JPH0264615A - Defect correcting method for active matrix panel - Google Patents

Defect correcting method for active matrix panel

Info

Publication number
JPH0264615A
JPH0264615A JP63217529A JP21752988A JPH0264615A JP H0264615 A JPH0264615 A JP H0264615A JP 63217529 A JP63217529 A JP 63217529A JP 21752988 A JP21752988 A JP 21752988A JP H0264615 A JPH0264615 A JP H0264615A
Authority
JP
Japan
Prior art keywords
line
short circuit
data line
circuit part
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63217529A
Other languages
Japanese (ja)
Inventor
Mutsumi Matsuo
睦 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63217529A priority Critical patent/JPH0264615A/en
Publication of JPH0264615A publication Critical patent/JPH0264615A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To easily fix a defect short circuit part and to correct a linear defect by lighting a panel and applying a constant-voltage whose MOS capacities are P type and an N type and above and below an inversion threshold voltage, respectively to a data line or a scanning line containing a short circuit part. CONSTITUTION:A constant-voltage whose MOS capacities are a P type and an N type and above and below an inversion threshold voltage, respectively is applied to a data line or a scanning line containing a short circuit part. That is, when a liquid crystal panel is lighted, a vertical line defect can be discriminated by a pin hole 14. When a horizontal line of the short circuit part is known, the short circuit part can be fixed. Therefore, the data line having a vertical line defect is, for instance, grounded. Since only a common line 7 having a short circuit part is drawn to a ground level, the MOS capacity made by the common line 7 becomes about 1/10 of its original capacity, therefore, the horizontal line containing the common line 7 having a short circuit part becomes black to some extent, comparing with other horizontal line and displayed in a half tone display state of a negative type. Accordingly, it becomes clear that there is a short circuit part in an intersection of both liens.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アクティブマトリックスパネルの線欠陥修正
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for correcting line defects in active matrix panels.

[従来の技術] ガラス基板上に薄膜トランジスターを配置したアクティ
ブマトリックスパネルは、液晶テレビ等のフラットパネ
ルデイスプレィとしての用途がある。
[Prior Art] Active matrix panels in which thin film transistors are arranged on a glass substrate are used as flat panel displays such as liquid crystal televisions.

第3図は、アクティブマトリックスパネルの等価回路図
である。本図は、データ線1(あるいはソース線)のS
j列、走査線2(あるいはゲート線)のGi行近傍の様
子を示している。3は薄膜トランジスターであり、4は
液晶容量、5は、画素電荷保持容量である。○印は、対
向電極6を示すもので共通に接続されている。5の画素
電荷保持容量の片側電極は、共通線7(Ci)として、
周辺に接続されている。したがって、データ線1上のデ
ータは、薄膜トランジスターを介して、液晶容量と画素
電荷保持容量に書き込まれ、次のデータが書き込まれる
期間まで電荷が保持される。
FIG. 3 is an equivalent circuit diagram of an active matrix panel. This diagram shows data line 1 (or source line) S
It shows the situation in the vicinity of the Gi row of the scanning line 2 (or gate line) in the j column. 3 is a thin film transistor, 4 is a liquid crystal capacitor, and 5 is a pixel charge storage capacitor. The ◯ marks indicate the counter electrodes 6, which are connected in common. One side electrode of the pixel charge storage capacitor No. 5 is a common line 7 (Ci),
Connected to surroundings. Therefore, the data on the data line 1 is written into the liquid crystal capacitor and the pixel charge holding capacitor via the thin film transistor, and the charge is held until the next data is written.

第4図は、第3図の等節回路に基づいて、画素電荷保持
容量としてMOS型容量を用いた場合の概略構造の平面
図である。第5図は、第4図のa−a′断面図を描いた
ものである。
FIG. 4 is a plan view of a schematic structure when a MOS type capacitor is used as a pixel charge storage capacitor based on the equinodal circuit of FIG. 3. FIG. 5 is a cross-sectional view taken along line a-a' in FIG. 4.

