JP2010166855A - Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal - Google Patents

Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal Download PDF

Info

Publication number
JP2010166855A
JP2010166855A JP2009012376A JP2009012376A JP2010166855A JP 2010166855 A JP2010166855 A JP 2010166855A JP 2009012376 A JP2009012376 A JP 2009012376A JP 2009012376 A JP2009012376 A JP 2009012376A JP 2010166855 A JP2010166855 A JP 2010166855A
Authority
JP
Japan
Prior art keywords
cereal
cereals
water vapor
plasma
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009012376A
Other languages
Japanese (ja)
Inventor
Toshihiko Hanai
俊彦 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009012376A priority Critical patent/JP2010166855A/en
Publication of JP2010166855A publication Critical patent/JP2010166855A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a processing method for long storage of cereals, to provide cereals processed to be storable for long, and to provide a processing apparatus for long storage of cereals. <P>SOLUTION: The processing method includes bringing steam plasma into contact with cereals for a short time. The cereals are various cereals such as rice, wheat, bean, corn, and millet, and may be cereals which are unskinned, skinned, crushed, ground, granulated or scraped. The steam plasma has a temperature of 40-600°C, and the time to bring the steam plasma into contact with the cereals is preferably for 0.1-30 s. The steam plasma is generated by either one kind selected from the group consisting of dielectric barrier electrical discharge, corona electrical discharge, high frequency electrical discharge, and microwave electrical discharge. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、穀類の長期保存可能化処理方法及び長期保存可能化処理された穀類並びに穀類の長期保存可能化処理装置に関するものである。
そして、大気圧下で低温かつ短時間で穀類表面を殺菌しその変質を回避して長期間保存できる穀類を提供するものであり、酸化されず、放射線や化学薬品を使用せずに長期保存に耐える穀類を提供するものである。
The present invention relates to a method for enabling long-term storage of cereals, a grain subjected to processing for enabling long-term storage, and a processing device for enabling long-term storage of cereals.
It provides cereals that can be stored for a long period of time by sterilizing the surface of the cereals at low temperatures and in a short time under atmospheric pressure, avoiding its alteration, and can be stored for a long period of time without using radiation or chemicals. It provides cereals that can withstand.

「新規殺菌方法の必要性」
食品を長期輸送や保存する場合には前もって殺菌や滅菌をして、バクテリア、カビや虫を殺す必要がある。これら生物は細胞膜の破壊や蛋白質の固定化、DNA損傷によって生物としての形態をとれなくなり死に至る。(例えばエイズウイルスの細胞膜は薄いので空気中に放置すればすぐに死んでしまう。他方、風邪ウイルスは強固な膜で覆われているので空気中で安定であり、世界中を飛びまわれるので鳥インフルエンザウイルスの方がエイズウイルスより人類にとって危険である。)
"Necessity of a new sterilization method"
When food is transported or stored for a long period of time, it must be sterilized and sterilized in advance to kill bacteria, mold and insects. These organisms are unable to take the form of organisms due to destruction of cell membranes, protein immobilization, and DNA damage, resulting in death. (For example, the cell membrane of AIDS virus is so thin that it will die immediately if left in the air. On the other hand, the cold virus is covered with a strong membrane, so it is stable in the air and flies around the world, so it is avian influenza. (The virus is more dangerous for humans than the AIDS virus.)

穀類の備蓄が不可欠なわが国に於いて、穀類の長期保存は不可欠である。加工食品は長期保存に耐えるがそれでも缶詰の缶が保存中に雑菌の繁殖によって膨らむ現象は知られており、原材料が長期保存できれば食品の選択性と安全面から望ましい。   In Japan, where storage of cereals is indispensable, long-term storage of cereals is indispensable. Processed foods can withstand long-term storage, but canned cans still swell due to the propagation of germs during storage, and it is desirable from the viewpoint of food selectivity and safety if raw materials can be stored for a long time.

レトルト食品が普及するに連れて、長期保存ができるかどうかがレトルト食品として採用されるかどうかの原点であり、種々の殺菌・滅菌方法が適用されている。   As retort foods become widespread, whether or not they can be stored for a long time is the starting point of whether or not they are adopted as retort foods, and various sterilization and sterilization methods are applied.

殺菌とは微生物の生細胞を殺すことで、滅菌とは非病原菌、病原菌及び細菌胞子も殺すことを意味し、消毒は病原微生物を殺すことを意味している。殺菌および滅菌は、高温(蛋白質の変性、凝集)、高圧(蛋白質の変性、凝集)、裸火(有機物の酸化)、紫外線(DNA損傷、活性酸素発生)、化学薬品(蛋白質の変性、酸化)、その他の方法で細菌を死滅させることにあり、種々の方法が報告されている。しかしながら、斯界では、殺菌と滅菌は明確に峻別して使用されていないので、以下、滅菌及び殺菌を単に「殺菌」という。   Sterilization means killing living cells of microorganisms, sterilization means killing non-pathogenic bacteria, pathogenic bacteria and bacterial spores, and disinfection means killing pathogenic microorganisms. Sterilization and sterilization are performed at high temperatures (protein denaturation and aggregation), high pressure (protein denaturation and aggregation), open flame (oxidation of organic substances), ultraviolet rays (DNA damage, generation of active oxygen), chemicals (protein denaturation and oxidation). Various methods have been reported for killing bacteria by other methods. However, since sterilization and sterilization are not clearly distinguished from each other in this field, sterilization and sterilization are hereinafter simply referred to as “sterilization”.

[従来の殺菌方法]
殺菌法には化学的殺菌法と物理的殺菌法とがあり、現在使われている方法を物理的方法と化学的方法に分けて考える。
物理的殺菌法:
これには、焼却法、煮沸法(20-30分)以外に、細菌の胞子は100℃では死なないので、100℃で30分間繰り返して3日間行う蒸気殺菌法を用いたり、胞子を含む微生物を高圧殺菌(2.5気圧、120℃)で15−20分処理するか乾熱殺菌法で150−160℃、30−60分処理する。超高温短時間殺菌、通電加熱殺菌法も使われている。
光線等殺菌照射による物理的殺菌:
これには、マイクロ波、パルス電界 、紫外線 、光パルス、放射線等を照射して殺菌する装置が開発され使用されている。ガンマ線照射処理をすると果物の内部まで超短時間でガンマ線が通過して、ありとあらゆる微生物を一番効率良く殺すことができ、かつ、遠隔操作で処理するので人間には無害であるが日本では一般に受け入れられない。
特に紫外線照射殺菌においては、細菌細胞内 に遺伝情報をつかさどる核酸(DNAまたはRNA)が存在し、エネルギーの大きい紫外線が細胞内に吸収されると、核蛋白構造が変化し、細菌生命の維持や新陳代謝に障害をきたし、死滅すると考えられている。但し,生物によっては DNA の修復機能を持っているので,完全に絶滅させるには,高出力で長時間照射しなければならない。紫外線照射を止めると再び増殖を始める菌もいる。また,影になった部分の殺菌は不十分である。
電子線照射殺菌においては、自然の放射線レベルに比べて、数億倍という強力な放射線を短時間に照射された微生物は、細胞の増殖が著しく阻害され、線量がさらに増加すると殺滅菌に至るが一般には扱いにくい装置である。医療器具、医薬品容器、食品飲料容器、キャップ、試験器材、クリーンルーム用品等の滅菌に使われている。
[Conventional sterilization method]
There are two types of sterilization methods: chemical sterilization method and physical sterilization method. The methods currently used are divided into physical method and chemical method.
Physical sterilization methods:
In addition to the incineration method and boiling method (20-30 minutes), bacterial spores do not die at 100 ° C, so use a steam sterilization method that repeats at 100 ° C for 30 minutes for 3 days, or microorganisms containing spores. Is treated with high pressure sterilization (2.5 atm, 120 ° C.) for 15-20 minutes or by dry heat sterilization at 150-160 ° C. for 30-60 minutes. Ultra high temperature short time sterilization, electric heating sterilization method is also used.
Physical sterilization by light sterilization irradiation:
For this purpose, an apparatus for sterilizing by irradiating with microwave, pulse electric field, ultraviolet ray, light pulse, radiation or the like has been developed and used. When gamma irradiation treatment is performed, gamma rays pass into the inside of the fruit in a very short time, killing all kinds of microorganisms most efficiently, and because they are processed by remote control, they are harmless to humans, but generally accepted in Japan I can't.
In particular, in ultraviolet irradiation sterilization, there are nucleic acids (DNA or RNA) that control genetic information in bacterial cells. When ultraviolet rays with large energy are absorbed into cells, the nuclear protein structure changes, and bacterial life is maintained. It is thought that the metabolism will be damaged and die. However, since some organisms have a DNA repair function, they must be irradiated at high power for a long time to be completely extinct. Some bacteria start to grow again when UV irradiation is stopped. Moreover, the sterilization of the shadowed part is insufficient.
In electron beam sterilization, microorganisms that have been exposed to several hundred million times more intense radiation in a short time compared to the natural radiation level are markedly inhibited in cell growth. In general, it is a difficult device. It is used for sterilization of medical equipment, pharmaceutical containers, food and beverage containers, caps, test equipment, clean room products, etc.

