JPH0267254A - Production of 1-2c nitrogen-containing compound - Google Patents

Production of 1-2c nitrogen-containing compound

Info

Publication number
JPH0267254A
JPH0267254A JP21827388A JP21827388A JPH0267254A JP H0267254 A JPH0267254 A JP H0267254A JP 21827388 A JP21827388 A JP 21827388A JP 21827388 A JP21827388 A JP 21827388A JP H0267254 A JPH0267254 A JP H0267254A
Authority
JP
Japan
Prior art keywords
methane
ammonia
nitrogen
water
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21827388A
Other languages
Japanese (ja)
Other versions
JP2536779B2 (en
Inventor
Kotaro Ogura
興太郎 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP21827388A priority Critical patent/JP2536779B2/en
Publication of JPH0267254A publication Critical patent/JPH0267254A/en
Application granted granted Critical
Publication of JP2536779B2 publication Critical patent/JP2536779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain 1-2C nitrogen-containing compound, 1-2C oxygencontaining compound and/or amino acid in high selectivity by reaching methane with ammonia and water under irradiation of light at specific wavelength in a gas phase. CONSTITUTION:Methane is reacted with ammonia and water under irradiation of light rays comprising a line spectrum of 185-254nm (e.g. low-pressure mercury vapor lamp of 50-100W is used as light source) at 70-100 deg.C under 1-5 atm in a gas phase to give the aimed substance. The blending ratio of methane: ammonia:water is (0.06:0.006:1)-(0.06:0.24:1) in molar ratio. Ethylenediamine as 1-2C nitrogen-containing compound is useful as a raw material for producing chelating agent, germicide, surfactant, etc., and monomethylamine is useful as a synthetic intermediate for various kinds of industrial products.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、メタン、アンモニアおよび水より、モノメチ
ルアミン、エチレンジアミンなどのC0〜C!含窒素化
合物、メタノールなどのC,−C!含酸素化合物および
/またはヒスチジンなどのアミノ酸、特に該C1〜Ct
含窒素化合物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides C0 to C! monomethylamine, ethylenediamine, etc. from methane, ammonia and water. C, -C of nitrogen-containing compounds, methanol, etc. Oxygenates and/or amino acids such as histidine, especially the C1-Ct
The present invention relates to a method for producing a nitrogen-containing compound.

〔従来の技術〕[Conventional technology]

従来、モノメチルアミンはメタノールとアンモニアとを
アルミナゲル固体触媒の存在下、温度380〜450℃
および圧力15kg/cm”の条件で反応させることに
より製造されている。この従来の方法ではモノメチルア
ミン、ジメチルアミンおよびトリメチルアミンが4:2
:3の割合(モル比)で生成されるためモノメチルアミ
ンの選択率を高めることは困難である。一方、エチレン
ジアミンは、塩化エチレンとアンモニア水を加圧下10
0〜180℃で反応させることにより製造されているが
、この従来の方法では第二級アミンおよび第三級アミン
が副生される。このように従来のモノメチルアミンおよ
びエチレンジアミンの製造方法には、その原料および反
応条件において今後改良しなければならない問題が数多
く残されている。
Conventionally, monomethylamine was produced by mixing methanol and ammonia in the presence of an alumina gel solid catalyst at a temperature of 380 to 450°C.
and a pressure of 15 kg/cm". In this conventional method, monomethylamine, dimethylamine and trimethylamine were mixed in a ratio of 4:2.
: 3 (molar ratio), it is difficult to increase the selectivity of monomethylamine. On the other hand, ethylenediamine is prepared by mixing ethylene chloride and aqueous ammonia under pressure.
Although it is produced by reacting at 0 to 180°C, secondary amines and tertiary amines are produced as by-products in this conventional method. As described above, conventional methods for producing monomethylamine and ethylenediamine still have many problems that need to be improved in the future regarding their raw materials and reaction conditions.

他方、メタンとアンモニアおよび/または水とより各種
の有用な化合物を製造する方法が種々提案されている。
On the other hand, various methods have been proposed for producing various useful compounds from methane, ammonia, and/or water.

サイエンス、第117巻、1953年5月15日、52
8〜529頁には、メタン、アンモニア、水および水素
の混合物を、紫外線の代りにラジカルを形成する電気放
電下に反応させることによりグリシン、α−アラニン、
β−アラニンなどのアミノ酸が得られる旨開示されてい
る。
Science, Volume 117, May 15, 1953, 52
On pages 8-529, glycine, α-alanine,
It is disclosed that amino acids such as β-alanine can be obtained.

ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサエ
ティ((J、 And、 Chew、 Soc、 77
 (1955)2351) 、第77巻、1977年5
月12日、2351〜2361 頁)には、例えば60
.000ボルトの高周波圧の火花放電または、15.0
00ボルト変圧器を用いる無声放電により、メタン、ア
ンモニア、水および水素の混合物を反応させて、グリシ
ン、アラニン、サルコシンなどのアミノ酸ならびにギ酸
、酢酸、グリコール酸、乳酸などの有機酸を直接製造す
る方法が開示されている。
Journal of the American Chemical Society ((J, And, Chew, Soc, 77
(1955) 2351), Volume 77, 1977.5
For example, 60
.. 000 volts high frequency pressure spark discharge or 15.0 volts
Direct production of amino acids such as glycine, alanine, sarcosine and organic acids such as formic acid, acetic acid, glycolic acid and lactic acid by reacting a mixture of methane, ammonia, water and hydrogen by silent discharge using a 00 volt transformer. is disclosed.

ライフ・サイエンス・スペース・リサーチ(Life 
5cience 5pace Re5earch )1
5.95〜99頁(1977年)には、水素、ヘリウム
およびメタンの存在下、アンモニアの光分解により、シ
アン化水素、エタン、プロパン、ヒドラジン、ブタンな
どが得られる旨開示されている。
Life Science Space Research
5science 5pace Research)1
5.95-99 (1977) discloses that hydrogen cyanide, ethane, propane, hydrazine, butane, etc. can be obtained by photolysis of ammonia in the presence of hydrogen, helium and methane.

ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサエ
ティ(J、 A+s、 Chew、 Soc、) 、1
979年5月23日、3127〜3128頁には、Pt
/Ti(hの存在下、NH4Cl水溶液またはNH1水
溶液に、メタンを通しながら、2.5 kHのキセノン
ランプを用いて光照射することによりアミノ酸が得られ
る旨開示されている。
Journal of the American Chemical Society (J, A+s, Chew, Soc,), 1
May 23, 979, pages 3127-3128, Pt
It is disclosed that amino acids can be obtained by irradiating light using a 2.5 kHz xenon lamp while passing methane through an aqueous NH4Cl solution or an aqueous NH1 solution in the presence of /Ti(h).

ジャーナル・オプ・フォトケミストリー(Journa
l of Photochemistry ) 、13
 (1980年)、353〜356頁には、クリプトン
共鳴ランプの波長である123.6 na+の光の照射
下、メタンおよびアンモニアの混合物の光分解によりメ
チルアミンが得られることが開示されている。
Journal Op Photochemistry (Journa)
l of Photochemistry), 13
(1980), pp. 353-356, discloses that methylamine is obtained by photolysis of a mixture of methane and ammonia under irradiation with light of 123.6 na+, the wavelength of a krypton resonance lamp.

特開昭60−224657号には、液相において、高圧
水銀灯などから発する160nmを超える発光スペクト
ルを有する光の存在下、ヨウ化アンモニウムなどの光触
媒と接触させて、アンモニアまたは第一または第二アミ
ンとエチレン、プロピレンなどのオレフィンとを反応さ
せてモノエチルアミン、n−プロピルアミンなどのアミ
ンを生成させる光化学的アミン製造法が開示されている
JP-A No. 60-224657 discloses that ammonia or a primary or secondary amine is produced by contacting it with a photocatalyst such as ammonium iodide in the liquid phase in the presence of light having an emission spectrum exceeding 160 nm emitted from a high-pressure mercury lamp or the like. A photochemical amine production method has been disclosed in which amines such as monoethylamine and n-propylamine are produced by reacting olefins such as ethylene and propylene with olefins such as ethylene and propylene.

特開昭62−47495号には、光触媒の存在下に4W
低圧水銀ランプより発する光を照射する、塩化物イオン
を含む溶液中の電解によりメタンから直接メタノール、
クロロメタンおよびジクロロメタンを製造する方法が開
示されている。
JP-A No. 62-47495 discloses that 4W in the presence of a photocatalyst
Directly converts methane into methanol by electrolysis in a solution containing chloride ions, which is irradiated with light emitted from a low-pressure mercury lamp.
A method for producing chloromethane and dichloromethane is disclosed.

特開昭62−195339号には、メタンと水蒸気とを
、低圧水銀灯より発する光の照射下に反応させてメタノ
ールを直接合成する方法が開示されている。
JP-A-62-195339 discloses a method for directly synthesizing methanol by reacting methane and water vapor under irradiation with light emitted from a low-pressure mercury lamp.

特開昭62−249938号には、20W低圧水銀ラン
プより発する光の照射下、メタンと水蒸気とを反応させ
て、メタノールなどのアルコール、酢酸などの有機酸、
アセトンなどのケトンおよびギ酸メチルなどのエステル
を直接製造する方法が開示されている。
JP-A No. 62-249938 discloses that methane and water vapor are reacted under irradiation with light emitted from a 20W low-pressure mercury lamp to produce alcohols such as methanol, organic acids such as acetic acid,
Methods for the direct production of ketones such as acetone and esters such as methyl formate are disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者は、上記した従来技術に鑑み、メタンを利用し
て直接有用な化学物質を得るため、メタン、アンモニア
および水を光照射下に反応させる方法について種々研究
の結果、種々の有用な化学物質が得られることを見出し
本発明を完成するに至ったものである。
In view of the above-mentioned prior art, the present inventor has conducted various studies on methods of reacting methane, ammonia, and water under light irradiation in order to directly obtain useful chemical substances using methane, and as a result, has developed various useful chemical substances. They discovered that a substance can be obtained and completed the present invention.

本発明は、特定の波長を有する光を特定の条件下に照射
して、メタンとアンモニアを水の存在下に気相反応させ
ることにより、モノメチルアミン、エチレンジアミンな
どのC,−C,含窒素化合物、メタノールなどの01〜
02含酸素化合物および/またはヒスチジンなどのアミ
ノ酸、特に該01〜C!含窒素化合物を高選択率で製造
する方法を提供することを目的とするものである。
The present invention produces C, -C, and nitrogen-containing compounds such as monomethylamine and ethylenediamine by irradiating light with a specific wavelength under specific conditions and causing a gas phase reaction between methane and ammonia in the presence of water. , methanol etc. 01~
02 oxygenates and/or amino acids such as histidine, especially the 01-C! The object of the present invention is to provide a method for producing nitrogen-containing compounds with high selectivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、メタン、アンモニアおよび水を、185n−
および254nmの線スペクトルより本質的になる光の
照射下に気相反応させることを特徴とするC、−C,含
窒素化合物、01〜02含酸素化合物および/またはア
ミノ酸、特に該C3〜C2含窒素化合物の製造方法を提
供するものである。
The present invention allows methane, ammonia and water to be converted into 185n-
and C, -C, nitrogen-containing compounds, 01-02 oxygen-containing compounds and/or amino acids, especially the C3-C2-containing A method for producing a nitrogen compound is provided.

本発明におけるメタン、アンモニアおよび水の気相反応
は、185nmおよび254Hmの線スペクトルより本
質的になる光の照射下に行なわれる。
The gas phase reactions of methane, ammonia and water in the present invention are carried out under irradiation with light consisting essentially of a line spectrum of 185 nm and 254 Hm.

本発明の照射光は、波長が180Hm〜254Hmの範
囲内の他の光線を包含することが可能であるが、該波長
が18On−未満では生成した含窒素化合物および含酸
素化合物が光分解するので好ましくなく、該波長が25
4na+をこえるとその光エネルギーが水およびアンモ
ニアを分解するには不充分となり好ましくない。
The irradiation light of the present invention can include other light rays with wavelengths in the range of 180 Hm to 254 Hm, but if the wavelength is less than 18 On-, the generated nitrogen-containing compounds and oxygen-containing compounds will be photodecomposed. Unpreferably, the wavelength is 25
If it exceeds 4na+, the light energy will be insufficient to decompose water and ammonia, which is not preferable.

メタン−アンモニア−水系の化学反応のER3の測定に
よれば・CI!NOgの存在が明らかになった。
According to the ER3 measurement of the chemical reaction of methane-ammonia-water system, CI! The existence of NOg was revealed.

これはメチルアミンから水素引き抜き反応によって生成
したものである。エチレンジアミンは・CIgNH富ラ
ジカルうカップリングによってするものと考えられる。
This is produced by a hydrogen abstraction reaction from methylamine. Ethylenediamine is thought to be produced by .CIgNH-rich radical coupling.

水およびアンモニアは例えば低圧水銀ランプの185n
mの光を吸収し、次のように分解する。
Water and ammonia are, for example, 185n in a low-pressure mercury lamp.
It absorbs light of m and decomposes it as follows.

hν ttgo  →・OH+   H”         
 (i)hν NH3→ ・NH,+   H’          
 (2)OHラジカルはメタンから水素を引き抜きメチ
ルラジカルを生成する。
hν ttgo →・OH+H”
(i) hν NH3→ ・NH, + H'
(2) OH radicals extract hydrogen from methane to generate methyl radicals.

CHa +・OH→・CH3+  HzO(3)メチル
ラジカルはNH,と結合してメチルアミンとなる。
CHa+・OH→・CH3+ HzO(3) Methyl radical combines with NH, to form methylamine.

・CH3+ ・NH,→ CH3N Hz      
 (4)メチルアミンはOHによる水素引き抜きによっ
てC1hNH1を生成する。このラジカルのカップリン
グによってエチレンジアミンとなる。
・CH3+ ・NH, → CH3N Hz
(4) Methylamine generates C1hNH1 by hydrogen abstraction with OH. This radical coupling results in ethylenediamine.

Cl5NB!+・OH→・CHtNIh + HzO(
512・CHJHt  −HJCHzCH!NHg  
   (6)また、含酸素化合物、例えばメタノールの
生成は次のように考えることができる。
Cl5NB! +・OH→・CHtNIh + HzO(
512・CHJHt -HJCHzCH! NHg
(6) Furthermore, the production of oxygen-containing compounds such as methanol can be considered as follows.

CH4+・OH−CH30H+ H’     (71
本発明における照射光の光源としては、例えば50〜1
00Wの低圧水銀ランプ、波長185nn+および25
4n−のレーザー光などが好適である。
CH4+・OH-CH30H+ H' (71
As a light source of irradiation light in the present invention, for example, 50 to 1
00W low pressure mercury lamp, wavelength 185nn+ and 25
4n- laser light is suitable.

本発明方法における気相反応温度は、照射光の光源とし
て前記低圧水銀ランプを用いる場合、70〜100℃、
好ましくは80〜90℃の範囲にあり、該反応温度が1
00℃を超えると低圧水銀ランプからの光の波長が長波
長にずれて波長185n−の光密度が低下するので好ま
しくなく、70℃未満では反応圧力を1気圧に保持した
場合、水の蒸気圧が低く、反応に必要な水蒸気量が不足
するので好ましくない。
The gas phase reaction temperature in the method of the present invention is 70 to 100°C when the low pressure mercury lamp is used as the light source of the irradiation light.
Preferably it is in the range of 80 to 90°C, and the reaction temperature is 1
If the temperature exceeds 00°C, the wavelength of the light from the low-pressure mercury lamp will shift to a longer wavelength and the optical density at a wavelength of 185n- will decrease, which is undesirable. is unfavorable because the amount of water vapor necessary for the reaction is insufficient.

本発明方法において照射光源として低圧水銀ランプを用
いる場合の反応圧力は、1〜5気圧、好ましくは、1〜
2気圧の範囲にあり、該圧力が5気圧を超えると低圧水
銀ランプの材質の耐圧性に問題が生じるので好ましくな
く、1気圧未満では反応容器を大きくしなければならな
いので好ましくない。
In the method of the present invention, when a low-pressure mercury lamp is used as the irradiation light source, the reaction pressure is 1 to 5 atm, preferably 1 to 5 atm.
The pressure is in the range of 2 atm, and if the pressure exceeds 5 atm, this is undesirable because problems will arise in the pressure resistance of the material of the low-pressure mercury lamp, and if it is less than 1 atm, it is undesirable because the reaction vessel must be made larger.

本発明方法におけるメタン、アンモニアおよび水の気相
反応における、メタン、アンモニアおよび水の混合割合
は、モル比で、通常メタン:アンモニア:水−0,06
:0.006:1ないし0.06:0.24:1の範囲
にあり、アンモニア量が該混合比として0.06:0.
006:1より低下すると窒素量が不足して本発明の目
的が達成されず、またアンモニア量が該混合比として0
.061.24:lより増大すると照射光の大部分がア
ンモニアの光分解に消費されるので好ましくない。
The mixing ratio of methane, ammonia and water in the gas phase reaction of methane, ammonia and water in the method of the present invention is usually methane:ammonia:water -0.06 molar ratio.
:0.006:1 to 0.06:0.24:1, and the ammonia amount is in the range of 0.06:0.
If the mixing ratio is lower than 0.006:1, the amount of nitrogen will be insufficient and the object of the present invention will not be achieved, and the amount of ammonia will be less than 0.
.. If it increases more than 061.24:l, most of the irradiated light will be consumed for photodecomposition of ammonia, which is not preferable.

本発明方法におけるメタン、アンモニアおよび水の気相
反応に際し、他のガス例えば、水素、窒素、炭酸ガス、
不活性ガスなどが混入していても支障はないが、酸素が
多量存在すると含酸素化合物が多量に得られ、含窒素化
合物の製造を目的とする場合には好ましくない。しかし
、酸素ガスをメタンとのモル比率で1.5〜4.5%程
度添加した場合にはメタノールの生成量が増大するかあ
るいはエチレンジアミンの生成量が増大する程度で特に
支障はない。
During the gas phase reaction of methane, ammonia and water in the method of the present invention, other gases such as hydrogen, nitrogen, carbon dioxide,
Although there is no problem even if an inert gas is mixed, if a large amount of oxygen is present, a large amount of oxygen-containing compounds will be obtained, which is not preferable when the purpose is to produce nitrogen-containing compounds. However, when oxygen gas is added in a molar ratio of about 1.5 to 4.5% with respect to methane, there is no particular problem as long as the amount of methanol produced or the amount of ethylenediamine produced increases.

本発明方法によって得られるC、−C,含窒素化合物は
、モノメチルアミンおよびエチレンジアミンを主成分と
し、反応条件により変動するが、その他に少量のCH2
N0!、CHsCN −NHzCJ40H。
The C, -C, nitrogen-containing compound obtained by the method of the present invention has monomethylamine and ethylenediamine as its main components, and a small amount of CH2, which varies depending on the reaction conditions.
N0! , CHsCN-NHzCJ40H.

Ni1(CJ40H) z 、NH(CI3COOH)
 zおよびNHzCHzCNを包含する。
Ni1 (CJ40H) z, NH (CI3COOH)
z and NHzCHzCN.

本発明方法によって得られるC3〜C2含酸素化合物は
、メタノールを主成分とし、その他に少量のエタノール
およびホルムアルデヒドを包含する。
The C3-C2 oxygen-containing compound obtained by the method of the present invention contains methanol as a main component, and also contains small amounts of ethanol and formaldehyde.

本発明方法によって得られるアミノ酸は、反応条件によ
り変動するが、ヒスチジンおよびグリシンを主成分とし
、その他に少量のアラニンおよびグルタミン酸を包含す
る。
The amino acids obtained by the method of the present invention vary depending on the reaction conditions, but include histidine and glycine as main components, and small amounts of alanine and glutamic acid.

本発明方法によれば、その他に少量のエタンおよび水素
が得られる。
In addition, small amounts of ethane and hydrogen are obtained according to the process of the invention.

〔実施例〕〔Example〕

以下実施例により本発明をさらに具体的に説明する。 The present invention will be explained in more detail with reference to Examples below.