1′は、ソース線、2′は、ゲート線、3′は薄膜トラ
ンジスター、7′は共通線である。製造プロセスを説明
すると以下の如である。まず、透明ガラス基板8上に、
多結晶シリコン薄膜9を堆積し、パターニングして、薄
膜トランジスターのソース、トレイン及びチャンネル領
域とMOS型の画素電荷保持容量の電極を形成する0次
に、熱酸化によりゲート絶縁膜10及び、MOS容量の
中間絶縁膜を形成する0次に、低抵抗の不純物ドーピン
グ多結晶シリコン薄膜あるいは、金属薄膜を堆積し、バ
ターニングして、ゲート電極11、ゲート#Jii2′
、共通線7゛を形成する0次に、リン原子イオンを打込
んでアニールして、ソース、ドレイン領域及び、画素電
荷保持容量の電極を形成する。この場合ドレイン電極と
、画素電荷保持容量の電極は、多結晶シリコン薄膜にて
接続されている0次に眉間絶縁膜12を堆積した後、コ
ンタクトホールな開口する0次に、透明導電膜を堆積し
て画素電極13、A1等の金属薄膜を堆積してソース線
1′を形成する。
1' is a source line, 2' is a gate line, 3' is a thin film transistor, and 7' is a common line. The manufacturing process will be explained as follows. First, on the transparent glass substrate 8,
A polycrystalline silicon thin film 9 is deposited and patterned to form the source, train, and channel regions of the thin film transistor and the electrodes of the MOS type pixel charge storage capacitor.Then, the gate insulating film 10 and the MOS capacitor are formed by thermal oxidation. Next, a low resistance impurity-doped polycrystalline silicon thin film or metal thin film is deposited and patterned to form the gate electrode 11 and gate #Jii2'.
, a common line 7' is formed, and phosphorus atom ions are implanted and annealed to form the source and drain regions and the electrodes of the pixel charge storage capacitor. In this case, the drain electrode and the electrode of the pixel charge storage capacitor are connected by a polycrystalline silicon thin film. After depositing the glabella insulating film 12 on the 0th order, a transparent conductive film is deposited on the 0th order with an opening like a contact hole. Then, metal thin films such as the pixel electrode 13 and A1 are deposited to form the source line 1'.

以上によりNチャンネル型の薄膜トランジスターが形成
される。したがって、ゲート電極11に、ソース、ドレ
イン領域と比較して、十分反転状態がおこるプラス電圧
を印加すると薄膜トランジスターは、ONする。同様に
して、共通線7′に、十分反転状態がおこるプラス電圧
を印加すると、十分な画素電荷保持容量が形成される。
Through the above steps, an N-channel thin film transistor is formed. Therefore, when a positive voltage that sufficiently causes an inversion state compared to the source and drain regions is applied to the gate electrode 11, the thin film transistor is turned on. Similarly, when a positive voltage that sufficiently causes an inversion state is applied to the common line 7', a sufficient pixel charge storage capacitance is formed.

第6図は、上記のN型MO3画素電荷保持容量の共通線
電位による変化を示したグラフである1反転電圧vth
以上では、多結晶シリコンと共通線の重なり分の容量が
発生し、電圧O近傍あるいは負電圧では、リン原子イオ
ンの打込まれた領域(約1μm幅)と共通線の重なり分
の小さな容量しか発生しない。したがって共通線7′の
幅をlOμm程度とすると、反転電圧vth以上では、
画素電荷保持容量は電圧0近傍あるいは負電圧に比べ1
0倍程度になる1画素駆動面積が小さい(すなわち高精
細度タイプ)場合には、液晶容量が小さく安定な表示か
えられないため、上記のようなMOS型の画素電荷保持
容量を構成すれば、反転電圧vth以上では小面積でも
液晶容量の2〜3倍の容量が得られるため開口率を減少
することも少なく、画質向上の面で有効である。
FIG. 6 is a graph showing changes in the above N-type MO3 pixel charge storage capacitor depending on the common line potential.
In the above case, a capacitance corresponding to the overlap between the polycrystalline silicon and the common line is generated, and at a voltage near O or at a negative voltage, only a small capacitance corresponding to the overlap between the area where the phosphorus atom ions are implanted (approximately 1 μm width) and the common line is generated. Does not occur. Therefore, if the width of the common line 7' is about 10 μm, at the inversion voltage vth or more,
The pixel charge retention capacity is 1 compared to near 0 voltage or negative voltage.
When the driving area of one pixel is small (that is, high-definition type), which is about 0 times, the liquid crystal capacitance is small and stable display cannot be changed, so if the above-mentioned MOS type pixel charge storage capacitor is configured, When the inversion voltage is higher than vth, a capacity 2 to 3 times the liquid crystal capacity can be obtained even in a small area, so the aperture ratio is hardly reduced, and this is effective in improving image quality.

