmitted and received by sector scanning, and the reflection from the position where the ultrasonic beam is transmitted and received and the position of the steel pipe weld is detected. Set a gate to receive the ultrasonic beam, select the reflected ultrasonic beam with the maximum echo height within the gate, and determine that there is a defect in the lower part of the steel pipe weld when the reflected ultrasonic beam is above a predetermined threshold level. An ultrasonic flaw detection method for steel pipe welds, which is characterized by determining that.
JP63219835A 1988-09-02 1988-09-02 Ultrasonic flaw detection method for steel pipe welds Expired - Fee Related JP2552178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219835A JP2552178B2 (en) 1988-09-02 1988-09-02 Ultrasonic flaw detection method for steel pipe welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219835A JP2552178B2 (en) 1988-09-02 1988-09-02 Ultrasonic flaw detection method for steel pipe welds

Publications (2)

Publication Number Publication Date
JPH0267957A true JPH0267957A (en) 1990-03-07
JP2552178B2 JP2552178B2 (en) 1996-11-06

Family

ID=16741797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219835A Expired - Fee Related JP2552178B2 (en) 1988-09-02 1988-09-02 Ultrasonic flaw detection method for steel pipe welds

Country Status (1)

Country Link
JP (1) JP2552178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024001A1 (en) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detection method and method of producing seamless tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014166A (en) * 1983-07-05 1985-01-24 Toshiba Corp Method and device for ultrasonic flaw detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014166A (en) * 1983-07-05 1985-01-24 Toshiba Corp Method and device for ultrasonic flaw detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024001A1 (en) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detection method and method of producing seamless tube
JPWO2007024001A1 (en) * 2005-08-26 2009-03-26 住友金属工業株式会社 Ultrasonic flaw detection method and seamless tube manufacturing method
JP4596337B2 (en) * 2005-08-26 2010-12-08 住友金属工業株式会社 Ultrasonic flaw detection method and seamless tube manufacturing method
US8495915B2 (en) 2005-08-26 2013-07-30 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and manufacturing method of seamless pipe or tube

Also Published As

Publication number Publication date
JP2552178B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
JPS6391554A (en) Method and apparatus for ultrasonic flaw detection of welded part in steel pipe
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
KR101641014B1 (en) Defect detection device, defect detection method, and storage medium
JPH11183446A (en) Method and apparatus for ultrasonic flaw detection of weld
KR20190016086A (en) Ultrasonic Flaw Detector, Ultrasonic Flaw Detector, Manufacturing Method of Welded Steel Pipe, and Quality Control Method of Welded Steel Pipe
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
KR20070065934A (en) Apparatus and method for crack length evaluation by phased array ultrasonic
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP2001108661A (en) Method and apparatus for ultrasonically detecting flaw
JPS6326343B2 (en)
JP5115024B2 (en) Coupling check method for ultrasonic oblique angle flaw detector
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
RU2592044C1 (en) Method for ultrasonic measurement and ultrasonic measuring device
JPH0267957A (en) Ultrasonic flaw detecting method for welded part of steel pipe
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPH10185881A (en) Method and device for ultrasonic flaw detection
JP2003262621A (en) Ultrasonic inspection method
JP3791436B2 (en) Ultrasonic flaw detection method
JP3497984B2 (en) Ultrasonic flaw detector
JP2501488B2 (en) Ultrasonic testing of pipes
JP2001050941A (en) Variable angle ultrasonic probe and variable angle ultrasonic flaw-detecting device
JPH02259560A (en) Method and device for ultrasonic flaw detection of steel tube weld zone
JPS6118860A (en) Ultrasonic beam control method for ultrasonic flaw detection of steel pipe using array type probe
JPS6356946B2 (en)
JPS62192653A (en) Ultrasonic flaw detecting method for steel tube weld seam part

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees