JP6661534B2 - Reaction product production method using phase interface reaction, phase interface reaction device, and secondary reaction product production method - Google Patents

Reaction product production method using phase interface reaction, phase interface reaction device, and secondary reaction product production method Download PDF

Info

Publication number
JP6661534B2
JP6661534B2 JP2016529087A JP2016529087A JP6661534B2 JP 6661534 B2 JP6661534 B2 JP 6661534B2 JP 2016529087 A JP2016529087 A JP 2016529087A JP 2016529087 A JP2016529087 A JP 2016529087A JP 6661534 B2 JP6661534 B2 JP 6661534B2
Authority
JP
Japan
Prior art keywords
reaction
plasma
water
phase interface
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016529087A
Other languages
Japanese (ja)
Other versions
JPWO2015198608A1 (en
Inventor
春山 哲也
哲也 春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Ebara Jitsugyo Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Ebara Jitsugyo Co Ltd filed Critical Kyushu Institute of Technology NUC
Publication of JPWO2015198608A1 publication Critical patent/JPWO2015198608A1/en
Application granted granted Critical
Publication of JP6661534B2 publication Critical patent/JP6661534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0494Preparation of ammonia by synthesis in the gas phase using plasma or electric discharge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0884Gas-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C223/00Compounds containing amino and —CHO groups bound to the same carbon skeleton
    • C07C223/06Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

クロスリファレンスCross reference

本出願は、2014年6月27日に日本国において出願された特願2014−132690に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。   This application claims priority based on Japanese Patent Application No. 2014-132690 filed on June 27, 2014 in Japan, and the contents described in the application are incorporated herein by reference. The contents described in the patents, patent applications, and documents cited in the present application are incorporated herein by reference.

本発明は、プラズマ相と、このプラズマ相と接触する液相との相界面で反応を生じさせる相界面反応を用いた反応生成物製造方法及び相界面反応装置、ならびに二次反応生成物製造方法に関する。   The present invention provides a method for producing a reaction product and a phase interface reaction device using a phase interface reaction in which a reaction occurs at a phase interface between a plasma phase and a liquid phase in contact with the plasma phase, and a method for producing a secondary reaction product. About.

放電空間に酸素分子を通過させると酸素のプラズマ化によりオゾンが発生し、このオゾンに紫外線を作用させるとヒドロキシラジカル等が生成する。この原理及びヒドロキシラジカル等の高い酸化力を利用した水浄化装置等が開発されている(特許文献1、2参照)。オゾンからヒドロキシラジカルの生成は以下の反応式(1)、(2)で進行する。
+hν(UV)→+O (1)
O+HO+hν(UV)→2HO・ (2)
When oxygen molecules are allowed to pass through the discharge space, ozone is generated by the conversion of oxygen to plasma, and when ultraviolet light is applied to the ozone, hydroxy radicals and the like are generated. Water purifiers utilizing this principle and high oxidizing power such as hydroxyl radicals have been developed (see Patent Documents 1 and 2). The generation of hydroxy radical from ozone proceeds according to the following reaction formulas (1) and (2).
O 3 + hν (UV) → 3 O 2 + O (1)
O + H 2 O + hν (UV) → 2HO · (2)

ここで、前記水浄化装置においては、空気中に含まれる水分子(水蒸気)が酸素原子と反応し、ヒドロキシラジカルとなる(前記式(2))。空気中に含まれる水蒸気の割合は高くても3、4体積%程度であり、多量のヒドロキシラジカルを発生させることができない。高湿度状態でオゾン(プラズマ)を発生させることも考えられるが、高湿度下では放電が効率的に行われず、十分にオゾンを発生させることができない。   Here, in the water purification device, water molecules (water vapor) contained in the air react with oxygen atoms to form hydroxy radicals (the above formula (2)). The proportion of water vapor contained in the air is at most about 3 or 4% by volume, and a large amount of hydroxyl radical cannot be generated. Although it is conceivable to generate ozone (plasma) in a high humidity state, discharge is not efficiently performed in a high humidity state, and ozone cannot be generated sufficiently.

一方、アンモニアは、窒素肥料、尿素などの原料として重要であり、その工業的製造方法としては、ハーバー・ボッシュ法が有名である。この方法は、窒素と水素を高温・高圧下にて鉄系触媒を利用して反応させてアンモニアを合成する方法である。また、アンモニア合成の原料の一つである水素は、通常、石油、石炭あるいは天然ガス等に代表される埋蔵炭化水素の水蒸気改質によって得られる。このような理由から、ハーバー・ボッシュ法は、膨大なエネルギーを要する重厚長大な反応法であり、かつ二酸化炭素という副産物を生成する環境負荷の高い反応法である。   On the other hand, ammonia is important as a raw material for nitrogen fertilizer, urea and the like, and as an industrial production method, the Haber-Bosch method is famous. This method is a method in which nitrogen and hydrogen are reacted under high temperature and high pressure using an iron-based catalyst to synthesize ammonia. Hydrogen, which is one of the raw materials for ammonia synthesis, is usually obtained by steam reforming of a buried hydrocarbon represented by petroleum, coal or natural gas. For these reasons, the Haber-Bosch method is a heavy and long reaction method that requires enormous energy, and is a reaction method that generates a by-product of carbon dioxide and has a high environmental load.

このようなハーバー・ボッシュ法の問題を解消すべく、水分解反応によって水素を得る方法が提案されている(特許文献3参照)。この提案による方法は、太陽熱エネルギーを利用して熱媒体を加熱し、その熱媒体の熱エネルギーを利用して、水分解反応を起こして水素を得るというものである。この方法によれば、自然エネルギーを利用する点で環境負荷を小さくすることができ、高温の太陽熱エネルギーの収集負荷も小さくできるメリットがある。   In order to solve the problem of the Haber-Bosch method, a method of obtaining hydrogen by a water splitting reaction has been proposed (see Patent Document 3). In the method according to this proposal, a heat medium is heated using solar heat energy, and a water splitting reaction is caused using the heat energy of the heat medium to obtain hydrogen. According to this method, there is an advantage that the environmental load can be reduced in using natural energy, and the collection load of high-temperature solar thermal energy can be reduced.

上述のような水分解反応によって水素を得る方法は、二酸化炭素を生成しない点で環境負荷の低い方法であり、ハーバー・ボッシュ法よりも有利である。しかし、依然として、水を分解して水素を得るのに要するエネルギーのみならず、得られた水素と窒素との反応に要するエネルギーもまた大きく、加えて、アンモニア合成に触媒を必要とする点においても、コスト面での改善が望まれる。   The method of obtaining hydrogen by the water splitting reaction as described above is a method that does not generate carbon dioxide and has a low environmental load, and is more advantageous than the Haber-Bosch method. However, not only is the energy required to decompose water to obtain hydrogen, but also the energy required for the reaction between the obtained hydrogen and nitrogen large, and in addition to requiring a catalyst for ammonia synthesis. Therefore, improvement in cost is desired.

特開2013−158706号公報JP 2013-158706 A 特開2013−154145号公報JP 2013-154145 A 特開2013−241303号公報JP 2013-241303 A

本発明はかかる事情に鑑みてなされたものであり、高効率でプラズマ状の物質(オゾン、窒素プラズマ等)と水等とを反応させる相界面反応を用いた反応生成物製造方法及びそれに用いる相界面反応装置、ならびに反応生成物を用いて二次反応生成物を製造する二次反応生成物製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and has a highly efficient method for producing a reaction product using a phase interface reaction in which a plasma-like substance (ozone, nitrogen plasma, or the like) reacts with water and the like, and a phase used therein. An object of the present invention is to provide an interfacial reaction device and a secondary reaction product production method for producing a secondary reaction product using a reaction product.

前記目的に沿う第1の発明に係る相界面反応を用いた反応生成物製造方法は、反応容器中にプラズマ状の物質を供給するプラズマ供給工程と、前記反応容器中に、水又は水溶液を供給する水・水溶液供給工程と、前記反応容器中の前記プラズマ状の物質に紫外線を照射する紫外線照射工程とを有し、前記反応容器中で前記プラズマ状の物質と前記水又は前記水溶液に含まれる溶質とを相界面で反応させて、反応生成物を製造する方法である。   According to the first aspect of the present invention, there is provided a reaction product manufacturing method using a phase interface reaction according to the first aspect, wherein a plasma supply step of supplying a plasma-like substance into a reaction vessel, and water or an aqueous solution is supplied into the reaction vessel. Water / aqueous solution supply step, and an ultraviolet irradiation step of irradiating the plasma-like substance in the reaction vessel with ultraviolet light, and the plasma-like substance and the water or the aqueous solution are contained in the reaction vessel. This is a method of producing a reaction product by reacting a solute with a phase interface.

第1の発明に係る相界面反応を用いた反応生成物製造方法によれば、プラズマ相とプラズマ相と接触する液相との相界面で、プラズマ状の物質と水又は水溶液に含まれる溶質とを反応させるため、2成分の接触面積が広く、高効率で反応を行うことができる。なお、この際、プラズマ状の物質と気体の水(水蒸気)との反応も生じる。また、ある程度の湿度を有する反応場(反応容器中)とは別の場所で、プラズマを発生させ、反応場にプラズマを供給させることができるため、プラズマの発生効率も低下しない。本願において、「プラズマ」とは、その生成方法によらず、気体または気体状で、正電気を帯びた粒子と負電気を帯びた電子とがほぼ電気的中性を保って分布している粒子集団、または当該粒子集団と原子状、分子状の気体とが混在した集団をいう。このため、本願において「プラズマ状」という場合には、気体を構成する分子の一部又は全部が電離若しくは解離し、又は解離した原子が会合した状態、及びこれらが混在して存在する状態をいう。具体的には、電離した状態とはイオン及び電子の状態であり、解離した状態とは酸素原子、窒素原子等として存在する状態であり、原子が会合した状態とはオゾン(O)等として存在する状態である。例えば、プラズマ状の酸素(酸素プラズマ)は、通常、オゾン(O)の他、酸素分子(O)、酸素原子(O)等が混合してなる。また、プラズマ状の窒素(窒素プラズマ)は、窒素原子(N)が大部分を占める。「プラズマ状の物質」とは、オゾン、窒素原子等のガス状の紫外線反応性物質とすることもできる。According to the reaction product manufacturing method using the phase interface reaction according to the first invention, at the phase interface between the plasma phase and the liquid phase in contact with the plasma phase, the plasma-like substance and the solute contained in the water or the aqueous solution , The contact area between the two components is large and the reaction can be performed with high efficiency. At this time, a reaction between the plasma substance and gaseous water (water vapor) also occurs. Further, plasma can be generated in a place different from the reaction field (in the reaction vessel) having a certain degree of humidity, and plasma can be supplied to the reaction field, so that the plasma generation efficiency does not decrease. In the present application, "plasma" refers to particles in which gas or gaseous, positively charged particles and negatively charged electrons are distributed while maintaining almost electrical neutrality, regardless of the generation method. A group, or a group in which the particle group and an atomic or molecular gas are mixed. For this reason, in the present application, the term "plasma state" refers to a state in which some or all of the molecules constituting a gas are ionized or dissociated, or a state in which dissociated atoms are associated, and a state in which these are present in a mixed state. . Specifically, the ionized state is a state of ions and electrons, the dissociated state is a state existing as oxygen atoms, nitrogen atoms, and the like, and the state where atoms are associated is ozone (O 3 ) and the like. It exists. For example, plasma-like oxygen (oxygen plasma) is usually a mixture of ozone (O 3 ), oxygen molecules (O 2 ), oxygen atoms (O), and the like. Nitrogen (N) occupies most of plasma-like nitrogen (nitrogen plasma). The “plasma-like substance” may be a gaseous ultraviolet-reactive substance such as ozone or nitrogen atom.

さらには、第1の発明に係る相界面反応を用いた反応生成物製造方法において、反応容器中にプラズマ状の物質を供給するプラズマ供給工程と、前記反応容器中に霧状の水又は水溶液を発生させる霧化工程と、前記反応容器中の湿度(相対湿度)が100%未満の状態で、前記反応容器中の前記プラズマ状の物質に紫外線を照射する紫外線照射工程とを有し、前記反応容器中で前記プラズマ状の物質と前記霧状の水又は前記霧状の水溶液に含まれる溶質とを相界面で反応させるのが好ましい。反応容器中の湿度を100%未満とした状態とすることで、水分子への支配的な紫外線吸収を抑えることなどができ、効率的に反応を進行させることができる。また、湿度を100%未満とすることで、反応生成物をガス状態で効率的に回収することができる。湿度100%の場合は、反応容器内面の結露(水滴)が多量に生じ、この水滴に水溶性の反応生成物が溶け込む量が増えるため、ガス及び液体の双方を回収する必要などが生じる。   Furthermore, in the method for producing a reaction product using a phase interface reaction according to the first invention, a plasma supply step of supplying a plasma-like substance into the reaction vessel, and mist water or an aqueous solution is supplied into the reaction vessel. An atomizing step of generating, and an ultraviolet irradiation step of irradiating the plasma-like substance in the reaction vessel with ultraviolet rays in a state where the humidity (relative humidity) in the reaction vessel is less than 100%, It is preferable that the plasma-like substance and the solute contained in the mist-like water or the mist-like aqueous solution are reacted at a phase interface in a container. By setting the humidity in the reaction vessel to less than 100%, it is possible to suppress the dominant ultraviolet absorption of water molecules, and the reaction can proceed efficiently. By setting the humidity to less than 100%, the reaction product can be efficiently recovered in a gaseous state. When the humidity is 100%, a large amount of dew (water droplets) is formed on the inner surface of the reaction vessel, and the amount of the water-soluble reaction product dissolved in the water droplets increases. Therefore, it is necessary to collect both gas and liquid.