[発明が解決しようとする課題) しかし、上記の共通線を設けることによって、新たな表
示不良が発生する。それは、第4図において、共通線7
′とデータ線1′が、眉間絶縁膜12中にピンホール1
4等があって短絡が発生することである。TN型の液晶
を用いたネガ表示の場合、中間調の灰色表示状態で短絡
箇所を含むデータ線1′につながる画素が共通線電位の
影響をうけて点燈するため、縦ラインの線欠陥が発生す
る。しかし、共通線の電位は、データ線に引かれても反
転電圧以下に著しく降下することはめったになく横ライ
ンの線欠陥は発生しすらい、したがって、欠陥短絡箇所
が固定できず、線欠陥を修正できないという不都合が発
生する。
[Problems to be Solved by the Invention] However, by providing the above-mentioned common line, new display defects occur. It is the common line 7 in Figure 4.
' and data line 1' form a pinhole 1 in the glabella insulating film 12.
4, etc., and a short circuit occurs. In the case of a negative display using a TN type liquid crystal, the pixels connected to the data line 1' including the short-circuited part are turned on due to the influence of the common line potential in the gray display state of the intermediate tone, so line defects in the vertical line are caused. Occur. However, the potential of the common line rarely drops significantly below the inversion voltage even when it is connected to the data line, and line defects on horizontal lines are likely to occur. An inconvenience occurs that cannot be corrected.

そこで本発明の目的とするところは、上記の欠陥短絡箇
所を容易に見つけ線欠陥修正する方法を提供するところ
にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for easily finding the defective short-circuit location and correcting the line defect.

〔課題を解決するための手段] 本発明のアクティブマトリックスパネルの欠陥修正方法
は、平行配置された複数本のデータ線群と前記データ線
群と直交して平行配置された複数本の走査線群からなり
、前記データ線群と走査線群の交点には、薄膜トランジ
スターが配置し、前記薄膜トランジスターのゲート電極
とソース電極がそれぞれ前記走査線とデータ線に連結さ
れ、前記薄膜トランジスターのドレイン電極が、画素電
極及び、誘電体膜をはさんで、共通線とでMOS容量を
構成して対向する半導体薄膜電極に連結されてなるアク
ティブマトリックス基板と、前記アクティブマトリック
ス基板と対向して対向電極を有する対向基板との間に液
晶を封入してなるアクティブマトリックスパネルのデー
タ線あるいは走査線と共通線との短絡による線欠陥の修
正方法において、パネルを点燈して、前記短絡箇所を含
むデータ線あるいは走査線に、前記MOS容量がP型、
N型でそれぞれ反転閾値電圧以上、以下の定電圧を印加
し、前記データ線あるいは走査線と短絡する共通線を見
い出し、短絡箇所をレーザー光線で切断分離することを
特徴とする。
[Means for Solving the Problems] A method for correcting defects in an active matrix panel according to the present invention includes a plurality of data line groups arranged in parallel and a plurality of scanning line groups arranged in parallel orthogonal to the data line group. A thin film transistor is arranged at the intersection of the data line group and the scanning line group, a gate electrode and a source electrode of the thin film transistor are connected to the scanning line and the data line, respectively, and a drain electrode of the thin film transistor is connected to the scanning line and the data line, respectively. , an active matrix substrate comprising a pixel electrode, a dielectric film sandwiched therebetween, a common line forming a MOS capacitor and connected to an opposing semiconductor thin film electrode, and a counter electrode facing the active matrix substrate. In a method for correcting a line defect caused by a short circuit between a data line or a scanning line and a common line in an active matrix panel formed by sealing a liquid crystal between it and a counter substrate, the panel is turned on, and the data line or the scan line including the short circuit is turned on. In the scanning line, the MOS capacitor is P type,
It is characterized in that it is an N type, and a constant voltage above and below an inversion threshold voltage is applied, a common line short-circuited with the data line or the scanning line is found, and the short-circuited part is cut and separated with a laser beam.