化学的殺菌法:
化学薬品が直接に殺菌対象の生物に触れなければ効果がないので、適用範囲が限定される。オゾン殺菌および塩素殺菌は水道水および排水の殺菌に使われており、細胞膜や細胞壁を破壊された病原生物は、内部の蛋白質やDNA等にまで遊離残留塩素やオゾンの影響が及ぶため殺菌される。イオン化した酸性水を使っても酸化作用で細胞破壊ができる。沸騰水での加熱殺菌では加熱して生物の蛋白質を変性させてその生物を死に至らすことができるが、同時に食品素材も熱加工することになり、食品素材を現地で加工し、缶詰、瓶詰や真空パックとして保存する場合はともかく生鮮食品の殺菌には適していない。冷凍保存は殺菌ではなく繁殖を抑えたとみなせる。
Chemical sterilization method:
Since chemicals are not effective unless they directly touch the organism to be sterilized, the scope of application is limited. Ozone sterilization and chlorine sterilization are used to sterilize tap water and wastewater. Pathogenic organisms whose cell membranes and cell walls have been destroyed are sterilized due to the effects of free residual chlorine and ozone on internal proteins and DNA. . Even using ionized acidic water, cells can be destroyed by oxidation. Heat sterilization with boiling water can heat and denature biological proteins to kill the organisms, but at the same time food materials are also heat-processed, food materials processed locally, canned, bottled And when stored as a vacuum pack, it is not suitable for sterilizing fresh food. Cryopreservation can be considered as a suppression of breeding rather than sterilization.

化学的殺菌は微生物に薬物が侵入して化学的に細胞を変化させることで、蛋白質の作用を阻害したり、蛋白質の合成を阻害する。但し、殺菌剤そのものが毒物であるので残留しないようにする注意が必要である。使われている薬物としてはアルコール、ホルムアルデヒド、フェノール、クレゾール、晒し粉(生石灰に塩素を吸収させたもの)、次亜塩素酸カルシウム、塩化ベンザルコニウムがあり、エチレンオキサイドは加熱できない器物の殺虫、殺菌に使われる。薫蒸も化学的殺菌法の一つで、密閉空間で薬剤をガス状にして一定時間保持し、有害生物を駆除する方法である。薫蒸剤に似た薫煙剤は除燃剤や加熱剤と農薬を混合したもので、点火、燃焼させて発生する熱で有効成分が蒸散して作用を発揮する。但し、臭化メチルは環境へのガスの飛散や残留汚染の危険性が予測され環境問題の面から使用禁止となった。バナナは殺虫の為にシアンガスで薫蒸処理され、輸入許可が下る。   Chemical sterilization inhibits the action of proteins or inhibits protein synthesis by invading microorganisms and chemically changing cells. However, care must be taken not to leave the disinfectant itself because it is a poisonous substance. Drugs used include alcohol, formaldehyde, phenol, cresol, bleached powder (quick lime absorbed chlorine), calcium hypochlorite, and benzalkonium chloride. Ethylene oxide is an insecticide that cannot be heated. Used for sterilization. Fumigation is one of the chemical sterilization methods. It is a method of exterminating pests by keeping the gas in a sealed space and holding it for a certain period of time. A fumigant, similar to a fumigant, is a mixture of a fire retardant, a heating agent, and an agrochemical. The active ingredient evaporates due to the heat generated by ignition and combustion. However, methyl bromide was banned due to environmental problems because of the risk of gas scattering and residual contamination to the environment. Bananas are fumigated with cyanide for insecticidal use and import permission is granted.

穀類の殺菌に関する公開特許技術としては、穀類の粕を高熱殺菌処理した後微粉末する(特許文献1)、穀粒を水に浸漬後発芽させた穀粒を乾燥処理後に加熱殺菌処理をして減菌された発芽穀類粉末及びその製造方法(特許文献2)、全脂大豆の製造過程で胚芽と皮を分離した後に蒸煮しているが加熱は酵素失活を目的としている(特許文献3)、そのままでは食品に適さない食品粕のようなものを60Coやマイクロ波加熱で処理して健康食品として供する(特許文献4)等があるが、穀類及びその物理的加工品を食品材料として変質させずに長期保存する方法に関する報告はない。 As an open patent technology regarding sterilization of cereals, cereal grains are pulverized after high-heat sterilization (Patent Document 1), and the grains germinated after immersing the grains in water are subjected to heat sterilization after drying. Sterile germinated cereal powder and method for producing the same (Patent Document 2), steaming after separation of the germ and skin in the production process of full-fat soybean, but heating is aimed at enzyme deactivation (Patent Document 3) There are food candy that is not suitable for food as it is and processed as a health food by treating it with 60 Co or microwave heating (Patent Document 4). However, cereals and their physically processed products are altered as food materials. There is no report on how to store for a long time without letting go.

特開2007−312694号公報JP 2007-31694 A 特開2005−278557号公報JP 2005-278557 A 特開2007−044051号公報JP 2007-040551 A 特開2005−143480号公報JP 2005-143480 A

従来の滅菌殺菌方法で耐熱性菌まで殺菌するためにはガンマ線照射やオートクレーブ(加圧蒸気滅菌機)が使われてきた。ガンマ線はわが国の事情から一般食材の殺菌には使いがたく、オートクレーブ方式では食材を変性させるだけでなく、大量処理が難しい等の問題点があった。このために食材を変性させることなく滅菌する方法の開発が望まれてきた。   In order to sterilize heat-resistant bacteria using conventional sterilization methods, gamma irradiation and autoclave (autoclave sterilizer) have been used. Gamma rays are difficult to use for sterilization of general foods due to the circumstances in Japan, and the autoclave method has problems such as not only modifying foods but also making it difficult to process in large quantities. For this reason, it has been desired to develop a method for sterilization without modifying the food.

今迄、どのような装置を使っても食品素材の特性を変えることなく効率よい殺菌には限界があり、環境汚染や食品汚染を伴わない安全かつ食品加工ではない殺菌方法がなかったので実用的な殺菌装置の開発が望まれている。
本発明の課題は穀類を変性させることなく、特別な管理許可のいらない殺菌装置を開発して長期保存が可能な穀類を供給することにある。本発明者は、上記課題を解決すべく鋭意研究の結果、細胞膜を破壊する水素及びヒドロキシルラジカルを発生する水蒸気プラズマを応用することにした。
Until now, there is a limit to efficient sterilization without changing the characteristics of food materials, no matter what equipment is used, and there is no safe and non-food processing sterilization method that does not involve environmental pollution and food contamination. Development of a new sterilizer is desired.
An object of the present invention is to develop a sterilizing apparatus that does not require special management permission without degenerating cereals and to supply cereals that can be stored for a long time. As a result of intensive studies to solve the above problems, the present inventor decided to apply water vapor plasma that generates hydrogen and hydroxyl radicals that destroy the cell membrane.

すなわち、本発明は下記構成の穀類の長期保存可能化処理方法及び長期保存可能化処理された穀類並びに穀類の長期保存可能化処理装置である。
(1) 穀類に水蒸気プラズマを短時間接触させることを特徴とする穀類の長期保存可能化処理方法。
(2) 穀類が、皮付きのもの、脱皮されたもの、破砕されたもの、細砕されたもの、粒状化されたもの、又は研削されたものの群から選択される1種又は2種以上であることを特徴とする(1)記載の穀類の長期保存可能化処理方法。
(3) 穀類が、米、麦、豆及びトウモロコシ、アワ等の雑穀類からなる群から選択される1種又は2種以上であることを特徴とする(1)又は(2)に記載の穀類の長期保存可能化処理方法。
(4) 水蒸気プラズマが、温度40〜600℃のものであることを特徴とする(1)〜(3)のいずれか1項に記載の穀類の長期保存可能化処理方法。
(5) 穀類に水蒸気プラズマを接触させる時間が、0.1〜30秒間であることを特徴とする(1)〜(4)のいずれか1項に記載の穀類の長期保存可能化処理方法。
(6) 水蒸気プラズマが、誘電体バリア放電、コロナ放電、高周波放電又はマイクロ波放電からなる群から選ばれるいずれか1種によって生成されるものであることを特徴とする(1)〜(5)のいずれか1項に記載の穀類の長期保存可能化処理方法。
(7)(1)〜(6)のいずれか1項に記載の方法によって得られた長期保存可能化処理された穀類。
(8)(1)〜(6)のいずれか1項に記載の穀類の長期保存可能化処理方法に用いられる装置であって、水蒸気プラズマ発生装置と穀類を水蒸気プラズマに短時間接触させる装置とからなることを特徴とする穀類の長期保存可能化処理装置。
(9) 傾斜して設けられた表面が粗い平面状の板又は網板2と、それに振動を付与する振動機4と、その上部に配設されたホッパ1と、前記平面状の板又は網板2上の穀類5に水蒸気プラズマを照射接触させるための水蒸気プラズマ照射筒6とを具備してなることを特徴とする(8)記載の穀類の長期保存可能化処理装置。
(10) 傾設された回転円筒体7と、その上部に配設されたホッパ1と、前記回転円筒体7内の穀類5に水蒸気プラズマを照射接触させるための水蒸気プラズマ照射筒6とを具備してなることを特徴とする(8)記載の穀類の長期保存可能化処理装置。
(11) 下端に穀類5と水蒸気プラズマの導入口を備え、上端に穀類5と水蒸気プラズマの混合物の導出口を備えた円筒状処理塔10であって、その下方部が円錐状であり、垂設されてなる円筒状処理塔10を備えてなることを特徴とする(8)記載の穀類の長期保存可能化処理装置。
(12) 下端に穀類5と水蒸気プラズマの導入口を備え、上端に穀類5と水蒸気プラズマの混合物の導出口を備えた横設されたドーナツ状の短円筒体11であって、その下端から導入された穀類5と水蒸気プラズマの混合物を上記ドーナツ状の短円筒体内で回転させて相互に接触させ、接触処理済みの穀類5を上端の導出口から取り出すようにしたことを特徴とする(8)記載の穀類の長期保存可能化処理装置。
That is, the present invention is a method for enabling long-term storage of cereals having the following constitution, a cereal subjected to long-term storage enabling processing, and a processing device for enabling long-term storage of cereals.
(1) A method for enabling long-term storage of cereals, wherein the cereals are contacted with water vapor plasma for a short time.
(2) The cereals are one or more selected from the group of skinned, moulted, crushed, comminuted, granulated, or ground (1) The method for enabling long-term storage of cereals according to (1).
(3) The cereal according to (1) or (2), wherein the cereal is one or more selected from the group consisting of rice, wheat, beans, and other cereals such as corn and millet Method for enabling long-term storage.
(4) The method for enabling long-term storage of cereals according to any one of (1) to (3), wherein the water vapor plasma is at a temperature of 40 to 600 ° C.
(5) The method for enabling long-term storage of cereals according to any one of (1) to (4), wherein the time for which the water vapor plasma is brought into contact with the cereal is 0.1 to 30 seconds.
(6) The water vapor plasma is generated by any one selected from the group consisting of dielectric barrier discharge, corona discharge, high frequency discharge or microwave discharge (1) to (5) The long-term preservation | save enabling method of the grain of any one of these.
(7) A grain that has been subjected to a long-term storage enabling process, obtained by the method according to any one of (1) to (6).
(8) An apparatus used in the method for enabling long-term storage of cereal according to any one of (1) to (6), wherein the water vapor plasma generator and the cereal are in contact with the water vapor plasma for a short time; A processing apparatus for enabling long-term storage of cereals, comprising:
(9) A flat plate or net plate 2 having a rough surface provided with an inclination, a vibrator 4 for imparting vibrations thereto, a hopper 1 disposed thereon, and the flat plate or net The apparatus for enabling long-term storage of cereals according to (8), comprising a water vapor plasma irradiation tube 6 for bringing the water vapor plasma into contact with the cereal 5 on the plate 2.
(10) A tilted rotary cylinder 7, a hopper 1 disposed on the rotary cylinder 7, and a water vapor plasma irradiation tube 6 for bringing water vapor plasma into contact with the grains 5 in the rotary cylinder 7 are provided. The processing apparatus which enables long-term storage of cereals according to (8).
(11) A cylindrical processing tower 10 having a cereal 5 and water vapor plasma inlet at the lower end and a derivation port for the mixture of cereal 5 and water vapor plasma at the upper end. A long-term storable processing device for cereals according to (8), comprising a cylindrical processing tower 10 provided.
(12) A doughnut-shaped short cylindrical body 11 provided horizontally at the lower end and provided with a cereal 5 and water vapor plasma inlet at the lower end and an outlet for the mixture of cereal 5 and water vapor plasma at the upper end. The mixture of the processed cereal 5 and the water vapor plasma is rotated in the donut-shaped short cylindrical body and brought into contact with each other, so that the contact-treated cereal 5 is taken out from the outlet at the upper end (8) The processing apparatus which enables long-term storage of the cereal described.

「水蒸気プラズマ殺菌の原理」
プラズマとは正と負にイオン化したガスである。これはアメリカの物理化学者ラングミアが希薄気体放電管の陽極部の状態に対して名づけた。気体中に強い電流を流したり、気体をアーク等を使って高温に加熱すると一部又は全電子が原子から離れて自由に飛びまわれるようになり。その結果として、原子は電気を帯びたプラスイオンになる。このような状態が典型的な気体プラズマである。
プラズマを発生させるガス源として希ガスのアルゴンを使うと分子は原子レベルまで分解され、原子特有の輝線を発する。ヘリウムや窒素もガス源として使われ、ガス分子を誘導してイオン化するのにラジオ波を使うラジオ波(高周波)誘導結合およびマイクロ波を使うマイクロ波誘導プラズマと称される。いずれの装置もガス状分子を励起さしてイオン化し、その中に導入される有機物を分解する。
"Principles of steam plasma sterilization"
Plasma is a gas that is ionized positively and negatively. This was named by the American physical chemist Langmier for the state of the anode of a rare gas discharge tube. When a strong current is passed through the gas, or when the gas is heated to a high temperature using an arc or the like, some or all of the electrons will be free to fly away from the atoms. As a result, the atoms become charged positive ions. Such a state is a typical gas plasma.
When the rare gas argon is used as a gas source for generating plasma, molecules are decomposed to the atomic level and emit atomic emission lines. Helium and nitrogen are also used as gas sources and are called radio frequency (high frequency) inductive coupling that uses radio waves to induce and ionize gas molecules and microwave induced plasmas that use microwaves. Both devices excite gaseous molecules by ionizing them, and decompose organic substances introduced into them.