第1の発明に係る相界面反応を用いた反応生成物製造方法において、前記紫外線照射工程の際の前記反応容器中の湿度が40%以上70%以下であることが好ましい。湿度を上記範囲とすることで、より反応効率を高めることができる。   In the method for producing a reaction product using a phase interface reaction according to the first invention, it is preferable that the humidity in the reaction vessel at the time of the ultraviolet irradiation step is 40% or more and 70% or less. By setting the humidity within the above range, the reaction efficiency can be further increased.

第1の発明に係る相界面反応を用いた反応生成物製造方法において、前記霧化工程を前記水又は水溶液の前記反応容器内での加熱により行うことが好ましい。加熱により霧を発生させることで、湿度や霧の粒経等を良好な状態に制御しやすくなる。また、反応容器内で水等を霧化させることにより、発生した霧及び水蒸気全てに紫外線を照射することができ効率的である。さらに、反応容器内で加熱することで、結果として反応容器内の温度が高まり、飽和水蒸気量が増加する。すなわち、反応容器中に存在する水蒸気の量を増やすことができるので、より反応効率を高めることができる。   In the method for producing a reaction product using a phase interface reaction according to the first invention, it is preferable that the atomization step is performed by heating the water or the aqueous solution in the reaction vessel. By generating the mist by heating, it becomes easy to control the humidity, the particle size of the mist, and the like to a favorable state. Further, by atomizing water or the like in the reaction vessel, it is possible to irradiate all generated mist and water vapor with ultraviolet rays, which is efficient. Further, by heating in the reaction vessel, as a result, the temperature in the reaction vessel increases, and the amount of saturated steam increases. That is, since the amount of water vapor present in the reaction vessel can be increased, the reaction efficiency can be further improved.

第1の発明に係る相界面反応を用いた反応生成物製造方法において、前記物質が酸素、窒素及び酸化炭素(二酸化炭素、一酸化炭素)からなる群から選ばれる少なくとも1種を含むことが好ましい。酸素プラズマ(オゾン)を用いることで、ヒドロキシラジカル、一重項酸素等を生成することができ、窒素プラズマを用いることで、アンモニアを合成することができる。さらに、このアンモニアを分解させることで水素(H)の生成も可能である。また、酸化炭素プラズマを用いることで、炭化水素、アルコール等の有機物の合成が可能となる。In the method for producing a reaction product using a phase interface reaction according to the first invention, it is preferable that the substance contains at least one selected from the group consisting of oxygen, nitrogen and carbon oxide (carbon dioxide, carbon monoxide). . Hydroxy radicals, singlet oxygen, and the like can be generated by using oxygen plasma (ozone), and ammonia can be synthesized by using nitrogen plasma. Further, hydrogen (H 2 ) can be generated by decomposing this ammonia. In addition, the use of carbon oxide plasma enables the synthesis of organic substances such as hydrocarbons and alcohols.

第1の発明に係る相界面反応を用いた反応生成物製造方法において、前記物質が窒素を含み、前記相界面での反応で生成したアンモニアを分解させる分解反応工程をさらに有することが好ましい。このようにすることで、水素分子を得ることができる。   In the method for producing a reaction product using a phase interface reaction according to the first invention, it is preferable that the substance contains nitrogen and further comprises a decomposition reaction step of decomposing ammonia generated by the reaction at the phase interface. By doing so, hydrogen molecules can be obtained.

前記目的に沿う第2の発明に係る相界面反応装置は、反応容器と、該反応容器中にプラズマ状の物質を供給するプラズマ供給手段と、前記反応容器中に、水又は水溶液を供給する水・水溶液供給手段と、前記反応容器中の前記プラズマ状の物質に紫外線を照射する紫外線照射手段とを備え、前記反応容器中で前記プラズマ状の物質と前記水又は前記水溶液に含まれる溶質とを相界面で反応させる装置である。   A phase interface reaction apparatus according to a second aspect of the present invention, which meets the above object, comprises a reaction vessel, plasma supply means for supplying a plasma-like substance into the reaction vessel, and water for supplying water or an aqueous solution into the reaction vessel. An aqueous solution supply means, and an ultraviolet irradiation means for irradiating the plasma-like substance in the reaction vessel with ultraviolet light, wherein the plasma-like substance and the solute contained in the water or the aqueous solution in the reaction vessel are This is a device that reacts at the phase interface.

第2の発明に係る相界面反応装置において、前記水・水溶液供給手段を、前記反応容器中に霧状の水又は水溶液を、湿度制御可能に発生させる霧化手段とし、反応容器と、該反応容器中にプラズマ状の物質を供給するプラズマ供給手段と、前記霧化手段と、前記紫外線照射手段とを備え、前記反応容器中で前記プラズマ状の物質と前記霧状の水又は前記霧状の水溶液に含まれる溶質とを相界面で反応させることもできる。   In the phase interface reaction apparatus according to the second invention, the water / aqueous solution supply means is atomization means for generating mist-like water or an aqueous solution in the reaction vessel so as to be able to control the humidity, and comprises: Plasma supply means for supplying a plasma-like substance into a vessel, the atomization means, comprising the ultraviolet irradiation means, the plasma-like substance and the mist-like water or the mist-like water in the reaction vessel The solute contained in the aqueous solution can be reacted at the phase interface.

第2の発明に係る相界面反応装置によれば、プラズマ相とプラズマ相と接触する液相との相界面で、プラズマ状の物質と水又は水溶液に含まれる溶質とを反応させるため、高効率で反応を行うことができる。   According to the phase interface reaction device according to the second aspect of the present invention, a plasma substance and a solute contained in water or an aqueous solution are reacted at a phase interface between a plasma phase and a liquid phase in contact with the plasma phase. To carry out the reaction.

第2の発明に係る相界面反応装置において、前記霧化手段が前記水又は水溶液の加熱器であり、該加熱器は前記反応容器内に配置されていることが好ましい。加熱器を用いた水等の加熱により霧を発生させることで、湿度や霧の粒経等を良好な状態に制御しやすくなる。また、加熱器により反応容器内の温度を高め、飽和水蒸気量を増やし、反応容器中の水蒸気量を増やすことができる。   In the phase interface reaction device according to the second invention, it is preferable that the atomizing means is a heater for the water or the aqueous solution, and the heater is disposed in the reaction vessel. By generating mist by heating water or the like using a heater, it becomes easy to control the humidity, the particle size of the mist, and the like in a favorable state. Further, the temperature in the reaction vessel can be increased by the heater, the amount of saturated steam can be increased, and the amount of steam in the reaction vessel can be increased.

前記目的に沿う第3の発明に係る二次反応生成物製造方法は、前述の相界面反応により生成した反応生成物を別の物質と反応させて二次反応生成物を製造する方法である。   A method for producing a secondary reaction product according to a third aspect of the present invention is a method for producing a secondary reaction product by reacting a reaction product generated by the above-described phase interface reaction with another substance.

第3の発明に係る二次反応生成物製造方法において、前記相界面反応により生成した前記反応生成物を、活性酸素またはヒドロキシラジカルを含むものとすることができる。   In the method for producing a secondary reaction product according to the third invention, the reaction product generated by the phase interface reaction may include active oxygen or a hydroxyl radical.

また、第2の発明に係る相界面反応装置において、前記反応容器またはその外部にて、前記プラズマ状の物質と前記水又は前記水溶液に含まれる溶質との相界面反応により生成した反応生成物を別の物質と反応させて二次反応生成物を製造することもできる。   Further, in the phase interface reaction device according to the second invention, a reaction product generated by a phase interface reaction between the plasma substance and a solute contained in the water or the aqueous solution in the reaction vessel or outside thereof is provided. It can be reacted with another substance to produce a secondary reaction product.

このような二次反応生成物製造方法またはそれを行うための相界面反応装置を用いると、常温、常圧、無触媒にて、相界面反応にて得られた反応生成物を応用した新たな反応法を構築できる。特に、上述の反応生成物と別の物質(一例を挙げると、有機化合物あるいは金属)とを反応させることにより、新たな有機合成または新たな金属の表面処理を実現することができる。該反応生成物が活性酸素またはヒドロキシラジカルを含むと、該反応生成物と有機化合物との反応により有機化合物の酸化を行うことができ、該反応生成物と金属との反応により金属の表面の酸化を行うことができる。   By using such a secondary reaction product production method or a phase interface reaction apparatus for performing the same, a new reaction product obtained by applying the reaction product obtained by the phase interface reaction at normal temperature, normal pressure, and no catalyst is used. A reaction method can be constructed. In particular, a new organic synthesis or a new metal surface treatment can be realized by reacting the above reaction product with another substance (for example, an organic compound or metal). When the reaction product contains active oxygen or a hydroxyl radical, oxidation of the organic compound can be performed by the reaction between the reaction product and the organic compound, and oxidation of the metal surface by the reaction between the reaction product and the metal. It can be performed.

第1の発明に係る相界面反応を用いた反応生成物製造方法及び第2の発明に係る相界面反応装置によれば、高効率でプラズマ状の物質と水等とを反応させることができる。また、第3の発明に係る二次反応生成物製造方法によれば、相界面反応により得られた反応生成物を使用して新たな合成や表面処理を実現できる。従って、本発明は、各種化学合成等の生産性等を高めることができ、材料加工(防食加工、改質等)、衛生技術(滅菌、滅塵、滅ウイルス等)、再生可能エネルギー(水素精製等)分野等の様々な分野に用いることができる。   ADVANTAGE OF THE INVENTION According to the reaction product manufacturing method using the phase interface reaction according to the first invention, and the phase interface reaction device according to the second invention, a plasma-like substance can be reacted with water and the like with high efficiency. Further, according to the method for producing a secondary reaction product according to the third invention, a new synthesis or surface treatment can be realized using the reaction product obtained by the phase interface reaction. Therefore, the present invention can enhance the productivity of various chemical syntheses and the like, material processing (anticorrosion processing, modification, etc.), sanitary technology (sterilization, dust removal, virus removal, etc.), and renewable energy (hydrogen purification). Etc.) can be used in various fields such as fields.

本発明の一実施の形態に係る相界面反応装置を示す模式図である。1 is a schematic diagram illustrating a phase interface reaction device according to an embodiment of the present invention. 図2は、図1の相界面反応装置の別の形態を示す。FIG. 2 shows another embodiment of the phase interface reaction apparatus of FIG. 図3は、プラズマ状の物質と水若しくは水溶液との相界面反応の代表的な様態を模式的に示す。FIG. 3 schematically shows a typical mode of a phase interface reaction between a plasma substance and water or an aqueous solution. 図4の(a)は、0.3M DMPO水溶液中のDMPO−OHのESRスペクトル(オゾン供給量4L/min×10min、紫外線照射時間10min)であり、図4の(b)は、0.5M TPC水溶液中のTPC−のESRスペクトル(オゾン供給量4L/min×10min、紫外線照射時間10min)である。4A is an ESR spectrum of DMPO-OH in a 0.3 M DMPO aqueous solution (ozone supply amount 4 L / min × 10 min, ultraviolet irradiation time 10 min), and FIG. TPC-1 O 2 of the ESR spectrum in TPC aqueous solution (ozone supply amount 4L / min × 10min, UV irradiation time 10min) is. 図5は、紫外線照射時間と生成したTPC−との関係を示すグラフ(オゾン供給量4L/min×2min)である。Figure 5 is a graph showing the relationship between the TPC-1 O 2 produced a UV irradiation time (ozone supply amount 4L / min × 2min). 図6は、オゾン供給量と生成したTPC−との関係を示すグラフ(オゾン供給速度4L/min、紫外線照射時間1min)である。Figure 6 is a graph showing the relationship between the TPC-1 O 2 generated ozone supply amount (ozone feed rate 4L / min, UV irradiation time 1min). 図7は、湿度と生成したTPC−の量との関係を示すグラフである。Figure 7 is a graph showing the relationship between the humidity and the generated TPC-1 the amount of O 2. 図8は、「Nプラズマ相/水相+UV照射」、「Nガス相/水相+UV照射」および「Nプラズマ相/水相」の3種の系によるアンモニアの生成量を比較して示す。FIG. 8 shows a comparison of the amount of ammonia produced by three types of systems, “N plasma phase / water phase + UV irradiation”, “N 2 gas phase / water phase + UV irradiation”, and “N plasma phase / water phase”. . 図9は、相界面反応で生じる活性酸素による処理前後のインドールのNMRスペクトルを示す。FIG. 9 shows NMR spectra of indole before and after treatment with active oxygen generated by a phase interface reaction. 図10は、相界面反応で生じる活性酸素により処理した銅板表面のATR全反射FTIRスペクトルを示す。FIG. 10 shows an ATR total reflection FTIR spectrum of a copper plate surface treated with active oxygen generated by a phase interface reaction.

10:相界面反応装置、11:反応容器、12:プラズマ発生装置(プラズマ供給手段の一例)、13:加熱器(水・水溶液供給手段の一例、霧化手段の一例)、14:UVランプ(紫外線照射手段の一例)、15:プラズマ供給口、16:供給口、17:排出口、18:配管、19:被加熱容器(水・水溶液供給手段の一例)、20:拡散ファン、21、22:配管、30:シャワー装置(水・水溶液供給手段の一例)、X:水又は水溶液 10: phase interface reactor, 11: reaction vessel, 12: plasma generator (one example of plasma supply means), 13: heater (one example of water / aqueous solution supply means, one example of atomization means), 14: UV lamp ( Example of ultraviolet irradiation means), 15: plasma supply port, 16: supply port, 17: discharge port, 18: pipe, 19: heated container (example of water / aqueous solution supply means), 20: diffusion fan, 21, 22 : Pipe, 30: shower device (an example of water / aqueous solution supply means), X: water or aqueous solution

続いて、添付した図面を参照しながら本発明を具体化した実施の形態について説明する。
[相界面反応装置]
図1に示すように、本発明の一実施の形態に係る相界面反応装置10は、反応容器11、プラズマ供給手段の一例であるプラズマ発生装置12、霧化手段の一例である加熱器13、及び紫外線照射手段の一例であるUVランプ14を主に備えている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
[Phase interface reactor]
As shown in FIG. 1, a phase interface reactor 10 according to one embodiment of the present invention includes a reaction vessel 11, a plasma generator 12 as an example of plasma supply means, a heater 13 as an example of atomization means, And a UV lamp 14 as an example of an ultraviolet irradiation means.

反応容器11は、その内部で、プラズマ状の物質と霧状の水等を反応させるものである。反応容器11は、公知の容器を用いればよく、ガラス等からなる透明容器であってもよく、セラミックス等からなる不透明容器であってもよい。反応容器11の底には、プラズマ供給口15、その他のガス等の供給口16及び排出口17が設けられている。   The reaction vessel 11 is for reacting a plasma-like substance with atomized water or the like inside the reaction vessel 11. The reaction container 11 may be a known container, may be a transparent container made of glass or the like, or may be an opaque container made of ceramics or the like. At the bottom of the reaction vessel 11, a plasma supply port 15, a supply port 16 for other gas and the like, and a discharge port 17 are provided.

プラズマ発生装置12は、反応させる物質のプラズマを発生させ、発生したプラズマ(プラズマ状の物質)を反応容器11中に供給する装置である。プラズマ発生装置12としては、アーク放電等の放電を利用するものの他、高周波電磁場を利用するもの、マイクロ波を利用するものなど、公知のプラズマ発生装置を適宜用いることができる。反応させる物質が酸素である場合、プラズマ発生装置12は公知のオゾン発生装置を用いることができる。プラズマ発生装置12と反応容器11とは配管18で連結されている。すなわち、プラズマ発生装置12で発生したプラズマは、配管18を通じてプラズマ供給口15から反応容器11に供給される。   The plasma generator 12 is a device that generates plasma of a substance to be reacted and supplies the generated plasma (plasma-like substance) into the reaction vessel 11. As the plasma generation device 12, a known plasma generation device such as a device using an electric discharge such as an arc discharge, a device using a high-frequency electromagnetic field, and a device using a microwave can be appropriately used. When the substance to be reacted is oxygen, a known ozone generator can be used as the plasma generator 12. The plasma generator 12 and the reaction vessel 11 are connected by a pipe 18. That is, the plasma generated by the plasma generator 12 is supplied from the plasma supply port 15 to the reaction vessel 11 through the pipe 18.

加熱器13は、好ましくは、反応容器11内の底面に設置されている。加熱器13の上には、水(又は水溶液)Xが入った被加熱容器19が載置されている。被加熱容器19は、反応容器11中に、水又は水溶液を供給する水・水溶液供給手段の一例であって、必ずしも加熱されなくても良い。このため、加熱を要しない場合には、被加熱容器19を、単に、「容器」と称することもできる。加熱器13は、被加熱容器19及びこの中の水Xを加熱する。この加熱により、被加熱容器19中の水Xが揮発し、霧状の水が反応容器11中に発生する。加熱器13としては、被加熱容器19及びこの被加熱容器19内の水を加熱することができれば特に限定されず、電気ヒータの他、ガスヒータ、高周波誘導加熱装置等を利用することができる。   The heater 13 is preferably installed on the bottom surface inside the reaction vessel 11. A heated container 19 containing water (or aqueous solution) X is placed on the heater 13. The heated container 19 is an example of a water / aqueous solution supply unit that supplies water or an aqueous solution into the reaction container 11 and does not necessarily need to be heated. Therefore, when heating is not required, the container 19 to be heated can be simply referred to as a “container”. The heater 13 heats the heated container 19 and the water X therein. By this heating, the water X in the heated container 19 is volatilized, and mist-like water is generated in the reaction container 11. The heater 13 is not particularly limited as long as it can heat the container 19 to be heated and the water in the container 19 to be heated. In addition to the electric heater, a gas heater, a high-frequency induction heating device, or the like can be used.

加熱器13は、反応容器11内の湿度を制御可能に、霧を発生させる。この湿度制御は加熱温度(水Xへ加える熱量)の制御により行うことができる。すなわち、高温で加熱することで揮発量を増やし、湿度を高めることができ、逆に低温で加熱することで揮発量を減らし、湿度を低めることができる。なお、加熱器13及び被加熱容器19は、反応容器11内に設置しているため、加熱器13の加熱により反応容器11内の温度も上昇する。従って、加熱器13により反応容器11内の飽和蒸気量を上げ、空中に存在させることができる水(水蒸気及び霧)の量を増やすことができる。すなわち、加熱器13により、水蒸気量及び飽和水蒸気量の双方が高まり、これらから湿度が定まる。なお、加熱温度の制御は、例えば加熱器13が電気ヒータである場合は、電力量の制御により行われる。   The heater 13 generates a mist so that the humidity in the reaction vessel 11 can be controlled. This humidity control can be performed by controlling the heating temperature (the amount of heat applied to the water X). That is, by heating at a high temperature, the amount of volatilization can be increased and the humidity can be increased. Conversely, by heating at a low temperature, the amount of volatilization can be reduced and the humidity can be reduced. In addition, since the heater 13 and the container 19 to be heated are installed in the reaction container 11, the temperature in the reaction container 11 increases due to the heating of the heater 13. Therefore, the amount of water (water vapor and mist) that can be present in the air can be increased by increasing the amount of saturated vapor in the reaction vessel 11 by the heater 13. That is, the heater 13 increases both the amount of steam and the amount of saturated steam, and the humidity is determined from these. Note that the control of the heating temperature is performed by controlling the amount of power when the heater 13 is an electric heater, for example.

UVランプ14は、反応容器11内の上方に配置される。UVランプ14は、反応容器11中にプラズマ発生装置12から供給されたプラズマ状の物質に紫外線を照射する。UVランプ14は、このとき、さらに、霧状の水及び被加熱容器19中の水Xにも紫外線を照射する。UVランプ14が照射する紫外線の波長は、被反応物の種類等に応じて適宜設定される。例えば、被反応物が酸素(オゾン)である場合、185nm及び254nmの波長とすることができる。UVランプ14の出力は特に限定されず、例えば0.1〜100Wとすることができる。   The UV lamp 14 is disposed above the inside of the reaction vessel 11. The UV lamp 14 irradiates the plasma-like substance supplied from the plasma generator 12 into the reaction vessel 11 with ultraviolet rays. At this time, the UV lamp 14 further irradiates the mist water and the water X in the heated container 19 with ultraviolet rays. The wavelength of the ultraviolet light emitted by the UV lamp 14 is appropriately set according to the type of the reactant and the like. For example, when the reactant is oxygen (ozone), the wavelength can be set to 185 nm and 254 nm. The output of the UV lamp 14 is not particularly limited, and may be, for example, 0.1 to 100 W.

反応容器11内には、さらに拡散ファン20が設置されている。拡散ファン20は、プラズマ状の物質及び霧状の水等を反応容器11内に拡散させる。反応容器11の供給口16には配管21が連結され、図示しないポンプ等から被反応ガス等が供給できるよう構成されている。また、反応容器11の排出口17には配管22が連結され、生成ガス及び未反応ガス等が排出されるよう構成されている。プラズマ供給口15、供給口16及び排出口17は、それぞれ開閉可能に構成することができる。   A diffusion fan 20 is further provided in the reaction vessel 11. The diffusion fan 20 diffuses the plasma-like substance and the mist-like water into the reaction vessel 11. A pipe 21 is connected to the supply port 16 of the reaction vessel 11 so that a reaction target gas or the like can be supplied from a pump or the like (not shown). Further, a pipe 22 is connected to the outlet 17 of the reaction vessel 11 so that generated gas and unreacted gas are discharged. The plasma supply port 15, the supply port 16, and the discharge port 17 can each be configured to be openable and closable.

相界面反応装置10においては、反応容器11中でプラズマ状の物質と霧状の水等とが、プラズマ相とプラズマ相中に霧状態で分散して存在する液相との相界面で反応する。なお、揮発した状態の気体の水(水蒸気)も反応しうる。この反応については、相界面反応装置10の使用方法及び相界面反応を用いた反応生成物製造方法として後述する。   In the phase interface reactor 10, the plasma-like substance and the mist-like water react in the reaction vessel 11 at the phase interface between the plasma phase and the liquid phase dispersed in the mist state in the plasma phase. . Note that gaseous water (steam) in a volatile state may also react. This reaction will be described later as a method for using the phase interface reaction apparatus 10 and a method for producing a reaction product using the phase interface reaction.

図2は、図1の相界面反応装置の別の形態を示す。   FIG. 2 shows another embodiment of the phase interface reaction apparatus of FIG.

図2に示すように、本発明の別の実施の形態に係る相界面反応装置10は、反応容器11、プラズマ供給手段の一例であるプラズマ発生装置12、紫外線照射手段の一例であるUVランプ14、及び水・水溶液供給手段の一例であるシャワー装置30を主に備えている。図2の相界面反応装置10は、加熱器13、被加熱容器19及び拡散ファン20に代えて、シャワー装置30を備える点で図1の相界面反応装置10と異なり、その他の構成を備える点で図1の相界面反応装置10と共通する。このため、共通する構成については、上述の記載に代え、重複した説明を省略する。なお、拡散ファン20を図2の相界面反応装置10に備えても良い。   As shown in FIG. 2, a phase interface reactor 10 according to another embodiment of the present invention includes a reaction vessel 11, a plasma generator 12 as an example of a plasma supply unit, and a UV lamp 14 as an example of an ultraviolet irradiation unit. And a shower device 30 which is an example of a water / aqueous solution supply means. The phase interface reaction device 10 of FIG. 2 is different from the phase interface reaction device 10 of FIG. 1 in that a shower device 30 is provided instead of the heater 13, the container 19 to be heated, and the diffusion fan 20. In common with the phase interface reactor 10 of FIG. Therefore, the description of the common configuration will be omitted instead of the above description. Note that the diffusion fan 20 may be provided in the phase interface reaction device 10 of FIG.

シャワー装置30は、配管31を反応容器11内に貫通させ、その先端にシャワーヘッド32を備える。シャワーヘッド32は、その下面に多数の小孔を備える多孔面33を備える。水、あるいは溶質を含む水溶液をシャワーヘッド32の多孔面33から反応容器11内に供給すると、反応容器11内に別途供給したプラズマ状の物質と相界面にて反応する。   The shower device 30 has a pipe 31 penetrated into the reaction vessel 11, and has a shower head 32 at its tip. The shower head 32 has a porous surface 33 having a number of small holes on its lower surface. When water or an aqueous solution containing a solute is supplied into the reaction vessel 11 from the porous surface 33 of the shower head 32, it reacts at the phase interface with a plasma-like substance separately supplied into the reaction vessel 11.

図3は、プラズマ状の物質と水若しくは水溶液(以後、代表して「水」という)との相界面反応の代表的な様態を模式的に示す。プラズマ状の物質は、酸素プラズマ、窒素プラズマ、空気プラズマ等に代表される如何なる種類のものでも良い。   FIG. 3 schematically shows a typical mode of a phase interface reaction between a plasma substance and water or an aqueous solution (hereinafter, referred to as “water”). The plasma-like substance may be of any type represented by oxygen plasma, nitrogen plasma, air plasma and the like.

図3に示す各様態は、以下のとおりである。
(A)平水相(平界面の一種)
プラズマ状の物質は、容器に入れられた水の表面において反応する。
(B)傾斜平水相(平界面の一種)
プラズマ状の物質は、傾斜面を流れる水の表面において反応する。
(C)分散水相
プラズマ状の物質は、容器内に霧状に分散する水蒸気の表面にて反応する。
(D)滴下水相
プラズマ状の物質は、容器内に滴下される水滴の表面にて反応する。
(E)水中相
プラズマ状の物質は、容器を満たす水若しくは容器内に配置される水槽中の水にバブリングされ、その泡の表面にて水と反応する。
Each mode shown in FIG. 3 is as follows.
(A) Flat water phase (a type of flat interface)
The plasma-like substance reacts on the surface of the water contained in the container.
(B) Inclined flat water phase (a type of flat interface)
The plasma-like substance reacts on the surface of the water flowing on the inclined surface.
(C) Dispersed Aqueous Phase The plasma-like substance reacts on the surface of water vapor dispersed in a mist state in the container.
(D) Dropped Water Phase The plasma-like substance reacts on the surface of a water drop dropped into the container.
(E) Aqueous phase The plasma-like substance is bubbled into water filling the container or water in a water tank placed in the container, and reacts with water on the surface of the foam.

水相/プラズマ相界面の様態は、上述のように、平界面((A)と(B))、分散水相(C)、滴下水相(D)、水中相(E)を含む。いずれの相界面でも反応場になり得るが、反応効率向上のための紫外線照射効率や水界面でのプロトン授受は、プラズマ/水の相界面の様態の(A)、(B)、(C)および(D)が好適である。   As described above, the aspect of the aqueous phase / plasma phase interface includes a flat interface ((A) and (B)), a dispersed aqueous phase (C), a dripped aqueous phase (D), and an aqueous phase (E). Although any phase interface can be a reaction field, the irradiation efficiency of ultraviolet rays for improving the reaction efficiency and the exchange of protons at the water interface depend on the plasma / water phase interface (A), (B), (C). And (D) are preferred.