〔作 用] 第4図、6図を用いて説明する。液晶パネルを点燈すれ
ば、ピンホール14により、縦ライン欠陥は判別できる
。短絡箇所の横ラインが判れば、短絡箇所が固定できる
。そのためには、縦ライン欠陥のあるデータ線を例えば
接地する。短絡箇所のある共通線7′のみが接地レベル
にひかれるため、共通線7゛でつくるMOS容量は本来
の容量のl/10程度になるため、短絡箇所のある共通
線7′を含む横ラインが、ネガ型の中間調表示状態で他
の横ラインよりもやや黒(なって表われる。
[Function] This will be explained using FIGS. 4 and 6. If the liquid crystal panel is turned on, vertical line defects can be identified by pinholes 14. If you know the horizontal line of the short circuit, you can fix the short circuit. For this purpose, the data line with the vertical line defect is grounded, for example. Since only the common line 7' where the short circuit is located is connected to the ground level, the MOS capacity created by the common line 7' is about 1/10 of the original capacity, so the horizontal line including the common line 7' where the short circuit is However, in the negative halftone display state, it appears slightly blacker than the other horizontal lines.

したがって両ラインの交点に短絡箇所があることが判明
する。
Therefore, it is clear that there is a short circuit at the intersection of both lines.

[実 施 例] 第1図は、本発明の第1実施例を等価回路図で示したも
のである。データ線Sjと共通線Ciが、上記のような
眉間絶縁膜中のピンホール14により短絡した場合を示
している。第2図は、N型薄膜トランジスターを開いた
パネルを駆動するための信号波形を示すものである。短
絡によりデータ線Sjには、はとんど共通線の電位VG
(通常N−MO3型で15〜20■)が印加されるため
、TN液晶を用いたネガタイプ(2枚の偏光板が平行状
態にある)白黒表示では、中間調表示(通常ビデオ振幅
約3V)にすると縦のSjラインが白く点燈する。しか
し、共通線の電位は、データ線信号に引かれても著しく
変化することはないため、MOS容量は十分確保され横
ライン欠陥は発生しない。Sjラインの端に針を接触さ
せ、接地するとSjラインは白く点燈し続ける一方、共
通線Ciの電位が、接地電位に引かれるため、共通lI
C1上で短絡箇所近傍のMOS容量が1/10<らいま
で落ちて、周辺より黒い線が出現する。したがってその
番地を記録し、短絡箇所近傍両端を共通線またはデータ
線をレーザー光線で切断分離し、分離して浮いた信号線
は外部端子により周辺をまわして配線接地すればよい0
本図では、データ線を接地電位にしているがMOS容量
の反転閾値電圧以下の定電位であれば、同じことがいえ
る。
[Embodiment] FIG. 1 shows an equivalent circuit diagram of a first embodiment of the present invention. This shows a case where the data line Sj and the common line Ci are short-circuited due to the pinhole 14 in the glabella insulating film as described above. FIG. 2 shows a signal waveform for driving a panel with N-type thin film transistors open. Due to the short circuit, the data line Sj is almost at the potential VG of the common line.
(usually 15 to 20 µ for N-MO3 type), so in negative type (two polarizing plates are in parallel) black and white display using TN liquid crystal, halftone display (usually video amplitude of about 3 V) When set to , the vertical Sj line lights up white. However, since the potential of the common line does not change significantly even if it is pulled by a data line signal, a sufficient MOS capacitance is ensured and horizontal line defects do not occur. When the needle is brought into contact with the end of the Sj line and grounded, the Sj line continues to light up in white, while the potential of the common line Ci is drawn to the ground potential, so the common lI
The MOS capacitance near the short circuit on C1 drops to 1/10< or so, and a black line appears from the periphery. Therefore, record the address, cut and separate the common line or data line at both ends near the short-circuit point using a laser beam, and connect the separated and floating signal line around the periphery with an external terminal to ground the wiring.
In this figure, the data line is set to the ground potential, but the same can be said as long as it is at a constant potential below the inversion threshold voltage of the MOS capacitor.