ラジカルは遊離基と訳され、不対電子を持つ分子種で、一般に不安定で種種の反応に関与しており、安定な分子を不安定な分子に変える。つまり、容易に細胞膜を破壊したり、蛋白質や核酸の元の構造を変える。   A radical, translated as a free radical, is a molecular species with an unpaired electron, which is generally unstable and involved in the reaction of the species, changing a stable molecule into an unstable molecule. That is, it easily destroys cell membranes and changes the original structure of proteins and nucleic acids.

プラズマの発生方法としては誘電体バリア放電、コロナ放電、高周波放電、マイクロ波放電等が用途に応じて使われている。ヘリウムガスをマイクロ波の電磁波でプラズマ化するマイクロ波(2450 MHz)誘導プラズマ(Microwave Induced Plasma)はノズルから噴出すると周囲の大気と混合し急速に温度が低下し,低密度の反応性化学種・荷電粒子かつ低温な流動場を形成する。窒素やアルゴンガスをラジオ波(27-50 MHz)の電磁波でプラズマ化する誘導結合プラズマ(radio frequency Inductively Coupled Plasma)はプラズマ中で分子を分解、イオン化して原子特有の発光させるので、マイクロ波誘導プラズマと共に分光分析機器に使われている。
アーク放電で電極間の気体もプラズマ化できる。大気の電離層、太陽のコロナ等広くプラズマは身近にある。実際の装置では一部のガスがプラズマになっているのにすぎないがガスの流量を調節することにより目的にあったプラズマを得ることが出来る。
As a method for generating plasma, dielectric barrier discharge, corona discharge, high frequency discharge, microwave discharge, and the like are used depending on applications. Microwave (2450 MHz) induced plasma (Microwave Induced Plasma), which transforms helium gas into plasma with microwave electromagnetic waves, mixes with the surrounding atmosphere when ejected from the nozzle, and the temperature rapidly decreases, resulting in low-density reactive species. Form charged particles and low-temperature flow fields. Inductively coupled plasma, which converts nitrogen or argon gas into plasma with radio waves (27-50 MHz), decomposes and ionizes molecules in the plasma to emit light peculiar to atoms. Used in spectroscopic instruments together with plasma.
The gas between the electrodes can also be turned into plasma by arc discharge. Plasma is widely available, such as the ionosphere of the atmosphere and the corona of the sun. In an actual apparatus, only a part of the gas is in plasma, but the desired plasma can be obtained by adjusting the flow rate of the gas.

プラズマを用いる殺菌:
水素プラズマを用いる殺菌に関して、水放電法で高濃度のラジカルを生成させる装置の開発, 金属の表面処理、医療や料理器具の殺菌、ICウエハーやプリント基板の灰化等に使えるマイクロ波プラズマ発生器の開発, 還元作用による酸化された金属の還元、有機物汚染の除去、金属の殺菌により金属製の医療器具や料理器具等の殺菌に適したマイクロ波水素プラズマ発生装置, レンズの特性を変えるためのマイクロ波処理装置, 微生物やヴィルスと反応する放出粒子を抱合することを特徴として、微生物やヴィルスの核酸を壊さずに微生物やヴィルスの蛋白質を断片化して殺菌する方法と装置, 過酸化水素とオゾン量を保って殺菌する装置, オゾンで管を殺菌する装置, 抗バクテリアプラスティック容器の製造方法, 食品包装用材料の過酸化水素を使う大気圧低温プラズマ消毒法, 放電によってオゾンや過酸化水素を発生させて煙道ガスの無毒化、水の浄化、廃水処理、パルプの脱色、医療器具の殺菌等の特許文献が見られるがオゾン酸化が起こるので食材の殺菌には適していない。
Sterilization using plasma:
Microwave plasma generator that can be used for the development of high concentration radicals by water discharge method for sterilization using hydrogen plasma, metal surface treatment, sterilization of medical and cooking utensils, ashing of IC wafers and printed circuit boards Development of microwave hydrogen plasma generator suitable for the sterilization of metal medical instruments and cooking utensils by the reduction of oxidized metal by reduction action, removal of organic contamination, metal sterilization, to change the characteristics of the lens Microwave treatment equipment, characterized by conjugating emitted particles that react with microorganisms and virus, methods and equipment to fragment and sterilize microorganisms and virus proteins without destroying microorganisms and virus nucleic acids, hydrogen peroxide and ozone Device for sterilization by keeping volume, device for sterilizing tubes with ozone, manufacturing method of anti-bacterial plastic container, hydrogen peroxide for food packaging material There are patent documents such as atmospheric pressure low temperature plasma disinfection method, ozone and hydrogen peroxide generated by discharge, detoxification of flue gas, water purification, wastewater treatment, pulp decolorization, medical instrument sterilization, etc. Since ozone oxidation occurs, it is not suitable for sterilization of foodstuffs.

その他、水素プラズマ、殺菌、食品に関する文献としてはポリエチレンテレフタレイト容器の殺菌、食品容器、プラズマをコンスタントに供給するシステム、過酸化水素やオゾンをコンスタントに供給して滅菌するシステム、医療器具、耐熱性高分子の殺菌,放電法で液体の滅菌、導尿管の殺菌に過酸化水素プラズマを用いる等の報告があるが、酸化反応を適用しているので食材の殺菌には好ましくない。   Other documents related to hydrogen plasma, sterilization, and food include sterilization of polyethylene terephthalate containers, food containers, systems that constantly supply plasma, systems that constantly sterilize by supplying hydrogen peroxide and ozone, medical equipment, heat resistance Although there are reports of sterilization of functional polymers, liquid sterilization by the discharge method, and hydrogen peroxide plasma for sterilization of the urinary tract, etc., it is not preferable for sterilization of foods because the oxidation reaction is applied.

ヒドロキシルラジカルを用いる殺菌に関して、狭い電極間に高電圧をかけて水とガスの混合中に過酸化水素、オゾン、ヒドロキシルラジカル、酸素ラジカル等を発生させて殺菌する小型の装置の開発、空気、酸素、窒素を用いるパルス放電プラズマで大腸菌を不活性化した。低温大気圧プラズマを使った実験で大腸菌不活性化に重要なのは酸素原子であることが解った。医療器具の殺菌に低圧ラジオ波放電プラズマを用いた。酸素と水から発生させた酸素ラジカルが殺菌する為に酸化が重要であることを確かめた。その際ヒドロキシルラジカルの存在も測定した。小型の大気圧プラズマ発生器を開発して、発生したヒドロキシルと酸素ラジカルでストレプトコカス ムタンス 細菌を殺菌した。加圧した密閉容器の中で水蒸気からヒドロキシルラジカルを発生させ、オゾンプラズマを用いて医療器具の殺菌をした。大気圧での空気のプラズマで発生させた酸素や窒素由来の反応性種で微生物を短時間で殺菌できた。摂氏55度以下で種々のプラズマを使い殺菌効果を調べたところ空気に0.05Mの水をのをプラズマのキャリヤーガスとした時に致死率が高く、ヒドロキシルラジカルによるとした。ドライクリーニング装置に酸素、水蒸気プラズマに紫外線照射を加えるとヒドロキシルラジカル、過酸化や酸素原子などで迅速に殺菌できた。   Regarding sterilization using hydroxyl radicals, development of small devices that generate sterilization by generating hydrogen peroxide, ozone, hydroxyl radicals, oxygen radicals, etc. during mixing of water and gas by applying high voltage between narrow electrodes, air, oxygen Escherichia coli was inactivated by pulse discharge plasma using nitrogen. In experiments using low-temperature atmospheric pressure plasma, it was found that oxygen atoms are important for E. coli inactivation. Low pressure radio frequency discharge plasma was used for sterilization of medical instruments. It was confirmed that oxidation is important for sterilizing oxygen radicals generated from oxygen and water. At that time, the presence of hydroxyl radicals was also measured. A small atmospheric pressure plasma generator was developed to sterilize Streptococcus mutans bacteria with the generated hydroxyl and oxygen radicals. Hydroxyl radicals were generated from water vapor in a pressurized sealed container, and medical instruments were sterilized using ozone plasma. Microorganisms could be sterilized in a short time with reactive species derived from oxygen and nitrogen generated by air plasma at atmospheric pressure. When sterilizing effect was examined using various plasmas at 55 degrees Celsius or lower, the lethality was high when 0.05 M water was used as the carrier gas of the plasma, and it was attributed to hydroxyl radicals. When oxygen was applied to the dry cleaning device and UV light was applied to the water vapor plasma, it could be quickly sterilized by hydroxyl radicals, peroxidation, oxygen atoms, etc.