図1の相界面反応装置10は、図3に示す水相/プラズマ相界面の様態の(C)に相当し、反応容器11中に霧状の水又は水溶液を湿度制御可能に発生させる霧化手段として、好ましくは、加熱器13を備える。しかし、加熱器13は、相界面反応装置10にとって必須の構成ではなく、図2の相界面反応装置10のように、シャワー装置30を備えるだけでも良い。その場合には、水相/プラズマ相界面の様態は、図3中の(D)に相当する。   The phase interface reaction device 10 in FIG. 1 corresponds to (C) in the form of the aqueous phase / plasma phase interface shown in FIG. 3, and atomizes water or an aqueous solution in the reaction vessel 11 so as to control the humidity. As means, a heater 13 is preferably provided. However, the heater 13 is not an essential component for the phase interface reaction device 10, and may include only the shower device 30 as in the phase interface reaction device 10 of FIG. In that case, the state of the aqueous phase / plasma phase interface corresponds to (D) in FIG.

また、図1の相界面反応装置10において、被加熱容器19のみを備え、被加熱容器19中の水の表面において、プラズマ状の物質(オゾンあるいは窒素プラズマなど)と反応させても良い。その場合には、水相/プラズマ相界面の様態は、図3中の(A)に相当する。さらに、被加熱容器19を反応容器11の内部に配置せず、反応容器11内に傾斜板を配置しても良い。被加熱容器19内の水をポンプで傾斜板の上方まで吸い上げ、傾斜板の表面をつたってその下方に落ちた水を被加熱容器19に戻すようにして、傾斜板の表面を流れる水と、その表面に接するプラズマ状の物質とを反応させるようにしても良い。その場合には、水相/プラズマ相界面の様態は、図3中の(B)に相当する。   Further, the phase interface reactor 10 of FIG. 1 may include only the container 19 to be heated, and the surface of the water in the container 19 to be reacted with a plasma-like substance (such as ozone or nitrogen plasma). In that case, the state of the aqueous phase / plasma phase interface corresponds to (A) in FIG. Further, an inclined plate may be arranged inside the reaction vessel 11 without disposing the vessel 19 to be heated inside the reaction vessel 11. Water flowing through the surface of the inclined plate by pumping water in the container to be heated 19 up to the upper side of the inclined plate by the pump, and returning the water dropped below the surface of the inclined plate to the container 19 to be heated, You may make it react with the plasma-like substance which contacts the surface. In this case, the state of the aqueous phase / plasma phase interface corresponds to (B) in FIG.

また、反応容器11内に、水を入れたガラス製のバブリング装置を配置し、当該バブリング装置内にプラズマ状の物質を供給してバブリングさせ、発生した泡の表面にて水とプラズマ状の物質との反応を生じさせても良い。その場合には、水相/プラズマ相界面の様態は、図3中の(E)に相当する。   Further, a glass-made bubbling device containing water is arranged in the reaction vessel 11, a plasma-like substance is supplied into the bubbling apparatus to perform bubbling, and water and a plasma-like substance are generated on the surface of the generated bubbles. May be caused. In that case, the state of the aqueous phase / plasma phase interface corresponds to (E) in FIG.

[相界面反応を用いた反応生成物製造方法]
相界面反応装置10の使用方法(相界面反応を用いた反応生成物製造方法)は、反応容器11中にプラズマ状の物質を供給するプラズマ供給工程と、反応容器11中に、水又は水溶液を供給する水・水溶液供給工程と、反応容器11中のプラズマ状の物質に紫外線を照射する紫外線照射工程とを有し、反応容器11中でプラズマ状の物質と水又は水溶液に含まれる溶質とを相界面で反応させるものである。
[Method for producing reaction product using phase interface reaction]
The method of using the phase interface reaction apparatus 10 (the method of producing a reaction product using a phase interface reaction) includes a plasma supply step of supplying a plasma-like substance into the reaction vessel 11, and water or an aqueous solution in the reaction vessel 11. A water / aqueous solution supply step for supplying, and an ultraviolet irradiation step of irradiating the plasma-like substance in the reaction vessel 11 with ultraviolet rays, wherein the plasma-like substance and the solute contained in the water or the aqueous solution are contained in the reaction vessel 11. The reaction is performed at the phase interface.

また、相界面反応を用いた反応生成物製造方法(以後、適宜、「反応生成物製造方法」ともいう)は、上記水・水溶液供給工程を、反応容器11中に霧状の水又は水溶液を発生させる霧化工程とし、紫外線照射工程を、反応容器中の湿度が100%未満の状態で、反応容器11中のプラズマ状の物質に紫外線を照射する工程とすることもできる。プラズマ供給工程、霧化工程及び紫外線照射工程の順序は、相界面反応が生じる限り特に限定されず、通常、これらの工程は同時に進行させるか、少なくとも霧化工程と紫外線照射工程とは同時に行うのが好ましい。   In addition, a reaction product manufacturing method using a phase interface reaction (hereinafter, also referred to as “reaction product manufacturing method” as appropriate) includes the above-described water / aqueous solution supply step in which mist water or an aqueous solution is placed in the reaction vessel 11. As the atomization step to be generated, the ultraviolet irradiation step may be a step of irradiating the plasma-like substance in the reaction vessel 11 with ultraviolet rays in a state where the humidity in the reaction vessel is less than 100%. The order of the plasma supply step, the atomization step, and the ultraviolet irradiation step is not particularly limited as long as a phase interface reaction occurs. Usually, these steps are performed simultaneously, or at least the atomization step and the ultraviolet irradiation step are performed simultaneously. Is preferred.

(プラズマ供給工程)
プラズマ供給工程では、プラズマ発生装置12を稼動させることにより、反応容器11中にプラズマ状の物質を供給する。ここで、プラズマ発生装置12に酸素ガス(酸素分子)を供給すると、酸素プラズマ(プラズマ状の酸素)として、オゾン(O)及び酸素原子(O)、その他、酸素分子や電離したイオンや電子等の混合物が、配管18を通して、反応容器11に供給される。プラズマ発生装置12に窒素ガス(窒素分子)を供給すると、窒素プラズマ(プラズマ状の窒素)として、窒素原子(N)、その他窒素分子や電離したイオンや電子等の混合物が反応容器11に供給される。また、プラズマ発生装置12に二酸化炭素を供給すると、酸化炭素プラズマ(プラズマ状の酸化炭素)として、一酸化炭素、炭素原子、酸素原子、二酸化炭素、その他イオンや電子等の混合物が反応容器11に供給される。なお、プラズマ状態で反応容器11に供給される物質は、これら等の無機物に限定されるものではなく、その他有機物(炭化水素、アルコール、アンモニア等)であってもよい。さらに、1種のみの物質をプラズマ化してもよいし、2種以上の物質の混合物(例えば、空気等)をプラズマ化して反応容器11に供給してもよい。
(Plasma supply process)
In the plasma supply step, a plasma-like substance is supplied into the reaction vessel 11 by operating the plasma generator 12. Here, when oxygen gas (oxygen molecules) is supplied to the plasma generator 12, ozone (O 3 ) and oxygen atoms (O), and other oxygen molecules, ionized ions and electrons are converted to oxygen plasma (plasma-like oxygen). Is supplied to the reaction vessel 11 through the pipe 18. When nitrogen gas (nitrogen molecules) is supplied to the plasma generator 12, a mixture of nitrogen atoms (N), other nitrogen molecules, ionized ions and electrons is supplied to the reaction vessel 11 as nitrogen plasma (plasma-like nitrogen). You. When carbon dioxide is supplied to the plasma generator 12, a mixture of carbon monoxide, carbon atoms, oxygen atoms, carbon dioxide, and other ions and electrons is supplied to the reaction vessel 11 as carbon oxide plasma (plasma-like carbon oxide). Supplied. The substance supplied to the reaction vessel 11 in the plasma state is not limited to these inorganic substances, and may be other organic substances (hydrocarbon, alcohol, ammonia, etc.). Furthermore, only one kind of substance may be turned into plasma, or a mixture of two or more kinds of substances (for example, air or the like) may be turned into plasma and supplied to the reaction vessel 11.

プラズマ状の物質の反応容器11への供給速度としては特に制限されず、装置サイズ等に応じて適宜設定されるが、例えば、0.1L/min〜100L/min程度とすることができる。   The supply rate of the plasma-like substance to the reaction vessel 11 is not particularly limited, and is appropriately set according to the size of the apparatus and the like, but can be, for example, about 0.1 L / min to about 100 L / min.

(水・水溶液供給工程)
水・水溶液供給工程では、プラズマ発生装置12から供給されたプラズマ状の物質と接触させる水又は水溶液を反応容器11内に供給する。供給方法は、図3を参照して説明したように、多種方法があり、特に限定されるものではない。例えば、水・水溶液供給工程を、反応容器11中に霧状の水又は水溶液を発生させる霧化工程とする場合には、次のような工程となる。
(Water / aqueous solution supply process)
In the water / aqueous solution supply step, water or an aqueous solution to be brought into contact with the plasma-like substance supplied from the plasma generator 12 is supplied into the reaction vessel 11. As described with reference to FIG. 3, the supply method includes various methods, and is not particularly limited. For example, when the water / aqueous solution supply step is an atomization step of generating atomized water or an aqueous solution in the reaction vessel 11, the following steps are performed.

(霧化工程)
霧化工程では、加熱器13を稼動させ、反応容器11中に霧(霧状の水又は霧状の水溶液)を発生させる。すなわち、加熱器13により被加熱容器19中の水(又は水溶液)Xが温度上昇し、揮発し、凝固することで、空中で分散した微小液滴となる。加熱器13の加熱温度(反応容器11内の室温)としては、特に限定されないが、30℃以上50℃以下が好ましく、35℃以上45℃以下がより好ましい。上記温度範囲で加熱することで、相界面反応に好適な霧を発生させることができる。温度が高すぎると、霧粒子が拡大して反応効率が低下することや、飽和水蒸気量の上昇を上回る量の揮発が生じ、湿度が100%に達し多量の結露が生じることなどがある。
(Atomization process)
In the atomization process, the heater 13 is operated to generate mist (mist water or mist aqueous solution) in the reaction vessel 11. That is, the water (or aqueous solution) X in the container 19 to be heated rises in temperature by the heater 13, volatilizes and solidifies, and becomes fine droplets dispersed in the air. The heating temperature of the heater 13 (room temperature in the reaction vessel 11) is not particularly limited, but is preferably 30 ° C or more and 50 ° C or less, and more preferably 35 ° C or more and 45 ° C or less. By heating in the above temperature range, fog suitable for the phase interface reaction can be generated. If the temperature is too high, the mist particles may expand and the reaction efficiency may decrease, or the amount of volatilization exceeding the increase in the amount of saturated water vapor may occur, and the humidity may reach 100% and a large amount of dew may occur.

なお、純水以外にも、溶質の水溶液を加熱させ、霧状の水溶液を発生させることができる。溶質としては、水溶性を有し、かつプラズマと反応するものであれば特に限定されない。例えば、アルコール、カルボン酸等の有機物であってもよいし、アンモニア、金属塩等の無機物であってもよい。また、電解質であっても非電解質であってもよい。なお、水溶液中の溶質の沸点が水と大きく乖離する場合は、霧に含まれる溶質濃度が低下するが、ある程度の量の溶質は霧中に含まれる。   In addition to the pure water, a solute aqueous solution can be heated to generate a mist-like aqueous solution. The solute is not particularly limited as long as it has water solubility and reacts with plasma. For example, organic substances such as alcohols and carboxylic acids may be used, and inorganic substances such as ammonia and metal salts may be used. Further, it may be an electrolyte or a non-electrolyte. When the boiling point of the solute in the aqueous solution largely deviates from that of water, the concentration of the solute contained in the mist decreases, but a certain amount of the solute is contained in the mist.

(紫外線照射工程)
紫外線照射工程では、プラズマ発生装置12から供給された反応容器11中のプラズマ状の物質に紫外線を照射する。紫外線はUVランプ14により照射される。この紫外線照射は、好ましくは、反応容器11中の湿度(相対湿度)が100%未満の状態で行われる。湿度が100%の場合は、反応場(空中及び壁面等)に多量に存在する水分子への支配的な紫外線吸収が生じることなどにより、反応効率が低い。また、非飽和水蒸気条件下で行うことで、反応生成物を基本的にガス状で全て取り出すことができる。この紫外線照射の際の反応容器11内の湿度としては、40%以上70%以下が好ましく、45%以上65%以下がより好ましい。湿度が低すぎる場合は、反応場(反応容器11内の空中)に分散して存在する水量が減り、生成量が低下する。湿度が高すぎる場合は、水への紫外線吸収量が高まる傾向があり、また、100%に達しない場合であっても局所的に多量の結露が生じやすくなる。紫外線照射の時間としては、特に限定されず、プラズマや水分量等に応じて適宜設定される。照射時間としては、例えば0.1分以上30分以下とすることができる。
(UV irradiation step)
In the ultraviolet irradiation step, the plasma-like substance in the reaction vessel 11 supplied from the plasma generator 12 is irradiated with ultraviolet light. Ultraviolet light is emitted by a UV lamp 14. This ultraviolet irradiation is preferably performed in a state where the humidity (relative humidity) in the reaction vessel 11 is less than 100%. When the humidity is 100%, the reaction efficiency is low due to, for example, dominant ultraviolet absorption of water molecules present in a large amount in the reaction field (in the air, on a wall surface, etc.). Further, by performing the reaction under the condition of unsaturated steam, all the reaction products can be basically taken out in a gaseous state. The humidity in the reaction vessel 11 at the time of this ultraviolet irradiation is preferably from 40% to 70%, more preferably from 45% to 65%. If the humidity is too low, the amount of water dispersed and present in the reaction field (air in the reaction vessel 11) decreases, and the amount of generated water decreases. If the humidity is too high, the amount of ultraviolet light absorbed by water tends to increase, and even if the humidity does not reach 100%, a large amount of dew condensation tends to occur locally. The duration of the ultraviolet irradiation is not particularly limited, and is appropriately set according to the plasma, the amount of moisture, and the like. The irradiation time can be, for example, 0.1 minute or more and 30 minutes or less.