実施例1 第1図に示す装置を用い、第1表に示す割合でメタン、
アンモニアおよび水蒸気を50W低圧水銀ランプ3 (
主波長185nmおよび254nm)および温度計2を
備えた反応管1 (直径9ON、長さ420mm)に供
給し、光照射下、温度100℃で反応を行なった。水蒸
気とアンモニアは注入口12より供給し、メタンは注入
口13より供給した。
Example 1 Using the apparatus shown in Figure 1, methane and
50W low pressure mercury lamp 3 (
The mixture was supplied to a reaction tube 1 (diameter 9ON, length 420 mm) equipped with main wavelengths of 185 nm and 254 nm) and a thermometer 2, and the reaction was carried out at a temperature of 100° C. under light irradiation. Steam and ammonia were supplied through the injection port 12, and methane was supplied through the injection port 13.

反応生成物および未反応ガスは、まず水冷式コンデンサ
ー7で冷却し、凝結しないガスはさらにペンタンスラッ
シュ・トラップ(−130℃)6で捕捉した。排出ガス
は循環ポンプ10により再び反応管1に戻した。反応管
lの圧力は圧力調整タンク9の水面を調節することによ
って常に大気圧に保った。循環ガス流量はIIl/wi
nであり、初期のメタンのモル数と消費された水蒸気の
モル数との比n (CH4) / n (■zO)は6
X10−”であり、これらの条件下5時間反応を行なっ
た。反応終了後ペンタンスラッシュ・トラップを室温に
戻し、その際発生するガスは真空系15であらかじめ真
空にされたガス貯蔵槽4に貯えた。
The reaction product and unreacted gas were first cooled in a water-cooled condenser 7, and the uncondensed gas was further captured in a pentane slush trap (-130°C) 6. The exhaust gas was returned to the reaction tube 1 again by the circulation pump 10. The pressure in the reaction tube 1 was always maintained at atmospheric pressure by adjusting the water level in the pressure adjustment tank 9. Circulating gas flow rate is IIl/wi
n, and the ratio of the initial number of moles of methane to the number of moles of consumed water vapor, n (CH4) / n (■zO), is 6
X10-", and the reaction was carried out for 5 hours under these conditions. After the reaction was completed, the pentane slush trap was returned to room temperature, and the gas generated at this time was stored in the gas storage tank 4, which had been evacuated in advance by the vacuum system 15. Ta.

ガス相の生成物はガスクロマトグラフ(島津GC−8A
、日本電子JGC−1100)によって定量した。液相
生成物の定量はスチームクロマトグラフ法(大意5SC
−1) 、高速液体クロマトグラフ法(日立655A)
およびクロモトロープ酸を用いる吸光光度法(日立10
0−50型ダブルビーム)によって行なった。得られた
結果を第1表に示す。
The products in the gas phase were analyzed using a gas chromatograph (Shimadzu GC-8A).
, JEOL JGC-1100). Quantification of liquid phase products is carried out using the steam chromatography method (Daii 5SC).
-1) High performance liquid chromatography (Hitachi 655A)
and spectrophotometric method using chromotropic acid (Hitachi 10
0-50 type double beam). The results obtained are shown in Table 1.

実施例2〜4 第1表に示すように原料ガス組成を変えた以外実施例1
と同様の実験を行なった。得られた結果を第1表に示す
Examples 2 to 4 Example 1 except that the raw material gas composition was changed as shown in Table 1
A similar experiment was conducted. The results obtained are shown in Table 1.

実施例5 第2表に示されるようにアンモニアの添加量を増加した
以外、実施例1と同様の実験を行なった。
Example 5 An experiment similar to Example 1 was conducted except that the amount of ammonia added was increased as shown in Table 2.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

実施例6 第2表に示されるように空気注入口14より空気を注入
した以外、実施例4と同様の実験を行なった。得られた
結果を第2表に示す。
Example 6 An experiment similar to Example 4 was conducted except that air was injected from the air injection port 14 as shown in Table 2. The results obtained are shown in Table 2.

実施例7および8 第2表に示されるように、空気注入口14より空気を注
入した以外、実施例3と同様の実験を行なった。得られ
た結果を第2表に示す。
Examples 7 and 8 As shown in Table 2, an experiment similar to Example 3 was conducted except that air was injected from the air injection port 14. The results obtained are shown in Table 2.