また、MOS容量がP型の場合は、反転閾値電圧以上の
定電圧を印加すればよい。
Furthermore, if the MOS capacitor is P type, a constant voltage equal to or higher than the inversion threshold voltage may be applied.

通常、MOS容量の反転閾値電圧は、N型で5−10V
、P型で−5−−10V程度である。
Normally, the inversion threshold voltage of MOS capacitor is 5-10V for N type.
, about -5 to -10 V for P type.

第7図は、第2の実施例を示す等価回路図である。第1
図と異なる点は、共通線が、データ線と平行に配置され
ている点で、この場合走査線との間に短絡箇所が発生す
る。第8図は、第7図の等価回路の実際の概略構造を示
す平面図である。第8図の構造は、走査線2′が分断さ
れていて、コンタクトホールを介して、データ線1′と
同一の材料で連結されている点を除けば、はとんど第4
図と同じであるため、製造方法は省略する。第8図中の
眉間絶縁膜のピンホール14により走査線2′と共通線
7′が短絡すると短絡箇所を含む走査線上の画素が横ラ
イン欠陥となって走査線信号を入れな(とも点燈する。
FIG. 7 is an equivalent circuit diagram showing the second embodiment. 1st
The difference from the diagram is that the common line is arranged parallel to the data line, and in this case a short circuit occurs between the common line and the scanning line. FIG. 8 is a plan view showing the actual schematic structure of the equivalent circuit of FIG. 7. The structure shown in FIG. 8 is basically the fourth line, except that the scanning line 2' is separated and connected to the data line 1' using the same material through a contact hole.
Since it is the same as the figure, the manufacturing method will be omitted. When the scanning line 2' and the common line 7' are short-circuited due to the pinhole 14 in the glabella insulating film in FIG. do.

しかし、縦ライン不良は発生しない、第1実施例と同様
に、短絡箇所を含む走査線に針をあて、接地すると、短
絡箇所を含む共通線の電位が接地電位に引かれるため、
共通線上で短絡箇所近傍のMOS容量は1/lo<らい
に減少し、周辺より黒い線となってあられれる。
However, vertical line defects do not occur.Similar to the first embodiment, when a needle is placed on the scanning line containing the short circuit and grounded, the potential of the common line containing the short circuit is drawn to the ground potential.
The MOS capacitance near the short circuit on the common line decreases to 1/lo<or so, and appears as a darker line than the surrounding area.