紫外線の照射により、反応容器11中でプラズマ状の物質と水(又は水溶液に含まれる溶質)、好ましくは霧状の水(又は霧状の水溶液に含まれる溶質)とが相界面で反応する。このように、プラズマ相とプラズマ相と接触する液相との相界面で、プラズマ状の物質と水又は水溶液に含まれる溶質とを反応させるため、2成分の接触面積が広く、高効率で反応を行うことができる。   Irradiation of ultraviolet rays causes a reaction between the plasma-like substance and water (or a solute contained in the aqueous solution), preferably mist-like water (or a solute contained in the mist-like aqueous solution) in the reaction vessel 11 at the phase interface. As described above, at the phase interface between the plasma phase and the liquid phase in contact with the plasma phase, the plasma-like substance reacts with the solute contained in the water or the aqueous solution. It can be performed.

なお、プラズマ状の物質としてプラズマ状の酸素(オゾンを含むいわゆる酸素プラズマ)を用いた場合は、以下の反応が進行する。
+hν(UV)→+O (1)
O+HO+hν(UV)→2HO・ (2)
+HO・→HOOO・ (3)
HOOO・+hν(UV)→+HO・ (4)
すなわち、背景技術にも記載した(1)、(2)の反応によりヒドロキシラジカル(OH・ラジカル)が生じ、(3)、(4)の反応によりさらに一重項酸素が生じる。ヒドロキシラジカルおよび一重項酸素は、相界面反応により生成した反応生成物の一例である。
When plasma oxygen (so-called oxygen plasma including ozone) is used as the plasma substance, the following reaction proceeds.
O 3 + hν (UV) → 3 O 2 + O (1)
O + H 2 O + hν (UV) → 2HO · (2)
3 O 2 + HO ・ → HOOO ・ (3)
HOOO ・ + hν (UV) → 1 O 2 + HO ・ (4)
That is, hydroxy radicals (OH radicals) are generated by the reactions (1) and (2) described in the background art, and singlet oxygen is further generated by the reactions (3) and (4). Hydroxy radicals and singlet oxygen are examples of reaction products generated by a phase interface reaction.

ここで、生じたヒドロキシラジカルや一重項酸素と反応させるための被反応物を例えば配管21を通じて供給口16から反応容器11内に供給することができる。この被反応物としては、気体(例えば、窒素、メタン等)であってもよいし、液体であってもよい。液体の場合は、霧状にして供給することもできる。また、被反応物を最初から反応容器11内に存在させておいてもよい。   Here, a reactant for reacting with the generated hydroxyl radical or singlet oxygen can be supplied into the reaction vessel 11 from the supply port 16 through, for example, the pipe 21. The reactant may be a gas (eg, nitrogen, methane, etc.) or a liquid. In the case of a liquid, it can be supplied in the form of a mist. Alternatively, the reactant may be present in the reaction vessel 11 from the beginning.

ヒドロキシラジカルや一重項酸素、又はこれらをさらに反応させて得られる反応生成物は、例えば、排出口17を通じて配管22から回収することができる。また、反応生成物が水溶性である場合は、被加熱容器19の水に溶け込むため、この被加熱容器19中の水から反応生成物を回収してもよい。   Hydroxy radical, singlet oxygen, or a reaction product obtained by further reacting these can be recovered from the pipe 22 through the outlet 17, for example. Further, when the reaction product is water-soluble, the reaction product may be recovered from the water in the heated container 19 because it is dissolved in the water in the heated container 19.

プラズマ状の物質としてプラズマ状の窒素を用いた場合は、窒素原子(プラズマ)が紫外線照射により相界面で水と反応し、アンモニア等が生成する。アンモニアは、相界面反応により生成した反応生成物の一例である。ここで、さらに発生したアンモニアをプラズマ発生装置12(放電装置)に供給すると、分解し、水素分子(及び窒素分子)を得ることができる(分解反応工程)。このように、原料として窒素(空気)及び水から、アンモニアを経て水素分子を得ることができる。   When plasma-like nitrogen is used as the plasma-like substance, nitrogen atoms (plasma) react with water at a phase interface by irradiation of ultraviolet rays, and ammonia and the like are generated. Ammonia is an example of a reaction product generated by a phase interface reaction. Here, when the further generated ammonia is supplied to the plasma generator 12 (discharge device), it is decomposed to obtain hydrogen molecules (and nitrogen molecules) (decomposition reaction step). Thus, hydrogen molecules can be obtained from nitrogen (air) and water as raw materials via ammonia.

相界面反応を利用してアンモニアを合成する方法は、プラズマ中に生成する原子状気体が、水との相界面(プラズマ/水の相界面)において、自ら解離プロトンを効率良く供与される現象を利用するものであり、空気あるいは窒素と水を原料とする合成法である。プラズマ発生装置12の放電空間に窒素分子を通過させると、窒素のプラズマ化が起こる。この窒素プラズマと水との相界面を速やかに形成すると、アンモニアが生成する。窒素プラズマ/水の相界面に、紫外線を照射し、反応エネルギーを付与すると、アンモニア合成効率がより向上する。   The method of synthesizing ammonia using the phase interface reaction is based on the phenomenon that the atomic gas generated in the plasma efficiently dissociates protons at the phase interface with water (plasma / water phase interface). This is a synthesis method using air or nitrogen and water as raw materials. When nitrogen molecules are passed through the discharge space of the plasma generator 12, the nitrogen is turned into plasma. When the phase interface between the nitrogen plasma and water is quickly formed, ammonia is generated. Irradiation of ultraviolet light to the nitrogen plasma / water phase interface to impart reaction energy further improves the efficiency of ammonia synthesis.

アンモニアは常圧で気体であるが、水溶解度が非常に高い(20℃において、NH 702g/HO 100g)。このため、合成されたアンモニアは、水相に溶存する(反応系の条件によっては、一部が気体として雰囲気中に存在)。そのため、合成されたアンモニアは、水相溶存により容易に回収できる。また、高温では溶存率が大きく低下するので(例:100℃では溶存率は8分の1)、反応系条件によって気体として回収することも容易である。Ammonia is a gas at normal pressure, water solubility is very high (at 20 ℃, NH 3 702g / H 2 O 100g). For this reason, the synthesized ammonia is dissolved in the aqueous phase (partly exists in the atmosphere as a gas depending on the reaction system conditions). Therefore, the synthesized ammonia can be easily recovered by dissolving the aqueous phase. Further, since the dissolution rate is greatly reduced at a high temperature (eg, the dissolution rate is 1/8 at 100 ° C.), it is easy to recover as a gas depending on the reaction system conditions.

古くから公知のハーバー・ボッシュ法は高温・高圧・触媒系にてアンモニアを合成するが、上述の相界面反応は、常温・常圧・無触媒で反応を進行させることが出来る。従って、僅かなエネルギー投入量で、アンモニアの合成反応を進行させることが出来る点で極めて有利である。この技術は、原料がどこでも調達できること(輸送不要)、空気と水を原料としてアンモニアを合成できるので原料費が極めて低いこと、二酸化炭素を生成しないので、環境負荷が小さく、かつ二酸化炭素の輸送費も不要であること、装置が常温・常圧で軽装であること、低エネルギー反応系であること(相界面における非平衡化学反応系であること)、炭化水素燃料から水素を生成する必要がないため、エネルギーコストを大幅に削減できることなどの大きなアドバンテージを有する。空気と水からアンモニアを合成する場合、空気中には酸素があるので、窒素プラズマと酸素プラズマが反応し、気相中にNOが少量生成する。しかし、NOは水相に全く溶存せず、気体として容易に排気可能なので、液相中のアンモニアに混入しないと考えられる。アンモニアに比べてNOの水溶解度が著しく低いことは、安価、かつ安全にアンモニアを製造できる一因と考えられる。   Although the well-known Haber-Bosch method synthesizes ammonia in a high-temperature, high-pressure, catalyst system, the above-described phase interface reaction can proceed at room temperature, normal pressure, and no catalyst. Therefore, it is extremely advantageous in that the synthesis reaction of ammonia can be advanced with a small amount of energy input. This technology can procure raw materials anywhere (no transportation required), can synthesize ammonia using air and water as raw materials, extremely low raw material costs, does not generate carbon dioxide, has a low environmental load, and has low carbon dioxide transportation costs. Is unnecessary, the equipment is light-weight at normal temperature and normal pressure, low energy reaction system (non-equilibrium chemical reaction system at the phase interface), there is no need to generate hydrogen from hydrocarbon fuel Therefore, it has a great advantage in that energy costs can be significantly reduced. When ammonia is synthesized from air and water, since oxygen is present in the air, nitrogen plasma and oxygen plasma react with each other, and a small amount of NO is generated in the gas phase. However, NO is not dissolved in the aqueous phase at all, and can be easily exhausted as a gas. Therefore, it is considered that NO does not mix with ammonia in the liquid phase. It is considered that the fact that the water solubility of NO is remarkably lower than that of ammonia is one of the reasons that ammonia can be produced cheaply and safely.

プラズマ状の物質として、プラズマ状の酸化炭素(一酸化炭素、二酸化炭素)を用いた場合、水等との反応により、炭化水素、アルコール等の有機物の合成が可能となる。なお、複数の物質、例えば、窒素と酸素(空気)等をプラズマ化して用いてもよい。また、この相界面反応は、連続式に行ってもよいし、バッチ式に行ってもよい。   When plasma-like carbon oxide (carbon monoxide, carbon dioxide) is used as the plasma-like substance, organic substances such as hydrocarbons and alcohols can be synthesized by reaction with water or the like. Note that a plurality of substances, for example, nitrogen and oxygen (air) may be used as plasma. The phase interface reaction may be performed in a continuous manner or in a batch manner.

本発明は前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。例えば、霧化工程においては、反応容器11の外から霧を反応容器11の中に送り込んでもよい。また、霧化手段としては、加熱器13以外に、超音波によるもの(超音波加湿器)やその他物理的に霧を発生させるスプレー等を用いることもできる。さらに、紫外線照射手段(UVランプ14)は、反応容器11の外に設置し、外から照射することもできる。また、紫外線照射手段として、UVランプ14に代えて、あるいはこれと併用して、エキシマランプ(例えば、180nm以下の真空紫外線を放射するランプ)などの光や電磁波によるエネルギー投入手段を用いても良い。   The present invention is not limited to the above-described embodiment, and its configuration can be changed without changing the gist of the present invention. For example, in the atomization step, mist may be sent into the reaction vessel 11 from outside the reaction vessel 11. As the atomizing means, in addition to the heater 13, an ultrasonic wave (ultrasonic humidifier) or other sprays that physically generate mist can be used. Furthermore, the ultraviolet irradiation means (UV lamp 14) can be installed outside the reaction vessel 11 and irradiate from outside. As the ultraviolet irradiation means, instead of or in combination with the UV lamp 14, an energy input means using light or an electromagnetic wave such as an excimer lamp (for example, a lamp that emits vacuum ultraviolet light of 180 nm or less) may be used. .

[二次反応生成物製造方法]
二次反応生成物製造方法は、上述の相界面反応により生成した反応生成物と別の物質とを反応させて二次反応生成物を製造する方法である。ここで、反応生成物は、酸素プラズマと水との相界面反応を行った場合には、ヒドロキシラジカル、一重項酸素(活性酸素の一種)などを意味する。また、例えば、窒素プラズマと水との相界面反応を行った場合には、反応生成物はアンモニアを意味する。相界面反応は、前述の(A)平水相(平界面の一種)、(B)傾斜平水相(平界面の一種)、(C)分散水相、(D)滴下水相または(E)水中相のいずれの様態(図3を参照)で行われても良い。別の物質は、上記反応生成物と反応可能な物質であれば特に制約はない。別の物質は、例えば、有機化合物あるいは無機化合物(金属も含まれる)を含む。反応生成物が活性酸素などの別の物質を酸化する性質のものである場合、別の物質は、酸素付加化合物あるいは酸素付加物質と称しても良い。
[Secondary reaction product production method]
The secondary reaction product production method is a method of producing a secondary reaction product by reacting a reaction product generated by the above-described phase interface reaction with another substance. Here, the reaction product means a hydroxy radical, singlet oxygen (a kind of active oxygen) or the like when a phase interface reaction between oxygen plasma and water is performed. Further, for example, when a phase interface reaction between nitrogen plasma and water is performed, a reaction product means ammonia. The phase interface reaction is performed by the above-mentioned (A) plain water phase (one kind of flat interface), (B) inclined flat water phase (one kind of flat interface), (C) dispersed water phase, (D) dripped water phase, or (E) water. It may be performed in any of the phases (see FIG. 3). The other substance is not particularly limited as long as it can react with the above reaction product. Another substance includes, for example, an organic compound or an inorganic compound (including a metal). When the reaction product has a property of oxidizing another substance such as active oxygen, the other substance may be referred to as an oxygenation compound or an oxygenation substance.