そこで本発明では、強力な殺菌滅菌力のある水素及びヒドロキルラジカルを発生している水蒸気プラズマ流中に穀類又はその顆粒や紛体を導入し、それらを接触させて、瞬時に表面殺菌滅菌をする。この処理法は従来採用されている加熱水蒸気を密閉又は半密閉する方法に比べて、高熱による殺菌ではないので穀類や顆粒の内部まで熱が加わらないので内部組織を変性させることなく表面に付着した雑菌の細胞膜破壊によって殺菌することができる。この殺菌方法で処理した穀類は外部からの雑菌の混入がなければ長期保存に耐えうる。   Therefore, in the present invention, cereals or granules or powders thereof are introduced into a water vapor plasma stream generating hydrogen and hydroxyl radicals having strong sterilization and sterilization power, and brought into contact with each other to instantly sterilize the surface. . Compared to the conventional method of sealing or semi-sealing heated steam, this treatment method is not sterilized by high heat, so heat is not applied to the inside of cereals and granules, so it adheres to the surface without modifying the internal structure. It can be sterilized by cell membrane destruction of various bacteria. Grains treated by this sterilization method can withstand long-term storage without contamination by external germs.

水蒸気プラズマを穀類の滅菌殺菌に適用:
水蒸気プラズマはガスとして水蒸気を用いることに特徴があり、場所を選ばず使える。この水蒸気プラズマは低温にもかかわらず化学反応性があるので、医療分野に於いて、生体や低耐熱材料の殺菌や医療器具の滅菌などに使われ、化学薬品を使わない殺菌法として期待されている。細菌にプラズマ、反応性が高いラジカル、を短時間照射すると細胞膜が損傷していることが観測されており、時間をかけれるならば更なる低温での殺菌が可能である。生体内ではラジカルを発生させて殺菌作用、情報伝達、古い蛋白質の破壊等に使うが、一般に短命で、必要な部位でしか発生しないが、体内に老廃物が蓄積すると活性酸素を発生して、組織の損傷、壊死、不整脈の発生、消化管の潰瘍をもたらす炎症性疾患の原因になる。
Application of water vapor plasma for sterilization of cereals:
Water vapor plasma is characterized by the use of water vapor as a gas and can be used anywhere. Since this water vapor plasma is chemically reactive despite its low temperature, it is used in the medical field for sterilization of living organisms and low heat-resistant materials and medical instruments, and is expected as a sterilization method that does not use chemicals. Yes. It has been observed that cell membranes are damaged when bacteria are irradiated with plasma and radicals with high reactivity for a short time. If time is taken, sterilization at a lower temperature is possible. In the living body, it generates radicals and is used for bactericidal action, information transmission, destruction of old proteins, etc., but it is generally short-lived and only occurs at the necessary site, but when waste products accumulate in the body, it generates active oxygen, Causes inflammatory diseases that result in tissue damage, necrosis, arrhythmia, and gastrointestinal ulcers.

なお、調査の結果、以下のことが各種文献に記載されている。
医療用具の滅菌用にもラジオ波で励起した水蒸気プラズマが適用されており、発生する原子酸素やヒドロキルラジカルを使って摂氏55度で滅菌できること。
水蒸気プラズマでウール(ケラチン繊維)を処理すると表面が親水性になること。 疎水性な合成樹脂膜を低温の水蒸気プラズマ処理で親水性に変えたこと。
カーボンブラックを摂氏100度以下で水蒸気プラズマ処理をすると表面に水酸基が形成される。この反応性のある水酸基を更に化学処理をしてカーボンブラックの表面を円滑にしてゴムに加えることにより、寿命の長いタイヤを製造することが出来ること。
金属表面処理においてもプラズマ処理をして金属表面に水酸基を導入してから化学反応で有機化合物を結合する方法が考案されていること。
バイオ燃料のエタノールの燃焼効率を向上させるためにエタノールと水の混合液中でプラズマを発生させると摂氏161度で水から精製した水素ラジカルがエタノールを反応して水素を生成し、その水素がバイオ燃料の燃焼効率を上げること。
ガス中でプラズマを発生さすとSOはヒドロキシルラジカルと反応して硫酸として除去され、NOxは窒素として除去できる。この反応において水からのプラズマの発生が重要であること。
2酸化炭素を分解するのに水蒸気プラズマの役割が重要であること。
中圧超音波放電でも水から生成した水素プラズマが反応溶液中の過酸化水素量を一定に保つこと。バリヤー放電をする際,湿った空気を使うとオゾン量は減少し、過酸化水素を含むラジカルが生成し、生物活性物が増加すること。
酸素プラズマ中に水を加えると酸素量が増加し、灰化反応の活性化エネルギーを減少させ、ヒドロオキシルラジカルがセミコンダクターのナトリウム付加を防ぐこと。
微量の水をマイクロ波で励起させてプラズマとして分析する方法も開発されたこと。
効率よく水素を発生するのに簡便プラズマ発生をデザインしたこと。アルゴンを使う誘導プラズマ(ICP)に於いても少量の水の役割が検討されており、水は水素、ヒドロキシラジカルの発生し、励起温度に影響を及ぼすことが論じられていること。
As a result of the investigation, the following is described in various documents.
Water vapor plasma excited by radio waves is also used for sterilization of medical devices, and it can be sterilized at 55 degrees Celsius using the generated atomic oxygen and hydroxyl radicals.
When wool (keratin fiber) is treated with water vapor plasma, the surface becomes hydrophilic. The hydrophobic synthetic resin film was changed to hydrophilic by low-temperature steam plasma treatment.
When carbon black is treated with water vapor plasma at 100 degrees Celsius or less, hydroxyl groups are formed on the surface. A tire having a long life can be manufactured by further chemically treating the reactive hydroxyl group and adding the surface of carbon black to the rubber smoothly.
Also in the metal surface treatment, a method of bonding organic compounds by chemical reaction after introducing a hydroxyl group on the metal surface by plasma treatment has been devised.
When plasma is generated in a mixture of ethanol and water in order to improve the combustion efficiency of ethanol as a biofuel, hydrogen radicals purified from water react with ethanol at 161 degrees Celsius to produce hydrogen, and the hydrogen Increase fuel combustion efficiency.
When plasma is generated in the gas, SO 2 reacts with hydroxyl radicals and is removed as sulfuric acid, and NOx can be removed as nitrogen. The generation of plasma from water is important in this reaction.
The role of water vapor plasma is important in decomposing carbon dioxide.
Hydrogen plasma generated from water in medium pressure ultrasonic discharge keeps the amount of hydrogen peroxide in the reaction solution constant. When performing a barrier discharge, the amount of ozone decreases, radicals containing hydrogen peroxide are generated, and bioactive substances increase when humid air is used.
Adding water to the oxygen plasma increases the amount of oxygen, reduces the activation energy of the ashing reaction, and the hydroxyl radical prevents semiconductor sodium addition.
A method for analyzing a plasma by exciting a small amount of water with microwaves has also been developed.
Designed simple plasma generation to generate hydrogen efficiently. The role of a small amount of water is also being studied in the induction plasma (ICP) using argon, and it is argued that water generates hydrogen and hydroxy radicals and affects the excitation temperature.