したがって、その番地を調べれば、短絡箇所を見つけだ
したことになり、前述したような修正をはどこせばよい
ことになる。
Therefore, if you check that address, you will have found the short circuit, and you will need to make the corrections described above.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、共通線と、データ線あ
るいは、走査線との短絡箇所を容易に見いだせるため、
修正が容易にできるという長所がある。短絡箇所を含む
データ線あるいは走査線に針を当てて接地するよりは、
あらかじめ周辺に、データ信号と接地電位とに切りかえ
ができる薄膜トランジスターによるスイッチが設けられ
ていれば、作業性は、さらに向上する。
As described above, according to the present invention, it is possible to easily find a short circuit between a common line and a data line or a scanning line.
It has the advantage of being easy to modify. Rather than grounding the data line or scan line containing the short circuit with a needle,
If a thin film transistor switch that can switch between a data signal and a ground potential is provided in the periphery in advance, work efficiency will be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例を示す等価回路図であ
る。第2図は、アクティブマトリックスパネルを駆動す
るときの各信号線の波形を示す図である。 第3図は、従来の等価回路図であり、第4図は、その概
略構造の平面図であり、第5図は、第4図のa−a′断
面図である。 第6図は、画素電荷保持N型MO3容量の電圧依存性を
示すグラフである。 第7図は、本発明の第2の実施例を示す等価回路図であ
り、第8図は、その概略構造の平面図である。 1.1’ 2、2 ′ 3、3 ′ 4 ・ ・ ・ 5 ・ ・ ・ 6 ・ ・ ・ 7、7 ゛ 8 ・ ・ ・ 9 ・ ・ ・ 10 ・ ・ ・ 11  ・ ・ ・ l 2 ・ ・ ・ l 3 ・ ・ ・ l 4 ・ ・ ・ データ糸類(ソース線) 走査線(ゲート線) 薄膜トランジスタ 液晶容量 画素電荷保持容量 対向電極 共通線 ガラス基板 多結晶シリコン薄膜 ゲート絶縁膜 ゲート電極 眉間絶縁膜 画素電極 ピンホール 第5 目 第21辺 #−41図 六に 第 第6 図 俸81g
FIG. 1 is an equivalent circuit diagram showing a first embodiment of the present invention. FIG. 2 is a diagram showing waveforms of each signal line when driving the active matrix panel. FIG. 3 is a conventional equivalent circuit diagram, FIG. 4 is a plan view of its schematic structure, and FIG. 5 is a sectional view taken along the line a-a' in FIG. 4. FIG. 6 is a graph showing the voltage dependence of the pixel charge retention N-type MO3 capacitance. FIG. 7 is an equivalent circuit diagram showing a second embodiment of the present invention, and FIG. 8 is a plan view of its schematic structure. 1.1' 2, 2 ′ 3, 3 ′ 4 ・ ・ ・ 5 ・ ・ ・ 6 ・ ・ ・ 7, 7゛8 ・ ・ ・ 9 ・ ・ ・ 10 ・ ・ ・ 11 ・ ・ ・ l 2 ・ ・ ・ ・3 ・ ・ ・ l 4 ・ ・ ・ Data threads (source line) Scanning line (gate line) Thin film transistor Liquid crystal capacitor Pixel charge storage capacitor Counter electrode Common line Glass substrate Polycrystalline silicon Thin film Gate Insulating film Gate electrode Insulating film between eyebrows Pixel electrode pin Hole No. 5, No. 21 side #-41 No. 6, No. 6 Salary: 81g

Claims (1)

【特許請求の範囲】[Claims] 平行配置された複数本のデータ線群と前記データ線群と
直交して平行配置された複数本の走査線群からなり、前
記データ線群と走査線群の交点には、薄膜トランジスタ
ーが配置し、前記薄膜トランジスターのゲート電極とソ
ース電極がそれぞれ前記走査線とデータ線に連結され、
前記薄膜トランジスターのドレイン電極が、画素電極及
び、誘電体膜をはさんで、共通線とでMOS容量を構成
して対向する半導体薄膜電極に連結されてなるアクティ
ブマトリックス基板と、前記アクティブマトリックス基
板と対向して対向電極を有する対向基板との間に液晶を
封入してなるアクティブマトリックスパネルのデータ線
あるいは走査線と共通線との短絡による線欠陥の修正方
法において、パネルを点燈して、前記短絡箇所を含むデ
ータ線あるいは走査線に、前記MOS容量がP型、N型
でそれぞれ反転閾値電圧以上、以下の定電圧を印加し、
前記データ線あるいは走査線と短絡する共通線を見い出
し、短絡箇所をレーザー光線で切断分離することを特徴
とするアクティブマトリックスパネルの欠陥修正方法。
It consists of a plurality of data line groups arranged in parallel and a plurality of scanning line groups arranged in parallel orthogonal to the data line group, and a thin film transistor is arranged at the intersection of the data line group and the scanning line group. , a gate electrode and a source electrode of the thin film transistor are connected to the scan line and the data line, respectively;
an active matrix substrate in which a drain electrode of the thin film transistor is connected to an opposing semiconductor thin film electrode by forming a MOS capacitor with a pixel electrode and a common line across a dielectric film, and the active matrix substrate; In a method for correcting a line defect due to a short circuit between a data line or a scanning line and a common line in an active matrix panel in which a liquid crystal is sealed between a counter substrate having a counter electrode facing each other, the panel is turned on and the Applying a constant voltage equal to or higher than the inversion threshold voltage or lower than the inversion threshold voltage to the data line or scanning line including the short-circuited point when the MOS capacitor is P type or N type, respectively;
A method for correcting defects in an active matrix panel, characterized in that a common line short-circuited with the data line or scanning line is found, and the short-circuited part is cut and separated using a laser beam.
JP63217529A 1988-08-31 1988-08-31 Defect correcting method for active matrix panel Pending JPH0264615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217529A JPH0264615A (en) 1988-08-31 1988-08-31 Defect correcting method for active matrix panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217529A JPH0264615A (en) 1988-08-31 1988-08-31 Defect correcting method for active matrix panel