酸素プラズマと水との相界面反応により得られた反応生成物(ヒドロキシラジカル、一重項酸素など)は、電子引き抜き活性の高い活性物質である。このため、かかる反応生成物と有機化合物(例えば、インドールなど)とを反応させることにより、有機化合物を短時間で酸化することができる。インドールは、溶媒に分散あるいは溶解させても良い。例えば、溶媒に水を用いる場合には、インドールが1〜5wt%含まれる水溶液を用意するのが好ましい。また、溶媒にエタノールをはじめとする有機溶剤を用いる場合には、インドールが10〜30wt%含まれる溶液を用意するのが好ましい。ただし、上記インドールの含有率は、一例にすぎず、上記以外の含有率の溶液を用いても良い。この反応は、常温、常圧、かつ無触媒にて行われ得るので、安価な有機合成の手法として有効である。なお、相界面反応によって生成した反応生成物と反応する別の物質として、インドール以外の物質を用いても良く、例えば、スカトール、フェニルアラニン、インドール酢酸、過酸化水素、アルデヒド、アルコール、フラボノイド、アントシアニン、フラボン、クエルセチン、カテキン、ピロール、スチレン、チオフェン、ベンズアルデヒド、インデンなどを用いることができる。   A reaction product (hydroxy radical, singlet oxygen, or the like) obtained by a phase interface reaction between oxygen plasma and water is an active substance having high electron withdrawing activity. Therefore, by reacting the reaction product with an organic compound (for example, indole), the organic compound can be oxidized in a short time. Indole may be dispersed or dissolved in a solvent. For example, when water is used as the solvent, it is preferable to prepare an aqueous solution containing 1 to 5% by weight of indole. When an organic solvent such as ethanol is used as the solvent, it is preferable to prepare a solution containing 10 to 30% by weight of indole. However, the content of the indole is merely an example, and a solution having a content other than the above may be used. Since this reaction can be carried out at normal temperature, normal pressure and without a catalyst, it is effective as an inexpensive technique for organic synthesis. As another substance that reacts with the reaction product generated by the phase interface reaction, a substance other than indole may be used. Flavones, quercetin, catechin, pyrrole, styrene, thiophene, benzaldehyde, indene, and the like can be used.

また、反応生成物と金属(例えば、銅など)とを反応させることにより、金属の表面を短時間で酸化することができる。この反応も、常温、常圧、かつ無触媒にて行われ得るので、安価な金属表面処理の手法として有効である。なお、金属は、銅以外であっても良く、例えば、鉄、ニッケル、亜鉛を用いることができる。   Further, by reacting a reaction product with a metal (for example, copper or the like), the surface of the metal can be oxidized in a short time. Since this reaction can also be carried out at normal temperature, normal pressure and without a catalyst, it is effective as an inexpensive metal surface treatment technique. The metal may be other than copper, and for example, iron, nickel, and zinc can be used.

上記二次反応生成物製造方法は、上述の相界面反応装置10の内部あるいは外部で行わせることができる。相界面反応装置10の外部で二次反応生成物を製造する場合には、相界面反応装置10から配管で接続される別の反応装置を用意し、相界面反応方法によって得られた反応生成物を、上記配管を通じて当該別の反応装置に引き込み、その別の反応装置の内部に配置した別の物質(例えば、有機化合物、金属など)と接触させると良い。   The method for producing a secondary reaction product can be performed inside or outside the above-described phase interface reactor 10. When producing a secondary reaction product outside the phase interface reaction device 10, another reaction device connected by a pipe from the phase interface reaction device 10 is prepared, and the reaction product obtained by the phase interface reaction method is prepared. Is drawn into the other reactor through the above-mentioned piping, and is brought into contact with another substance (for example, an organic compound, a metal, or the like) disposed inside the another reactor.

一方、相界面反応装置10の内部で二次反応生成物を製造する場合には、同装置10の反応容器11内に、有機化合物若しくは所定の溶媒(水など)に混合した有機化合物含有液をシャーレ等の容器に入れ、同装置10内で発生した反応生成物と有機化合物とを接触させると良い。水に有機化合物を分散あるいは溶解させてシャーレ等の容器に入れる場合には、そのシャーレと別の容器に、プラズマ状の物質と反応する水を入れた被加熱容器19を用意するのが好ましい。ただし、有機化合物を分散あるいは溶解した水を入れたシャーレのみを反応容器11内に入れ、シャーレ内の水とプラズマ状の物質とを反応させて得られた反応生成物と、シャーレ内の有機化合物と反応させて二次反応生成物を製造しても良い。また、反応生成物と金属とを反応させる場合には、同装置10の反応容器11内に金属を入れておき、反応容器11内で発生した反応生成物と金属とを接触させると良い。金属は、板状、粉末状等、その形態に制約はない。板状の金属を表面処理する場合には、反応容器11内に板状の金属を配置すると良い。金属粉末の表面処理を行う場合には、反応容器11内の特定の場所にて、粉末を防爆条件下で振動または攪拌し、その特定の場所において反応生成物と金属粉末とを接触させると良い。   On the other hand, when a secondary reaction product is produced inside the phase interface reaction device 10, an organic compound or a liquid containing an organic compound mixed with a predetermined solvent (such as water) is placed in a reaction vessel 11 of the same device 10. It is preferable that the reaction product generated in the apparatus 10 is put in a container such as a petri dish and the organic compound is brought into contact with the reaction product. When an organic compound is dispersed or dissolved in water and placed in a container such as a Petri dish, it is preferable to prepare a heated container 19 in which water reacting with the plasma-like substance is placed in a container separate from the Petri dish. However, only a petri dish containing water in which an organic compound is dispersed or dissolved is put into the reaction vessel 11, and a reaction product obtained by reacting the water in the petri dish with a plasma-like substance, and an organic compound in the petri dish To produce a secondary reaction product. When reacting a reaction product with a metal, the metal is preferably placed in the reaction vessel 11 of the apparatus 10 and the reaction product generated in the reaction vessel 11 is preferably brought into contact with the metal. The form of the metal is not limited, such as a plate or a powder. When a plate-shaped metal is subjected to a surface treatment, it is preferable to arrange the plate-shaped metal in the reaction vessel 11. When performing the surface treatment of the metal powder, the powder is vibrated or agitated under an explosion-proof condition at a specific place in the reaction vessel 11, and the reaction product and the metal powder are preferably brought into contact with the specific place. .

このように、相界面反応装置10において、反応容器11またはその外部にて、プラズマ状の物質と水又は水溶液に含まれる溶質との相界面反応により生成した反応生成物と、別の物質(例えば、有機化合物、金属など)とを反応させて二次反応生成物を製造することもでき、それによって、例えば、新たな有機合成法あるいは金属表面処理法などを構築することができる。   As described above, in the phase interface reaction device 10, the reaction product generated by the phase interface reaction between the plasma-like substance and the solute contained in the water or the aqueous solution in the reaction vessel 11 or outside thereof and another substance (for example, , An organic compound, a metal, etc.) to produce a secondary reaction product, whereby, for example, a new organic synthesis method or a metal surface treatment method can be constructed.

以下、実施例を挙げて、本発明の内容をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples. Note that the present invention is not limited to the following embodiments.

<実施例1>ヒドロキシラジカルおよび一重項酸素の生成
図1の構成を有する相界面反応装置を用意した。UVランプとしては、波長185nm出力0.16Wのものを2本、及び波長254nm、出力1.6Wのものを2本用いた。なお、後述するホールスライドガラスを載置するためのサンプル台を反応容器中に設置した。プラズマ発生装置(オゾン発生装置)を6kVで放電し、酸素プラズマ(オゾン)を反応容器に供給し、加熱器により霧(霧状の水)を反応容器内に発生させた。反応容器内の温度が40℃となるよう、加熱器により加熱した。また、反応容器内の湿度は50%であった。この状態でUVランプを照射した。
Example 1 Production of Hydroxyl Radical and Singlet Oxygen A phase interface reactor having the configuration shown in FIG. 1 was prepared. Two UV lamps having a wavelength of 185 nm and an output of 0.16 W and two lamps having a wavelength of 254 nm and an output of 1.6 W were used. In addition, a sample table for mounting a hole slide glass described later was set in the reaction vessel. The plasma generator (ozone generator) was discharged at 6 kV, oxygen plasma (ozone) was supplied to the reaction vessel, and a mist (fog water) was generated in the reaction vessel by a heater. The reactor was heated by a heater so that the temperature inside the reactor became 40 ° C. Further, the humidity in the reaction vessel was 50%. In this state, a UV lamp was irradiated.

生成物であるヒドロキシラジカル及び一重項酸素は、ESR−スピントラッピング法により観測した。スピントラップ剤としては、5,5−ジメチル−1−ピロリン N−オキサイド(DMPO;ラボテック社)の0.3M水溶液(500μL)、及び2,2,5,5−テトラメチル−3−ピロリン−3−カルボキシアミド(TPC;シグマアルドリッチ社)の0.5M水溶液(500μL)を用い、これらをそれぞれホールスライドガラスに滴下し、反応容器中のサンプル台に載置した。DMPOはヒドロキシラジカルを、TPCは一重項酸素をトラップし、それぞれスピン付加物としてDMPO−OH、TPC−となる。ESRは、JEOL社のJFS−FA100を用い室温で測定した。The products, hydroxy radical and singlet oxygen, were observed by ESR-spin trapping. As a spin trapping agent, a 0.3 M aqueous solution (500 μL) of 5,5-dimethyl-1-pyrroline N-oxide (DMPO; Labotech) and 2,2,5,5-tetramethyl-3-pyrroline-3 Using a 0.5 M aqueous solution (500 μL) of carboxamide (TPC; Sigma-Aldrich), these were respectively dropped onto a hole slide glass, and mounted on a sample table in a reaction vessel. DMPO is a hydroxy radical, TPC will trap singlet oxygen, DMPO-OH respectively as spin adduct, the TPC-1 O 2. ESR was measured at room temperature using JEOL JFS-FA100.

4L/minでの酸素プラズマ(オゾン)の供給、及び紫外線照射を10分行った後の、各スピントラップ剤(スピン付加物)のESRスペクトルを測定した。スペクトルをそれぞれ図4(a)、図4(b)に示す。これらから求まるDMPO−OHの濃度は9×10−3mM、TPC−の濃度は15mMと高濃度であった。After supplying oxygen plasma (ozone) at 4 L / min and irradiating ultraviolet rays for 10 minutes, the ESR spectrum of each spin trapping agent (spin adduct) was measured. The spectra are shown in FIGS. 4 (a) and 4 (b), respectively. The concentration of DMPO-OH obtained from these 9 × 10 -3 mM, the TPC-1 O 2 concentration was 15mM and high concentration.

次に、紫外線照射時間を変えて同様に反応を行った(オゾン供給量は4L/minで2分)。その後、同様にスピン付加物(TPC−)の濃度を測定した。結果を図5に示す。図5の横軸は紫外線照射時間(UV Irradiation Time(min))、縦軸はスピン付加物の濃度(Spin Adduct(TPC−)(mM))である。紫外線照射時間が長いほど、スピン付加物(一重項酸素)の生成量が多く、紫外線照射は一重項酸素の生成を促進させることがわかる。Next, the reaction was carried out in the same manner by changing the ultraviolet irradiation time (the supply amount of ozone was 4 L / min for 2 minutes). Then, to determine the concentration of the spin adduct (TPC- 1 O 2) as well. The results are shown in FIG. The abscissa of FIG. 5 indicates the UV irradiation time (UV irradiation time (min)), and the ordinate indicates the concentration of the spin adduct (Spin Adduct (TPC- 1 O 2 ) (mM)). It can be seen that the longer the ultraviolet irradiation time, the larger the amount of spin adduct (singlet oxygen) produced, and that ultraviolet irradiation promotes the production of singlet oxygen.

酸素プラズマ(オゾン)供給量を変えて同様に反応を行った(オゾン供給速度は4L/min。紫外線照射時間は1分)。その後、同様にスピン付加物(TPC−)の濃度を測定した。結果を図6に示す。図6の横軸はオゾン供給(導入)量(Introduced Ozone volume(L))、縦軸はスピン付加物の濃度(Spin Adduct(TPC−)(mM))である。オゾン供給量が多いほど一重項酸素の生成量が多い(実質的に比例関係にある)ことがわかる。これは、前記式(1)〜(4)の連鎖反応が反応場中で進行しているためであると推測される。The same reaction was performed by changing the supply amount of oxygen plasma (ozone) (the supply rate of ozone was 4 L / min, and the irradiation time of ultraviolet rays was 1 minute). Then, to determine the concentration of the spin adduct (TPC- 1 O 2) as well. FIG. 6 shows the results. The horizontal axis in FIG. 6 indicates the ozone supply (introduced) volume (Introduced Ozone volume (L)), and the vertical axis indicates the concentration of the spin adduct (Spin Adduct (TPC- 1 O 2 ) (mM)). It can be seen that the larger the supply amount of ozone, the larger the generation amount of singlet oxygen (substantially in a proportional relationship). This is presumed to be because the chain reactions of the formulas (1) to (4) proceed in the reaction field.

次に、反応容器中の湿度(相対湿度)を変えて同様に反応を行った。その後、同様にスピン付加物(TPC−)の濃度(発生量)を測定した。結果を湿度50%の場合を100(%)とした場合の相対値として図7に示す。湿度が40〜70%の範囲、特に50%のときと60%のときに、一重項酸素が高い濃度で生成していることがわかる。なお、本実施例において、反応雰囲気中(反応容器内の空間)の水(又は水溶液)は、気体(水蒸気)として存在するものと、分散した液体(霧)として存在するものがある。従って、湿度数値が、雰囲気中の水の存在量を完全に反映させる値とは言えないが、存在する水分量の一指標ともなる。Next, the same reaction was carried out while changing the humidity (relative humidity) in the reaction vessel. Then, the concentration was determined (generation amount) of similarly spin adduct (TPC-1 O 2). The results are shown in FIG. 7 as relative values when the humidity of 50% is taken as 100 (%). It can be seen that singlet oxygen is produced at a high concentration when the humidity is in the range of 40 to 70%, particularly when the humidity is 50% and 60%. In this embodiment, water (or aqueous solution) in the reaction atmosphere (space in the reaction vessel) may be present as a gas (water vapor) or may be present as a dispersed liquid (mist). Therefore, the humidity value cannot be said to be a value that completely reflects the amount of water in the atmosphere, but is also an index of the amount of water present.