実施例9 第2表に示されるように、空気注入口14より空気を注
入した以外、実施例1と同様の実験を行なった。得られ
た結果を第2表に示す。
Example 9 As shown in Table 2, an experiment similar to Example 1 was conducted except that air was injected from the air injection port 14. The results obtained are shown in Table 2.

実施例10 水蒸気の量を5ミリモルと一定にし、アンモニアとメタ
ンとのモル比を変えて、実施例1と同様の実験を行なっ
た。主要生成物について、得られた結果を第2図に示す
。第2図より明らかなように、C1〜C2含窒素化合物
の主成分としてのモノメチルアミンおよびエチレンジア
ミンを得るためのアンモニア対メタンのモル比は、好ま
しくは0.2〜3.Ol特に好ましくは0.5〜2.0
の範囲にあることが認められる。
Example 10 An experiment similar to Example 1 was conducted with the amount of water vapor kept constant at 5 mmol and the molar ratio of ammonia to methane varied. The results obtained for the main products are shown in FIG. As is clear from FIG. 2, the molar ratio of ammonia to methane for obtaining monomethylamine and ethylenediamine as the main components of the C1-C2 nitrogen-containing compound is preferably 0.2-3. Ol is particularly preferably 0.5 to 2.0
It is recognized that it is within the range of .

〔発明の効果〕 本発明によれば、メタン、アンモニアおよび水から、特
定波長の光を照射する方法により、直接CI”’ Cz
含窒素化合物、01〜C2含酸素化合物および/または
アミノ酸を製造することができる。
[Effects of the Invention] According to the present invention, by a method of irradiating light of a specific wavelength from methane, ammonia, and water, CI"' Cz
Nitrogen-containing compounds, 01-C2 oxygen-containing compounds and/or amino acids can be produced.

本発明によれば、メタン、アンモニアおよび水から、特
定波長の光を照射する方法により、キレート剤、殺菌剤
、界面活性剤などの製造原料として有用なエチレンジア
ミン並びに種々の工業製品の中間体として重要なモノメ
チルアミンを直接しかも高選択率で製造することができ
る。
According to the present invention, by irradiating light of a specific wavelength from methane, ammonia, and water, ethylenediamine, which is useful as a raw material for manufacturing chelating agents, disinfectants, surfactants, etc., and important as an intermediate for various industrial products can be produced. monomethylamine can be produced directly and with high selectivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施するための装置の1例を示
す概略図である。 第1図において、1・・・反応管;2・・・温度計;3
・・・低圧水銀ランプ;4・・・ガス貯蔵槽;5・・・
マノメータ;6・・・ペンタンスラッシュ・トラップ;
7・・・水冷式コンデンサー;8・・・溶液貯蔵槽;9
・・・圧力調整タンク;10・・・循環ポンプ;11・
・・流量計;12・・・水蒸気とアンモニアの注入口;
13・・・メタン注入口;14・・・空気注入口;15
・・・真空系。 第2図は、アンモニアとメタンとのモル比と、主要生成
物の生産量との関係を示すグラフである。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention. In FIG. 1, 1...reaction tube; 2...thermometer; 3
...Low pressure mercury lamp; 4...Gas storage tank;5...
Manometer; 6...Pentane slush trap;
7... Water-cooled condenser; 8... Solution storage tank; 9
...Pressure adjustment tank; 10...Circulation pump; 11.
...Flowmeter; 12...Inlet for water vapor and ammonia;
13... Methane inlet; 14... Air inlet; 15
...Vacuum system. FIG. 2 is a graph showing the relationship between the molar ratio of ammonia and methane and the production amount of the main product.