水蒸気プラズマ照射法は加圧密閉方法ではなく、大気圧下で短時間照射することで穀類表面の殺菌や滅菌が出来、かつ穀類内部まで熱が加わらないので穀類の品質特性を殆ど変化させずに耐熱性菌も殺菌できる。
穀類に付着している細菌類、害虫等は穀類の表面にのみ存在するので、穀類の表面のみに水蒸気プラズマを接触させれば穀類の殺菌処理ができ、本発明の処理法は穀類の殺菌処理に最適である。
The water vapor plasma irradiation method is not a pressure-sealing method, but the surface of the cereal can be sterilized and sterilized by irradiating it under atmospheric pressure for a short time, and heat is not applied to the inside of the cereal, so the quality characteristics of the cereal are hardly changed. Heat-resistant bacteria can also be sterilized.
Bacteria, pests, etc. adhering to the cereal exist only on the surface of the cereal, so if the water vapor plasma is brought into contact with only the surface of the cereal, the cereal can be sterilized. Ideal for.

本発明の第1実施例の装置を示す正面断面図である。It is front sectional drawing which shows the apparatus of 1st Example of this invention. 本発明の第2実施例の装置を示す正面断面図である。It is front sectional drawing which shows the apparatus of 2nd Example of this invention. 本発明の第3実施例の装置を示す一部断面正面図である。It is a partial cross section front view which shows the apparatus of 3rd Example of this invention. 本発明の第4実施例の装置を示す正面断面図である。It is front sectional drawing which shows the apparatus of 4th Example of this invention. 本発明の第5実施例の装置を示す正面断面図である。It is front sectional drawing which shows the apparatus of 5th Example of this invention.

次に、本発明を実地するための最良の形態について、図面に基づいて説明する。
水蒸気プラズマを穀類の表面に効率よく接触させるためには、穀類の表面細胞に直接照射する必要があり、単に静置した物に照射しただけでは水蒸気プラズマが照射された上面だけが殺菌され、プラズマが当たらない下面に付着した細菌を殺すことができない。
さらに、流動床方式で連続して殺菌処理するためには工夫が必要であるが、網板の上面にある穀類に網板の下面から水蒸気プラズマ照射をするとプラズマの特性である直線性から照射効率が悪い。このため上面に置いた穀類に水蒸気プラズマを効率よく照射接触するためには、網板面上に置いた穀類を回転させる工夫が必要である。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
In order to efficiently bring the water vapor plasma into contact with the surface of the cereal, it is necessary to directly irradiate the surface cells of the cereal. By simply irradiating a stationary object, only the upper surface irradiated with the water vapor plasma is sterilized, and the plasma is sterilized. Cannot kill bacteria attached to the lower surface that does not hit.
Furthermore, it is necessary to devise in order to sterilize continuously in the fluidized bed method. However, if the cereals on the upper surface of the mesh plate are irradiated with water vapor plasma from the lower surface of the mesh plate, the irradiation efficiency is derived from the linearity that is the characteristic of the plasma. Is bad. For this reason, in order to efficiently bring water vapor plasma into contact with the cereal placed on the upper surface, it is necessary to devise a method for rotating the cereal placed on the net plate surface.

穀類への効率の良い水蒸気プラズマ照射法:
そこで、実施例1としての図1(正面断面図)に示すごとく、表面が粗い平面状の板や網板2を角度を付け傾斜して設け、かつ振動機4による振動を与えた状態で、その平面板又は網板の上部に配設されたホッパ1から穀類5を下方へ転動・流下し、それら穀類5に水蒸気プラズマ照射筒6から放出される水蒸気プラズマを照射接触する。
そして、下方に配置された受容器3に水蒸気プラズマ照射によって殺菌処理された穀類5'を取得する
なお、実施例2としての図2(正面断面図)は、図1の装置にケーシング9を被せたものである。
上記において、平面状の板の粗さ具合は、プラズマ処理をする穀類の形状や比重にしたがって調整すればよい。
網板の場合には網の粗さを穀類が網目を通過して落ちないような形状の物を選ぶ。
Efficient water vapor plasma irradiation method for cereals:
Therefore, as shown in FIG. 1 (front cross-sectional view) as Example 1, a flat plate or net plate 2 having a rough surface is provided at an angle and inclined, and vibration by the vibrator 4 is applied. The cereal 5 rolls and flows downward from the hopper 1 disposed on the upper part of the flat plate or net plate, and the cereal 5 is irradiated and contacted with water vapor plasma emitted from the water vapor plasma irradiation tube 6.
Then, the cereal 5 'sterilized by water vapor plasma irradiation is obtained in the receiver 3 disposed below. Note that FIG. 2 (front sectional view) as Example 2 covers the apparatus of FIG. It is a thing.
In the above, the roughness of the flat plate may be adjusted according to the shape and specific gravity of the cereal to be plasma treated.
In the case of a net plate, select a shape that prevents the grain from falling through the mesh.

また、実施例3としての図3(一部断面正面図)に示すごとく、傾設された回転円筒体7中を穀類5を回転させながら通過させる場合には、円筒体7内に配設された照射筒6から放出される水蒸気プラズマを、回転しながら通過する穀類5に効率良く照射させることが望ましい。
そこで、円筒体7の単位長さ当たりに多量の穀類5を処理するために円筒体7の内面に襞(ひだ)8を付けるのが望ましく、襞8の形状及び大きさは、円筒体7の内径を決めるのと同様に、経済効率を考え、プラズマ処理する穀類の形状、比重と単位時間あたりの処理量によって決める。
なお、図(a)は一部断面正面図、図(b)は図(a)のA−A’断面図である。
Further, as shown in FIG. 3 (partial cross-sectional front view) as the third embodiment, when the cereal 5 is caused to pass through the inclined rotating cylindrical body 7 while being rotated, it is disposed in the cylindrical body 7. It is desirable to efficiently irradiate the cereal 5 passing through the water vapor plasma released from the irradiation cylinder 6 while rotating.
Therefore, it is desirable to attach a fold 8 to the inner surface of the cylindrical body 7 in order to process a large amount of cereal 5 per unit length of the cylindrical body 7. In the same way as determining the inner diameter, considering the economic efficiency, it is determined by the shape, specific gravity and processing amount per unit time of the cereal to be plasma processed.
In addition, FIG. (A) is a partial cross-sectional front view, and FIG. (B) is an AA ′ cross-sectional view of FIG.

さらに実施例4としての図4(正面断面図)に示すごとく、穀類の粉体や粒子状物体50の乾燥に使われている下部が円錐状の垂設された筒状処理塔10に、熱風の代わりに水蒸気プラズマ照射筒6からの水蒸気プラズマを導入すると、乾燥だけでなく滅菌もできる。なお、筒状処理塔10内では、穀類5と水蒸気プラズマが旋回して上昇して行き、上部から水蒸気プラズマ処理された穀類と水蒸気プラズマの混合物12が導出される。   Further, as shown in FIG. 4 (front sectional view) as Example 4, hot air is applied to the cylindrical processing tower 10 in which the lower part used for drying the cereal powder and the particulate matter 50 is conically suspended. If water vapor plasma from the water vapor plasma irradiation cylinder 6 is introduced instead of sterilization, not only drying but also sterilization can be performed. In the cylindrical processing tower 10, the cereal 5 and the water vapor plasma swirl and rise, and a mixture 12 of the cereal and the water vapor plasma treated with the water vapor plasma is derived from the upper part.