Publications (1)

Publication Number Publication Date
JPH0264615A true JPH0264615A (en) 1990-03-05

Family

ID=16705676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217529A Pending JPH0264615A (en) 1988-08-31 1988-08-31 Defect correcting method for active matrix panel

Country Status (1)

Country Link
JP (1) JPH0264615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184323A (en) * 1990-11-19 1992-07-01 Sanyo Electric Co Ltd Liquid crystal display device
US5159477A (en) * 1989-11-22 1992-10-27 Sharp Kabushiki Kaisha Active matrix display device having additional capacitors connected to switching elements and additional capacitor common line
US5608558A (en) * 1994-04-26 1997-03-04 Sharp Kabushiki Kaisha Defect detection method and apparatus for active matrix substrate or active matrix liquid crystal panel and defect repairing method thereof
US6885027B2 (en) 1994-06-02 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159477A (en) * 1989-11-22 1992-10-27 Sharp Kabushiki Kaisha Active matrix display device having additional capacitors connected to switching elements and additional capacitor common line
JPH04184323A (en) * 1990-11-19 1992-07-01 Sanyo Electric Co Ltd Liquid crystal display device
US5608558A (en) * 1994-04-26 1997-03-04 Sharp Kabushiki Kaisha Defect detection method and apparatus for active matrix substrate or active matrix liquid crystal panel and defect repairing method thereof
US6885027B2 (en) 1994-06-02 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
US7148506B2 (en) 1994-06-02 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
US7459724B2 (en) 1994-06-02 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device

Similar Documents

Publication Publication Date Title
US5173792A (en) Electrooptical display with compensative redundancy means
US5724107A (en) Liquid crystal display with transparent storage capacitors for holding electric charges
JP2907629B2 (en) LCD panel
KR100371757B1 (en) Active matrix type liquid crystal display
KR950019865A (en) LCD and its manufacturing method
JP3304272B2 (en) Active matrix substrate and method for treating structural defect thereof
KR101590945B1 (en) Liquid crystal display
JP2003091017A (en) Color liquid crystal display device
JPH07311390A (en) Liquid crystal display device
US5835170A (en) Active matrix LCD with storage capacitors connected between the pixel electrode and gate lines, none of which is a gate line for driving the pixel
JP2001147448A (en) Active matrix type liquid crystal display device
JPH0264615A (en) Defect correcting method for active matrix panel
US6587174B1 (en) Active matrix type liquid crystal display
JPH02216121A (en) Liquid crystal display device
JP3518851B2 (en) Driving method of active matrix substrate
US7830483B2 (en) Liquid crystal display device
JP2960268B2 (en) Active matrix liquid crystal panel, manufacturing method and driving method thereof, and active matrix liquid crystal display
JP4298819B2 (en) Liquid crystal display device and manufacturing method thereof
JPH03294824A (en) Active matrix type liquid crystal display element array
JPS61170724A (en) Substrate for active matrix display device
JP2523587B2 (en) Active matrix type liquid crystal display device
JP3177702B2 (en) Inspection method of liquid crystal display
JP3378678B2 (en) Liquid crystal display
JPH04280228A (en) Thin film field effect type transistor driving liquid crystal display element array and driving method thereof
KR100552288B1 (en) Thin Film Transistor Liquid Crystal Display