<実施例2>アンモニアの合成
実施例1と同様、図1の構成を有する相界面反応装置を用意した。UVランプには、実施例1と同様のものを用いた。窒素ガス(純度:99.99%以上)をプラズマ発生装置(窒素プラズマ発生用)に供給して、電圧6kVで放電させ、窒素プラズマを反応容器内に供給した。一方、直径13cm(水相表面積: 132cm)のシャーレに超純水20mlを入れて、加熱器により霧(霧状の水)を反応容器内に発生させた。反応容器内の温度が40℃となるように、加熱器により加熱した。また、反応容器内の湿度は50%であった。この状態でUVランプを水相表面に10分間照射した。この系を、「Nプラズマ相/水相+UV照射」と称する。水相に生成したアンモニア量は、シャーレ水相を「インドフェノール青色呈色法」により呈色させ、その吸光度を測定し、標準物質検量法により正確に定量化した。
<Example 2> Synthesis of ammonia As in Example 1, a phase interface reaction apparatus having the configuration shown in Fig. 1 was prepared. The same UV lamp as in Example 1 was used. Nitrogen gas (purity: 99.99% or more) was supplied to a plasma generator (for generating nitrogen plasma), discharged at a voltage of 6 kV, and nitrogen plasma was supplied into the reaction vessel. On the other hand, 20 ml of ultrapure water was placed in a petri dish having a diameter of 13 cm (aqueous phase surface area: 132 cm 2 ), and mist (fog-like water) was generated in the reaction vessel by a heater. The reactor was heated by a heater so that the temperature inside the reactor became 40 ° C. Further, the humidity in the reaction vessel was 50%. In this state, the surface of the aqueous phase was irradiated with a UV lamp for 10 minutes. This system is referred to as "N plasma phase / water phase + UV irradiation". The amount of ammonia formed in the aqueous phase was determined by accurately coloring the petri dish aqueous phase by the "indophenol blue coloration method", measuring the absorbance thereof, and accurately quantifying the standard substance calibration method.

比較として、上記「Nプラズマ相/水相+UV照射」の窒素プラズマに代えて窒素ガスを供給した系「Nガス相/水相+UV照射」、および上記「Nプラズマ相/水相+UV照射」のUV照射を行わない系「Nプラズマ相/水相」の両系についても行い、アンモニア生成量を調べた。For comparison, a system “N 2 gas phase / water phase + UV irradiation” in which nitrogen gas was supplied instead of the nitrogen plasma of “N plasma phase / water phase + UV irradiation” and “N plasma phase / water phase + UV irradiation” The system was also subjected to both UV irradiation and the "N plasma phase / aqueous phase" to determine the amount of ammonia produced.

図8は、「Nプラズマ相/水相+UV照射」、「Nガス相/水相+UV照射」および「Nプラズマ相/水相」の3種の系によるアンモニアの生成量を比較して示す。図8から明らかなように、「Nプラズマ相/水相+UV照射」の系では、他の2系に比べて圧倒的に多くのアンモニアの生成が確認された。この結果は、アンモニア合成において、窒素ガスをプラズマ状態とし、水相との接触環境下にUVを照射する方法が優位であることを示す。図8の右端棒グラフで170μgのアンモニアを合成するのに要したエネルギーは、窒素プラズマ生成のための無声放電と反応界面への紫外線照射の電力のみであり、その量は5Wh以下と極めて少ない。FIG. 8 shows a comparison of the amount of ammonia produced by three types of systems, “N plasma phase / water phase + UV irradiation”, “N 2 gas phase / water phase + UV irradiation”, and “N plasma phase / water phase”. . As is clear from FIG. 8, in the “N plasma phase / water phase + UV irradiation” system, generation of much more ammonia was confirmed than in the other two systems. This result indicates that, in the ammonia synthesis, a method in which nitrogen gas is brought into a plasma state and UV irradiation is performed in a contact environment with an aqueous phase is superior. The energy required for synthesizing 170 μg of ammonia in the right end bar graph of FIG. 8 is only the power of silent discharge for generating nitrogen plasma and the power of ultraviolet irradiation on the reaction interface, and the amount is extremely small, 5 Wh or less.

<実施例3>有機化合物の酸化処理
実施例1と同様、図1の構成を有する相界面反応装置を用意した。直径13cm(水相表面積: 132cm)のシャーレに、インドールの水溶液(インドール3wt%含有水溶液)20mlを注ぎ、そのシャーレを、上記相界面反応装置の中に入れた。この実験におけるシャーレは、加熱器で加熱される被加熱容器とは別の容器である。UVランプには、実施例1と同様のものを用いた。酸素プラズマ(オゾン)の供給量は、実施例1と同様、4L/minとした。酸素プラズマ(オゾン)は、無声放電器の電圧:6kVの条件で発生させた。加熱器により霧(霧状の水)を反応容器内に発生させ、反応容器内の温度が40℃となるよう、加熱器により加熱した。また、反応容器内の湿度は50%であった。この状態で、UVランプを用いてUV照射を10分間行った。シャーレ内のインドール水溶液を、スターラーを用いて継続的に攪拌した。
<Example 3> Oxidation treatment of organic compound As in Example 1, a phase interface reaction apparatus having the configuration shown in Fig. 1 was prepared. 20 ml of an aqueous solution of indole (aqueous solution containing 3% by weight of indole) was poured into a petri dish having a diameter of 13 cm (aqueous phase surface area: 132 cm 2 ), and the petri dish was placed in the above-mentioned phase interface reactor. The petri dish in this experiment is a container different from the heated container heated by the heater. The same UV lamp as in Example 1 was used. The supply amount of oxygen plasma (ozone) was set to 4 L / min as in Example 1. Oxygen plasma (ozone) was generated under the conditions of a silent discharger voltage of 6 kV. A fog (fog of water) was generated in the reaction vessel by a heater, and the reaction vessel was heated by a heater so that the temperature in the reaction vessel was 40 ° C. Further, the humidity in the reaction vessel was 50%. In this state, UV irradiation was performed for 10 minutes using a UV lamp. The indole aqueous solution in the petri dish was continuously stirred using a stirrer.

酸素プラズマの発生は、図3に示す(C)分散水相の様態で行われた。インドールの反応場は、「酸素プラズマ相/分散水相/水溶媒に溶解したインドール」である。(C)分散水相の様態にて、酸素プラズマ相と水相の界面で発生したヒドロキシラジカルや活性酸素(以下、活性酸素と総称する)は、インドール水溶液中のインドールを酸化する。すなわち、相界面反応装置内では、活性酸素の生成反応と、その生成した活性酸素とインドールとの反応という2種類の反応が起きている。活性酸素とインドールとの反応によるインドールの変化は、核磁気共鳴(Nuclear Magnetic Resonance: NMR)スペクトルの変化から同定した。   The generation of oxygen plasma was carried out in the form of (C) dispersed aqueous phase shown in FIG. The reaction field of indole is “oxygen plasma phase / dispersed aqueous phase / indole dissolved in water solvent”. (C) In the form of a dispersed aqueous phase, hydroxyl radicals and active oxygen (hereinafter collectively referred to as active oxygen) generated at the interface between the oxygen plasma phase and the aqueous phase oxidize indole in the aqueous indole solution. That is, two kinds of reactions occur in the phase interface reaction apparatus, namely, a reaction for generating active oxygen and a reaction between the generated active oxygen and indole. The change of the indole due to the reaction between the active oxygen and the indole was identified from the change in the nuclear magnetic resonance (NMR) spectrum.

図9は、相界面反応で生じる活性酸素による処理前後のインドールのNMRスペクトルを示す。   FIG. 9 shows NMR spectra of indole before and after treatment with active oxygen generated by a phase interface reaction.

図9に示すように、活性酸素による処理前には、インドール特有のNMRスペクトルが認められた。活性酸素による処理後には、2−Formylaminobenzaldehyde特有のNMRスペクトルが認められた。この結果から、インドールは、活性酸素により酸化され、酸素の付加あるいは開環によって、2−Formylaminobenzaldehydeとなったと考えられる。相界面反応により生成した活性酸素を用いた反応法は、常温、常圧、さらには無触媒にて有機化合物の酸化を実現できることから、有機合成の新しい手法となり得る。   As shown in FIG. 9, an NMR spectrum specific to indole was observed before the treatment with active oxygen. After the treatment with active oxygen, an NMR spectrum unique to 2-Formylaminobenzaldehyde was observed. From this result, it is considered that indole was oxidized by active oxygen and changed to 2-formylaminobenzaldehyde by addition of oxygen or ring opening. The reaction method using active oxygen generated by the phase interface reaction can be a new method of organic synthesis because the oxidation of an organic compound can be realized at normal temperature, normal pressure, and without a catalyst.

<実施例4>金属の表面酸化処理
実施例1と同様、図1の構成を有する相界面反応装置を用意した。予め、研磨、酸処理、有機溶媒を用いて脱脂による清浄化を行った幅5mm×長さ20mm×厚さ0.5mmの純銅製の板(以後、銅板という)を、上記相界面反応装置の中に入れた。UVランプには、実施例1と同様のものを用いた。酸素プラズマ(オゾン)の供給量は、実施例1と同様、4L/minとした。酸素プラズマ(オゾン)は、無声放電器の電圧:6kVの条件で発生させた。加熱器により霧(霧状の水)を反応容器内に発生させ、反応容器内の温度が40℃となるよう、加熱器により加熱した。また、反応容器内の湿度は50%であった。この状態で、UVランプを用いてUV照射を5分間行った。
Example 4 Metal Surface Oxidation Treatment As in Example 1, a phase interface reaction apparatus having the configuration shown in FIG. 1 was prepared. A 5 mm wide x 20 mm long x 0.5 mm thick pure copper plate (hereinafter, referred to as a copper plate), which has been previously polished, acid-treated, and cleaned by degreasing using an organic solvent, is placed in the above-mentioned phase interface reaction apparatus. I put it inside. The same UV lamp as in Example 1 was used. The supply amount of oxygen plasma (ozone) was set to 4 L / min as in Example 1. Oxygen plasma (ozone) was generated under the conditions of a silent discharger voltage of 6 kV. A fog (fog of water) was generated in the reaction vessel by a heater, and the reaction vessel was heated by a heater so that the temperature in the reaction vessel was 40 ° C. Further, the humidity in the reaction vessel was 50%. In this state, UV irradiation was performed for 5 minutes using a UV lamp.

酸素プラズマの発生は、図3に示す(C)分散水相の様態で行われた。銅板の反応場は、「酸素プラズマ相/分散水相/銅板」である。(C)分散水相の様態にて、活性酸素は、銅板の表面を酸化する。すなわち、相界面反応装置内では、活性酸素の生成反応と、その生成した活性酸素と銅との反応という2種類の反応が起きている。活性酸素と銅との反応については、赤外分光法(ATR全反射測定)により調べた。   The generation of oxygen plasma was carried out in the form of (C) dispersed aqueous phase shown in FIG. The reaction field of the copper plate is “oxygen plasma phase / dispersed aqueous phase / copper plate”. (C) In the form of a dispersed aqueous phase, active oxygen oxidizes the surface of the copper plate. That is, two kinds of reactions occur in the phase interface reaction apparatus, namely, a reaction for generating active oxygen and a reaction between the generated active oxygen and copper. The reaction between active oxygen and copper was examined by infrared spectroscopy (ATR total reflection measurement).

図10は、相界面反応で生じる活性酸素により処理した銅板表面のATR全反射FTIRスペクトルを示す。   FIG. 10 shows an ATR total reflection FTIR spectrum of a copper plate surface treated with active oxygen generated by a phase interface reaction.

図10に示すスペクトルには、CuO層に特異な赤外吸収極大が認められた。この結果は、銅板表面にCuO層(亜酸化銅層)が形成されていることを示す。活性酸素およびラジカルは、強い電子引き抜き活性を有するため、金属表面に酸化皮膜(亜酸化膜あるいは酸化膜)を短時間で形成させることができる。また、瞬時に形成される亜酸化膜や酸化膜は緻密であるため、その内部の金属を腐食から保護することができる。また、亜酸化層は、電気整流効果があることから、安価に半導体材料を構築することもできる。In the spectrum shown in FIG. 10, an infrared absorption maximum peculiar to the Cu 2 O layer was recognized. This result indicates that a Cu 2 O layer (a cuprous oxide layer) was formed on the surface of the copper plate. Since active oxygen and radicals have strong electron withdrawing activity, an oxide film (suboxide film or oxide film) can be formed on a metal surface in a short time. Further, since the sub-oxide film and the oxide film which are formed instantaneously are dense, the metal inside thereof can be protected from corrosion. Further, since the sub-oxide layer has an electric rectification effect, a semiconductor material can be constructed at low cost.