さらに、実施例5としての図5(正面断面図)に示すごとく、横設されたドーナツ状の短円筒体11に熱風や加熱水蒸気を通過させて粉体や粒子状物体50の加熱乾燥をする装置を利用する場合にも、加熱水蒸気発生装置の変わりに水蒸気プラズマ照射筒6からの水蒸気プラズマを導入すれば、大気圧下で上記ドーナツ状の短円筒体11の中で穀類の粉体や粒子状物体50を水蒸気プラズマと回転接触させることができる。 こうすることで、穀類の粉体や粒子状物体50表面全面に水蒸気プラズマを高効率で接触させることができ、比較的低温での殺菌もできる。   Furthermore, as shown in FIG. 5 (front cross-sectional view) as Example 5, hot air or heated steam is passed through the doughnut-shaped short cylindrical body 11 placed horizontally to dry the powder or the particulate matter 50. Even when the apparatus is used, if the steam plasma from the steam plasma irradiation tube 6 is introduced instead of the heating steam generator, the powder and particles of cereal grains in the doughnut-shaped short cylinder 11 under the atmospheric pressure. The object 50 can be brought into rotational contact with the water vapor plasma. By doing so, water vapor plasma can be brought into contact with the entire surface of the cereal powder and the particulate object 50 with high efficiency, and sterilization at a relatively low temperature can be achieved.

以上に説明した本発明の水蒸気プラズマによる穀類の殺菌処理は、他の天然食材、例えば生薬、ハーブ、野菜、果実、魚介類等その表面に細菌類が付着して、腐敗、品質劣化等を引き起こす天然の動植物食材の殺菌処理に好適に採用できる。
また、天然食材に限らず、加工食品であっても、製造後にその表面に雑菌が付着して加工食品を腐敗又は品質劣化を引き起こす問題のある二次汚染対象食品に対しても適用できる。
The sterilization treatment of cereals by the water vapor plasma of the present invention described above causes other natural foods such as herbal medicines, herbs, vegetables, fruits, seafood, etc., to attach bacteria to the surface and cause rot, quality deterioration, etc. It can be suitably used for sterilizing natural animal and vegetable foods.
Further, not only natural foods but also processed foods can be applied to secondary contaminated foods that have a problem of causing spoilage or quality deterioration due to the adherence of germs on the surface after production.

1:ホッパ
2:平板又は網板
3:受容器
4:振動機
5:穀類
5’、50:水蒸気プラズマ処理された穀類
6:水蒸気プラズマ照射筒
7:傾設された回転円筒体
8:襞(ひだ)
9:ケーシング
10:垂設された筒状処理塔
11:ドーナツ状の短円筒体
12:水蒸気プラズマ処理された穀類と水蒸気プラズマの混合物
1: Hopper 2: Flat plate or mesh plate 3: Receptor 4: Vibrator 5: Grain 5 ', 50: Grain treated with water vapor plasma 6: Water vapor plasma irradiation cylinder 7: Rotating cylindrical body tilted 8: Reed ( Folds)
9: Casing 10: Vertical cylindrical processing tower 11: Donut-shaped short cylindrical body 12: Mixture of cereal and steam plasma treated with steam plasma

Claims (12)

穀類に水蒸気プラズマを短時間接触させることを特徴とする穀類の長期保存可能化処理方法。   A method for enabling long-term storage of cereals, characterized in that water vapor plasma is brought into contact with cereals for a short time. 穀類が、皮付きのもの、脱皮されたもの、破砕されたもの、細砕されたもの、粒状化されたもの、又は研削されたものの群から選択される1種又は2種以上であることを特徴とする請求項1記載の穀類の長期保存可能化処理方法。   That the cereal is one or more selected from the group of peeled, peeled, crushed, crushed, granulated, or ground The method for enabling long-term storage of cereals according to claim 1. 穀類が、米、麦、豆及びトウモロコシ、アワ等の雑穀類からなる群から選択される1種又は2種以上であることを特徴とする請求項1又は2に記載の穀類の長期保存可能化処理方法。   The cereal can be stored for a long period of time according to claim 1 or 2, wherein the cereal is one or more selected from the group consisting of rice, wheat, beans, and cereals such as corn and millet. Processing method. 水蒸気プラズマが、温度40〜600℃のものであることを特徴とする請求項1〜3のいずれか1項に記載の穀類の長期保存可能化処理方法。   The method for enabling long-term storage of cereals according to any one of claims 1 to 3, wherein the water vapor plasma has a temperature of 40 to 600C. 穀類に水蒸気プラズマを接触させる時間が、0.1〜30秒間であることを特徴とする請求項1〜4のいずれか1項に記載の穀類の長期保存可能化処理方法。   The method for enabling long-term storage of cereals according to any one of claims 1 to 4, wherein the time for which the steam plasma is brought into contact with the cereals is 0.1 to 30 seconds. 水蒸気プラズマが、誘電体バリア放電、コロナ放電、高周波放電又はマイクロ波放電からなる群から選ばれるいずれか1種によって生成されるものであることを特徴とする請求項1〜5のいずれか1項に記載の穀類の長期保存可能化処理方法。   6. The water vapor plasma is generated by any one selected from the group consisting of dielectric barrier discharge, corona discharge, high frequency discharge or microwave discharge. The long-term preservation | save processing method of cereals as described in 1 .. 請求項1〜6のいずれか1項に記載の方法によって得られた長期保存可能化処理された穀類。   A cereal obtained by the method according to any one of claims 1 to 6, which has been subjected to a long-term storage enabling process. 請求項1〜6のいずれか1項に記載の穀類の長期保存可能化処理方法に用いられる装置であって、水蒸気プラズマ発生装置と穀類を水蒸気プラズマに短時間接触させる装置とからなることを特徴とする穀類の長期保存可能化処理装置。   It is an apparatus used for the long-term preservation | save enabling method of the cereal of any one of Claims 1-6, Comprising: It consists of a water vapor plasma generator and the apparatus which makes a cereal contact for short time to water vapor plasma. A long-term storage processing device for cereals. 傾斜して設けられた表面が粗い平面状の板又は網板と、それに振動を付与する振動機と、その上部に配設されたホッパと、前記平面状の板又は網板上の穀類に水蒸気プラズマを照射接触させるための水蒸気プラズマ照射筒とを具備してなることを特徴とする請求項8記載の穀類の長期保存可能化処理装置。   A flat plate or net plate having a rough surface provided with an inclination, a vibrator for imparting vibrations thereto, a hopper disposed on the top, and water vapor on grains on the flat plate or net plate 9. The apparatus for enabling long-term storage of cereals according to claim 8, comprising a water vapor plasma irradiation tube for irradiating and contacting plasma. 傾設された回転円筒体と、その上部に配設されたホッパと、前記回転円筒体内の穀類に水蒸気プラズマを照射接触させるための水蒸気プラズマ照射筒とを具備してなることを特徴とする請求項8記載の穀類の長期保存可能化処理装置。   An inclined rotating cylinder, a hopper disposed on the rotating cylinder, and a water vapor plasma irradiation tube for bringing water vapor plasma into contact with the grains in the rotating cylinder are provided. Item 9. A processing apparatus for enabling long-term storage of cereals according to item 8. 下端に穀類と水蒸気プラズマの導入口を備え、上端に穀類と水蒸気プラズマの混合物の導出口を備えた円筒状処理塔であって、その下方部が円錐状であり、垂設されてなる円筒状処理塔を備えてなることを特徴とする請求項8記載の穀類の長期保存可能化処理装置。   A cylindrical processing tower having a cereal and water vapor plasma inlet at the lower end and an outlet for a mixture of cereal and water vapor plasma at the upper end, the lower part of which is a conical shape, and a cylindrical shape formed vertically. The processing apparatus for enabling long-term storage of cereals according to claim 8, comprising a processing tower. 下端に穀類5と水蒸気プラズマの導入口を備え、上端に穀類と水蒸気プラズマの混合物の導出口を備えた横設されたドーナツ状の短円筒体であって、その下端から導入された穀類と水蒸気プラズマの混合物を上記ドーナツ状の短円筒体内で回転させて相互に接触させ、接触処理済みの穀類を上端の導出口から取り出すようにしたことを特徴とする請求項8記載の穀類の長期保存可能化処理装置。
A short doughnut-shaped cylindrical body having a cereal 5 and water vapor plasma inlet at its lower end and a cereal and water vapor plasma mixture outlet at its upper end, the cereal and water vapor introduced from its lower end 9. The cereal according to claim 8, wherein the mixture of plasma is rotated in the doughnut-shaped short cylinder and brought into contact with each other so that the contacted cereal is taken out from the outlet at the upper end. Processing equipment.
JP2009012376A 2009-01-22 2009-01-22 Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal Pending JP2010166855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012376A JP2010166855A (en) 2009-01-22 2009-01-22 Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012376A JP2010166855A (en) 2009-01-22 2009-01-22 Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal

Publications (1)

Publication Number Publication Date
JP2010166855A true JP2010166855A (en) 2010-08-05

Family

ID=42699556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012376A Pending JP2010166855A (en) 2009-01-22 2009-01-22 Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal

Country Status (1)

Country Link
JP (1) JP2010166855A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198608A1 (en) * 2014-06-27 2015-12-30 国立大学法人九州工業大学 Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product
CN109907108A (en) * 2019-04-19 2019-06-21 吉林大学 A kind of cereal plasma preprocessor and its method
CN112931613A (en) * 2021-02-03 2021-06-11 安徽省泗县旭峰面粉有限公司 Multifunctional wheat storage and turnover device and use method thereof
CN113940403A (en) * 2021-11-17 2022-01-18 宁夏玉礼面粉有限公司 Sterile flour processing device and process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241859A (en) * 1983-12-13 1985-11-30 Kikkoman Corp Method and apparatus for dropping and heat-treatment of powdery substance
JPS61194535U (en) * 1985-05-27 1986-12-04
JPH0383567A (en) * 1989-08-28 1991-04-09 Nisshin Flour Milling Co Ltd Apparatus for sterilizing powder or granule
JP2000135273A (en) * 1998-10-30 2000-05-16 S & B Foods Inc Continuous agitating sterilizer of powder and grain
JP2000157416A (en) * 1998-11-30 2000-06-13 Kikkoman Corp Device for heat-processing powder and particle material
JP2001037413A (en) * 1999-07-26 2001-02-13 Bio Oriented Technol Res Advancement Inst Apparatus for carrying out sterilizing treatment of brown rice by utilizing high voltage
JP2002010766A (en) * 2000-06-30 2002-01-15 Sanyo Electric Co Ltd Method for carrying out sterilizing treatment of object of sterilization such as cereals and seed
JP2006333824A (en) * 2005-06-03 2006-12-14 Gunma Univ Method of sterilizing by low temperature plasma and device for the same
JP2008261547A (en) * 2007-04-12 2008-10-30 Kosumo Kenkyusho:Kk Steam superheater and use application

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241859A (en) * 1983-12-13 1985-11-30 Kikkoman Corp Method and apparatus for dropping and heat-treatment of powdery substance
JPS61194535U (en) * 1985-05-27 1986-12-04
JPH0383567A (en) * 1989-08-28 1991-04-09 Nisshin Flour Milling Co Ltd Apparatus for sterilizing powder or granule
JP2000135273A (en) * 1998-10-30 2000-05-16 S & B Foods Inc Continuous agitating sterilizer of powder and grain
JP2000157416A (en) * 1998-11-30 2000-06-13 Kikkoman Corp Device for heat-processing powder and particle material
JP2001037413A (en) * 1999-07-26 2001-02-13 Bio Oriented Technol Res Advancement Inst Apparatus for carrying out sterilizing treatment of brown rice by utilizing high voltage
JP2002010766A (en) * 2000-06-30 2002-01-15 Sanyo Electric Co Ltd Method for carrying out sterilizing treatment of object of sterilization such as cereals and seed
JP2006333824A (en) * 2005-06-03 2006-12-14 Gunma Univ Method of sterilizing by low temperature plasma and device for the same
JP2008261547A (en) * 2007-04-12 2008-10-30 Kosumo Kenkyusho:Kk Steam superheater and use application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012027781; 日本機械学会論文集(B編), 74[740](2008) p.879-883 *
JPN6012027784; IEEE Trans. Plasma Sci., 36[4](2008) p.1302-1303 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198608A1 (en) * 2014-06-27 2015-12-30 国立大学法人九州工業大学 Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product
JPWO2015198608A1 (en) * 2014-06-27 2017-08-03 国立大学法人九州工業大学 Reaction product manufacturing method and phase interface reaction apparatus using phase interface reaction, and secondary reaction product manufacturing method
CN109907108A (en) * 2019-04-19 2019-06-21 吉林大学 A kind of cereal plasma preprocessor and its method
CN112931613A (en) * 2021-02-03 2021-06-11 安徽省泗县旭峰面粉有限公司 Multifunctional wheat storage and turnover device and use method thereof
CN113940403A (en) * 2021-11-17 2022-01-18 宁夏玉礼面粉有限公司 Sterile flour processing device and process

Similar Documents

Publication Publication Date Title
Feizollahi et al. Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications
Butscher et al. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge
Moreau et al. Non-thermal plasma technologies: new tools for bio-decontamination
Scholtz et al. Nonthermal plasma—A tool for decontamination and disinfection
US9700642B2 (en) Method and apparatus for sterilizing and disinfecting air and surfaces and protecting a zone from external microbial contamination
Phan et al. Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview
JP2780228B2 (en) Plasma sterilization method and apparatus by pulsed sterilizing agent treatment
Ehlbeck et al. Low temperature atmospheric pressure plasma sources for microbial decontamination
KR100356101B1 (en) Method for disinfection or sterilization of foods such as meat and vegetable products or produce, of feeding stuffs, machinery and equipment for foods and feeding stuff production, and a technical plant designed to carry out the method
JPH06500245A (en) Plasma circulation sterilization method
US20100209293A1 (en) Sterilization method and apparatus
JP2013537433A (en) Plasma generated gas sterilization method
Katsigiannis et al. Cold plasma for the disinfection of industrial food‐contact surfaces: An overview of current status and opportunities
Stoica et al. Atmospheric cold plasma as new strategy for foods processing-an overview.
Abuzairi et al. Investigation on physicochemical properties of plasma-activated water for the application of medical device sterilization
Hati et al. Nonthermal plasma technology and its potential applications against foodborne microorganisms
CN104225638A (en) Plasma atomized sterilization device with temperature of lower than 80 DEG C
Choi et al. Plasma bioscience for medicine, agriculture and hygiene applications
JP2010166855A (en) Processing method for long storage of cereal, cereals processed to be storable for long, and processing apparatus for long storage of cereal
Deepak Review on recent advances in cold plasma technology
Dalvi-Isfahan et al. Recent advances of high voltage electric field technology and its application in food processing: A review with a focus on corona discharge and static electric field
CN111686282A (en) Sterilizing device and method thereof
Salarieh et al. Sterilization of turmeric by atmospheric pressure dielectric barrier discharge plasma
Butscher et al. Disinfection of granular food products using cold plasma
JP2003175094A (en) Device for sterilizing and treating waste by microwave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120928