Claims (1)

【特許請求の範囲】 1、メタン、アンモニアおよび水を、185nmおよび
254nmの線スペクトルより本質的になる光の照射下
に気相反応させることを特徴とするC_1〜C_2含窒
素化合物の製造方法。 2、該C_1〜C_2含窒素化合物がモノメチルアミン
およびエチレンジアミンである請求項1記載のC_1〜
C_2含窒素化合物の製造方法。
[Claims] 1. A method for producing a C_1 to C_2 nitrogen-containing compound, which is characterized in that methane, ammonia, and water are subjected to a gas phase reaction under irradiation with light consisting essentially of line spectra of 185 nm and 254 nm. 2. C_1 to C_2 according to claim 1, wherein the C_1 to C_2 nitrogen-containing compounds are monomethylamine and ethylenediamine.
C_2 Method for producing nitrogen-containing compound.
JP21827388A 1988-09-02 1988-09-02 Method for producing nitrogen-containing compound from C-lower 1 to C-lower 2 Expired - Lifetime JP2536779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21827388A JP2536779B2 (en) 1988-09-02 1988-09-02 Method for producing nitrogen-containing compound from C-lower 1 to C-lower 2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21827388A JP2536779B2 (en) 1988-09-02 1988-09-02 Method for producing nitrogen-containing compound from C-lower 1 to C-lower 2

Publications (2)

Publication Number Publication Date
JPH0267254A true JPH0267254A (en) 1990-03-07
JP2536779B2 JP2536779B2 (en) 1996-09-18

Family

ID=16717282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21827388A Expired - Lifetime JP2536779B2 (en) 1988-09-02 1988-09-02 Method for producing nitrogen-containing compound from C-lower 1 to C-lower 2

Country Status (1)

Country Link
JP (1) JP2536779B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109967014A (en) * 2017-12-28 2019-07-05 上海亚洲化学品有限公司 A kind of manufacturing equipment of improved cationic surfactant
WO2023094418A1 (en) * 2021-11-23 2023-06-01 Universiteit Antwerpen Method and system for producing benzoic acid from polystyrene
CN117225336A (en) * 2023-11-13 2023-12-15 东华理工大学南昌校区 Amino acid synthesis equipment and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109967014A (en) * 2017-12-28 2019-07-05 上海亚洲化学品有限公司 A kind of manufacturing equipment of improved cationic surfactant
WO2023094418A1 (en) * 2021-11-23 2023-06-01 Universiteit Antwerpen Method and system for producing benzoic acid from polystyrene
CN117225336A (en) * 2023-11-13 2023-12-15 东华理工大学南昌校区 Amino acid synthesis equipment and method

Also Published As

Publication number Publication date
JP2536779B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
CN109180466B (en) Photooxidation preparation method of halogenated acetyl chloride
JP6661534B2 (en) Reaction product production method using phase interface reaction, phase interface reaction device, and secondary reaction product production method
US4417964A (en) Method of preparing olefinic compounds
Edman The Photorearrangement of Benzonorbornadienes
SU971097A3 (en) Process for producing alkylmercaptanes
JPH0267254A (en) Production of 1-2c nitrogen-containing compound
US4102950A (en) Method for producing singlet molecular oxygen
Horowitz Wavelength dependence of the primary photodissociation processes in acetone photolysis
Taylor et al. The Reaction of Hydrogen activated by Excited Mercury Atoms
KR970074736A (en) Method for preparing pentaerythritol
AU569555B2 (en) Preparing urea
TW580497B (en) Process for the preparation of monohalogenated 2-oxo-1,3-dioxolanes
JPS60116637A (en) Preparation of fluoromethane
JPS6054931B2 (en) Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol
JPH02233625A (en) Selective hydrogenolysis of perhalogenated ethane derivative
Fahr et al. Deuterium isotope effect in vinyl radical combination/disproportionation reactions
CN113966321A (en) Process for producing 1-halo-2-fluoroethylene
Ogura et al. Selective photochemical monochlorination of methane
JPS60112697A (en) Method and device for synthesizing diamond by photochemical deposition
JPS62195339A (en) Conversion of methane into methanol at ordinary temperature
Melville The inhibition of the photochemical decomposition of ammonia by atomic hydrogen
JPH06234671A (en) Synthesis of perfluoroalkyl bromide by photochemical bromination of corresponding iodide
US5466873A (en) Process for preparing arylketoamines
RU2144532C1 (en) Method of preparing trans-1,4,5,8-tetranitroso-1,4,5,8- tetraazadecaline
JPS59110638A (en) Production of polyhydric alcohol