Claims (11)

プラズマ発生装置に窒素ガスを供給することにより生成するプラズマ状の物質を反応容器中に供給するプラズマ供給工程と、
前記反応容器中に、水又は水溶液を供給する水・水溶液供給工程と、
前記反応容器中の前記プラズマ状の物質に紫外線を照射する紫外線照射工程と、
を有し、
前記反応容器中で前記プラズマ状の物質と前記水又は前記水溶液に含まれる溶質とを相界面で反応させる相界面反応を用いたアンモニアを含む反応生成物の製造方法。
A plasma supply step of supplying a plasma-like substance generated by supplying a nitrogen gas to a plasma generator into a reaction vessel,
In the reaction vessel, a water / aqueous solution supply step of supplying water or an aqueous solution,
An ultraviolet irradiation step of irradiating the plasma-like substance in the reaction vessel with ultraviolet light;
Has,
A method for producing a reaction product containing ammonia using a phase interface reaction in which the plasma-like substance and the solute contained in the water or the aqueous solution are reacted at the phase interface in the reaction vessel.
請求項1に記載の相界面反応を用いた反応生成物製造方法において、前記水・水溶液供給工程を、前記反応容器中に霧状の水又は水溶液を発生させる霧化工程とし、
前記紫外線照射工程を、前記反応容器中の湿度が100%未満の状態で、前記反応容器中の前記プラズマ状の物質に紫外線を照射する工程とすることを特徴とする、相界面反応を用いたアンモニアを含む反応生成物の製造方法。
The method for producing a reaction product using a phase interface reaction according to claim 1, wherein the water / aqueous solution supply step is an atomization step of generating atomized water or an aqueous solution in the reaction vessel,
The step of irradiating the ultraviolet light is a step of irradiating the plasma-like substance in the reaction container with ultraviolet light in a state in which the humidity in the reaction container is less than 100%, using a phase interface reaction. A method for producing a reaction product containing ammonia.
請求項2記載の相界面反応を用いた反応生成物製造方法において、前記紫外線照射工程の際の前記反応容器中の湿度が40%以上70%以下であることを特徴とする、相界面反応を用いたアンモニアを含む反応生成物の製造方法。   The method for producing a reaction product using a phase interface reaction according to claim 2, wherein the humidity in the reaction vessel at the time of the ultraviolet irradiation step is 40% or more and 70% or less. A method for producing a reaction product containing ammonia used. 請求項2又は3記載の相界面反応を用いた反応生成物製造方法において、前記霧化工程を前記水又は水溶液の前記反応容器内での加熱により行うことを特徴とする、相界面反応を用いたアンモニアを含む反応生成物の製造方法。   The method for producing a reaction product using a phase interface reaction according to claim 2 or 3, wherein the atomization step is performed by heating the water or the aqueous solution in the reaction vessel. For producing a reaction product containing ammonia. 請求項1〜4のいずれか1項に記載の相界面反応を用いた反応生成物製造方法において、前記紫外線照射工程は、前記水又は前記水溶液にも紫外線を照射する工程であることを特徴とする、相界面反応を用いたアンモニアを含む反応生成物の製造方法。   The method for producing a reaction product using a phase interface reaction according to any one of claims 1 to 4, wherein the ultraviolet irradiation step is a step of irradiating the water or the aqueous solution with ultraviolet rays. For producing a reaction product containing ammonia using a phase interface reaction. 請求項5記載の相界面反応を用いた反応生成物製造方法において、前記相界面での反応で生成したアンモニアを分解させる分解反応工程をさらに有することを特徴とする、相界面反応を用いたアンモニアを含む反応生成物の製造方法。   The method for producing a reaction product using a phase interface reaction according to claim 5, further comprising a decomposition reaction step of decomposing ammonia generated by the reaction at the phase interface, wherein the ammonia using a phase interface reaction is further provided. A method for producing a reaction product comprising: 反応容器と、
プラズマ発生装置と、前記プラズマ発生装置に窒素ガスを供給することにより生成するプラズマ状の物質を前記反応容器中に供給するプラズマ供給手段と、
前記反応容器中に、水又は水溶液を供給する水・水溶液供給手段と、
前記反応容器中の前記プラズマ状の物質に紫外線を照射する紫外線照射手段と、
を備え、
前記反応容器中で前記プラズマ状の物質と前記水又は前記水溶液に含まれる溶質とを相界面で反応させてアンモニアを含む反応生成物を製造する相界面反応装置。
A reaction vessel,
A plasma generator, a plasma supply unit that supplies a plasma-like substance generated by supplying a nitrogen gas to the plasma generator into the reaction vessel,
Water / aqueous solution supply means for supplying water or an aqueous solution into the reaction vessel,
UV irradiation means for irradiating the plasma-like substance in the reaction vessel with ultraviolet light,
With
A phase interface reaction apparatus for producing a reaction product containing ammonia by reacting the plasma-like substance with a solute contained in the water or the aqueous solution in the reaction vessel at a phase interface.
請求項7に記載の相界面反応装置において、前記水・水溶液供給手段を、前記反応容器中に霧状の水又は水溶液を湿度制御可能に発生させる霧化手段とし、
前記反応容器中で前記プラズマ状の物質と前記霧状の水又は前記霧状の水溶液に含まれる溶質とを相界面で反応させることを特徴とする相界面反応装置。
The phase interface reaction device according to claim 7, wherein the water / aqueous solution supply means is atomization means for generating mist-like water or an aqueous solution in the reaction vessel so as to be capable of controlling humidity,
A phase interface reaction device, wherein the plasma substance and the solute contained in the atomized water or the aqueous solution are reacted at the phase interface in the reaction vessel.
請求項8記載の相界面反応装置において、前記紫外線照射手段は、前記水又は前記水溶液にも紫外線を照射することを特徴とする相界面反応装置。   9. The phase interface reaction device according to claim 8, wherein the ultraviolet irradiation means also irradiates the water or the aqueous solution with ultraviolet light. 請求項1〜6のいずれか1項に記載の相界面反応により生成したアンモニアを含む反応生成物を別の物質と反応させて二次反応生成物を製造する二次反応生成物の製造方法。   A method for producing a secondary reaction product, comprising reacting a reaction product containing ammonia produced by the phase interface reaction according to any one of claims 1 to 6 with another substance to produce a secondary reaction product. 請求項7〜9のいずれか1項に記載の相界面反応装置において、前記反応容器またはその外部にて、前記プラズマ状の物質と前記水又は前記水溶液に含まれる溶質との相界面反応により生成した反応生成物を別の物質と反応させて二次反応生成物を製造する相界面反応装置。The phase interface reaction device according to any one of claims 7 to 9, wherein the phase interface reaction device is formed by a phase interface reaction between the plasma-like substance and a solute contained in the water or the aqueous solution in or outside the reaction vessel. A phase interface reactor for producing a secondary reaction product by reacting the reaction product obtained with another substance.
JP2016529087A 2014-06-27 2015-06-25 Reaction product production method using phase interface reaction, phase interface reaction device, and secondary reaction product production method Active JP6661534B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014132690 2014-06-27
JP2014132690 2014-06-27
PCT/JP2015/003207 WO2015198608A1 (en) 2014-06-27 2015-06-25 Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product

Publications (2)

Publication Number Publication Date
JPWO2015198608A1 JPWO2015198608A1 (en) 2017-08-03
JP6661534B2 true JP6661534B2 (en) 2020-03-11

Family

ID=54937713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016529087A Active JP6661534B2 (en) 2014-06-27 2015-06-25 Reaction product production method using phase interface reaction, phase interface reaction device, and secondary reaction product production method

Country Status (9)

Country Link
US (1) US20170144891A1 (en)
EP (1) EP3162435B1 (en)
JP (1) JP6661534B2 (en)
KR (1) KR20170026482A (en)
CN (1) CN106573222B (en)
AP (1) AP2017009704A0 (en)
AU (1) AU2015282298B2 (en)
CA (1) CA2953475C (en)
WO (1) WO2015198608A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137199A (en) * 2017-02-24 2018-08-30 ダイハツ工業株式会社 Fuel cell system
JPWO2018230689A1 (en) * 2017-06-16 2019-11-07 積水化学工業株式会社 MEDICAL TREATMENT DEVICE, METHOD OF USING MEDICAL TREATMENT DEVICE, AND ACTIVE GAS Irradiation Method
JP7291988B2 (en) * 2017-08-30 2023-06-16 株式会社オーク製作所 Ozone generator and UV irradiation device
US11679988B2 (en) 2018-03-23 2023-06-20 Case Western Reserve University Ammonia synthesis using plasma-produced electrons
JP7140885B2 (en) * 2020-06-30 2022-09-21 キヤノン株式会社 Apparatus for supplying active oxygen, apparatus for treatment using active oxygen, and method for treatment using active oxygen
CN113200521A (en) * 2021-05-19 2021-08-03 罗亚辉 Ozone generation equipment for probiotic production and probiotic production process
AU2022325906A1 (en) * 2021-08-13 2024-03-14 The University Of Sydney Apparatus, system and method for producing hydrogen peroxide, hydrocarbon(s) and syngas
AT525366B1 (en) 2021-08-23 2023-03-15 Plasnifix Ag Method of nitrogen fixation
CN114605174A (en) * 2022-01-27 2022-06-10 杭州三得农业科技有限公司 System and process for preparing nitrogen ion fertilizer special for chemoautotrophy of plants by using nitrogen
WO2023205841A1 (en) * 2022-04-26 2023-11-02 The University Of Sydney Apparatus and method for producing ammonia

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860614A (en) * 1981-10-02 1983-04-11 Rikagaku Kenkyusho Low pressure synthesis of ammonia
JPH0198132U (en) * 1987-12-21 1989-06-30
JPH04130013A (en) * 1990-09-20 1992-05-01 Nec Corp Synthesizing equipment for nitrogen-hydrogen compound
DE19922960C2 (en) * 1999-05-19 2003-07-17 Daimler Chrysler Ag Emission control system with internal ammonia production for nitrogen oxide reduction
JP3495356B2 (en) * 2001-11-26 2004-02-09 金平 福島 Sterilization and dry cleaning equipment
CA2572434A1 (en) * 2003-06-30 2005-01-20 Bar-Gadda, Llc. Dissociation of molecular water into molecular hydrogen
CN100532249C (en) * 2006-06-14 2009-08-26 大连理工大学 Plasma catalyzing process of preparing hydrogen by ammonia decomposition
JP2008090919A (en) * 2006-09-30 2008-04-17 Hoya Corp Method for manufacturing magnetic disk
JP2010166855A (en) * 2009-01-22 2010-08-05 Toshihiko Hanai Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal
JP2010194379A (en) * 2009-02-23 2010-09-09 Ehime Univ Water treatment apparatus
GB2468865B (en) * 2009-03-24 2014-04-16 Tri Air Developments Ltd Improved air decontamination device
IT1394743B1 (en) * 2009-07-14 2012-07-13 Brioschi APPARATUS FOR THE PRODUCTION OF HYDROGEN GASEOUS AND ENERGY GENERATION SYSTEM USING THE APPARATUS
JP2013154145A (en) 2012-02-01 2013-08-15 Panasonic Corp Air cleaner
JP2013158706A (en) 2012-02-06 2013-08-19 Panasonic Corp Water purification apparatus
JP5821777B2 (en) 2012-05-21 2015-11-24 トヨタ自動車株式会社 Ammonia synthesis method
JP6099262B2 (en) * 2012-06-04 2017-03-22 達彦 山田 Water splitting method and water splitting apparatus
JP6095203B2 (en) * 2012-10-02 2017-03-15 国立大学法人岐阜大学 Hydrogen generator and fuel cell system provided with hydrogen generator

Also Published As

Publication number Publication date
EP3162435A1 (en) 2017-05-03
EP3162435B1 (en) 2020-03-11
US20170144891A1 (en) 2017-05-25
AP2017009704A0 (en) 2017-01-31
KR20170026482A (en) 2017-03-08
JPWO2015198608A1 (en) 2017-08-03
AU2015282298A1 (en) 2017-02-16
EP3162435A4 (en) 2018-01-03
CA2953475A1 (en) 2015-12-30
WO2015198608A1 (en) 2015-12-30
CA2953475C (en) 2021-06-01
AU2015282298B2 (en) 2018-10-25
CN106573222B (en) 2020-02-14
CN106573222A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6661534B2 (en) Reaction product production method using phase interface reaction, phase interface reaction device, and secondary reaction product production method
Lee et al. Rapid degradation of methyl orange using hybrid advanced oxidation process and its synergistic effect
Burlica et al. Formation of H2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor
US7691342B2 (en) Process using compact embedded electron induced ozonation and activation of nanostructured titanium dioxide photocatalyst for photocatalytic oxidation
Kim et al. Photocatalytic degradation of gaseous toluene and ozone under UV254+ 185 nm irradiation using a Pd-deposited TiO2 film
Kim et al. Photocatalyzed destruction of organic dyes using microwave/UV/O3/H2O2/TiO2 oxidation system
Ağıral et al. Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor
Suzuki et al. Influence of speciation on the response from selenium to UV-photochemical vapor generation
Huang et al. Plasma‐water‐based nitrogen fixation: Status, mechanisms, and opportunities
Bobkova et al. Influence of various solid catalysts on the destruction kinetics of sodium lauryl sulfate in aqueous solutions by DBD
Tiya-Djowe et al. Enhanced discolouration of methyl violet 10B in a gliding arc plasma reactor by the maghemite nanoparticles used as heterogeneous catalyst
Li et al. Microwave-enhanced Fenton process for DMSO-containing wastewater
Chandana et al. Physicochemical process of non-thermal plasma at gas-liquid interface and synergistic effect of plasma with catalyst
Roy et al. Mechanisms of reducing energy costs for nitrogen fixation using air-based atmospheric DBD plasmas over water in contact with the electrode
Matsuo et al. Dispersed-phase Interfaces between Mist Water Particles and Oxygen Plasma Efficiently Produce Singlet Oxygen (1O2) and Hydroxyl Radical (• OH)
Sun et al. Catalytic ozonation of dissolved acetaminophen with iron-doped graphitic carbon nitride in plasma-liquid system
Wang et al. Enhanced removal of humic acid from micro-polluted source water in a surface discharge plasma system coupled with activated carbon
JPS6340705A (en) Method and device for producing ozone by photocatalyst
Shibata et al. Water treatment by dielectric barrier discharge tube with vapor flow
Chen et al. Promoting the efficiency and selectivity of NO3−− to− NH3 reduction on Cu− O− Ti active sites via preferential glycol oxidation with holes
Du et al. Plasma remediation technology for environmental protection
JP2012245511A (en) High value-added substance conversion method and high value-added substance conversion device
OA18139A (en) Method for manufacturing reaction product in which phase interface reaction is employed, phase interface rector, and method for manufacturing secondary reaction product
Seo et al. Photodegradation of HCFC-22 Using Microwave Discharge Electrodeless Mercury Lamp with TiO 2 Photocatalyst Balls
Chae et al. Photo-catalytic degradation of rhodamine B using microwave powered electrodeless discharge lamp

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200212

R150 Certificate of patent or registration of utility model

Ref document number: 6661534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250