JPH0264502A - Production of precision member having specular surface - Google Patents

Production of precision member having specular surface

Info

Publication number
JPH0264502A
JPH0264502A JP21797588A JP21797588A JPH0264502A JP H0264502 A JPH0264502 A JP H0264502A JP 21797588 A JP21797588 A JP 21797588A JP 21797588 A JP21797588 A JP 21797588A JP H0264502 A JPH0264502 A JP H0264502A
Authority
JP
Japan
Prior art keywords
stock
mirror
precision
plastic deformation
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21797588A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukunaga
浩 福永
Tomiharu Matsushita
富春 松下
Suguru Motonishi
本西 英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21797588A priority Critical patent/JPH0264502A/en
Publication of JPH0264502A publication Critical patent/JPH0264502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To obtain the precision member which is smaller in specular surface roughness than heretofore by forming a casting stock having a unidirectionally solidified structure, subjecting the stock to working at a low reduction ratio to form the worked stock and subjecting the stock to mirror finishing. CONSTITUTION:The melt of an Al-Mg alloy is poured as a magnetic disk material into a casting mold 1 and is heated to 750 deg.C by a heater 3. On the other hand, cold water is passed into a cold water pipe 4 of a holder 2 and is drawn relatively with the casting mold 1 by the holder 2, by which the cast stock having the unidirectionally solidified structure is obtd. The stock is then subjected to the working of the low reduction ratio of <=50% plastic deformation working to form the worked stock. Such worked stock has no change in the orientation between the crystal grains and does not form the aggregate of the crystal grains having various orientations even if the crystal structure changes. The steps of the grain boundaries are, therefore, slight and the specular surface having 0.02mum roughness is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高い形状寸法精度を有し特に表面粗さの小さ
い鏡面を有することを要求される精密部材、例えば磁気
ディスク、金型、反射ミラー等の新規製造法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to precision members that are required to have high dimensional accuracy and mirror surfaces with particularly low surface roughness, such as magnetic disks, molds, and reflectors. Concerning new manufacturing methods for mirrors, etc.

(従来の技術) この種の鏡面を有する精密部材は、従来技術では次のよ
うにして製造される。
(Prior Art) A precision member having a mirror surface of this type is manufactured in the following manner in the prior art.

アルミニウム合金磁気ディスクを例とすると、(i)第
6図(イ)のように、所定組成のアルミニウム合金溶湯
(a)から連続鋳造によって鋳造素材(b)を作成する
。この鋳造素材(b)の組織は、溶湯が鋳型(C)の表
面に接して冷却される部分から凝固を開始するので、外
表層には鋳造方向に対し直角に発達した柱状晶(d)が
生じている。
Taking an aluminum alloy magnetic disk as an example, (i) as shown in FIG. 6(a), a cast material (b) is produced by continuous casting from a molten aluminum alloy (a) of a predetermined composition. The structure of this casting material (b) is such that solidification starts from the part where the molten metal contacts the surface of the mold (C) and is cooled, so the outer surface layer has columnar crystals (d) that develop perpendicularly to the casting direction. It is occurring.

(ii)鋳造素材(b)の表面を切削し表層の偏析層を
除去して手入れする。
(ii) Cutting the surface of the casting material (b) to remove the surface segregation layer and care for it.

(iii)この手入れ鋳造素材を、第6図(ロ)のよう
に熱間で粗圧延し、さらに第6図(ハ)のように熱間で
仕上圧延して、厚さ2〜3薗の所定厚さの板材(e)と
する。圧延後の板材は種々の方位をもつ結晶粒の集合体
からなる組織となる。
(iii) This treated casting material is hot roughly rolled as shown in Figure 6 (B), and further hot finished rolled as shown in Figure 6 (C) to a thickness of 2 to 3 mm. The plate material (e) has a predetermined thickness. After rolling, the sheet material has a structure consisting of an aggregate of crystal grains with various orientations.

(iv)第6図(ニ)のように板材から所定の形状精度
の円板素材(f)を打抜く。
(iv) As shown in FIG. 6(d), a disk material (f) having a predetermined shape accuracy is punched out from the plate material.

(v)円板素材に歪を除去する熱処理を施す。(v) Heat treatment is applied to the disc material to remove distortion.

(vi)歪除去円板素材の円板面に、ダイヤモンドバイ
トによる超精密切削による鏡面加工を施す。
(vi) The disk surface of the strain-removal disk material is mirror-finished by ultra-precision cutting with a diamond cutting tool.

精密部材が反射ミラーの場合、上記と同様な工程を経て
、ミラー面は超精密切削により鏡面加工される。
When the precision member is a reflective mirror, the mirror surface is mirror-finished by ultra-precision cutting through the same process as above.

精密部材が金型の場合、鋳造、熱処理された金型素材の
型面がラッピング、ボリシング等の鏡面加工法によって
鏡面仕上げされる。
When the precision component is a mold, the mold surface of the cast and heat-treated mold material is mirror-finished by mirror-finishing methods such as lapping and boring.

(発明が解決しようとする問題点) 上記の従来技術の工程により製作された鏡面を有する精
密部材は、所定の寸法精度にまで加工された加工素材の
組織が任意の方位を持つ結晶粒の集合体、すなわち多結
晶体であることに基づいて、鏡面加工した表面は第7図
写真図に示すようになり、結晶粒界が明確に認められ、
この粒界に段差が生じ、段差は0.02〜0.03μm
にも達する。
(Problems to be Solved by the Invention) A precision member having a mirror surface manufactured by the process of the above-mentioned prior art is an aggregation of crystal grains having an arbitrary orientation in the structure of a processed material that has been processed to a predetermined dimensional accuracy. Based on the fact that it is a polycrystalline body, the mirror-finished surface is shown in the photograph in Figure 7, and grain boundaries are clearly recognized.
A step occurs at this grain boundary, and the step is 0.02 to 0.03 μm.
reach even.

超精密切削、ラッピング、ポリシング等の鏡面加工方法
に種々の工夫を加え、電解複合研磨する等しても、鏡面
の表面粗さをこの粒界段差より小さくすることは従来で
きていない。
Even if various improvements are made to mirror finishing methods such as ultra-precision cutting, lapping, and polishing, as well as electrolytic composite polishing, it has not been possible to make the surface roughness of the mirror surface smaller than this grain boundary step.

これは粒界を挟む結晶粒に方位差があって各結晶粒の変
形能が異なるため、加工感受性の差によって粒界段差の
影響を受けないようにすることが事実上不可能であった
ことに因ると考えられる。
This is because the crystal grains that sandwich the grain boundaries have different orientations and the deformability of each grain differs, so it was virtually impossible to avoid being affected by the grain boundary step due to the difference in processing sensitivity. This is thought to be due to.

他の製作法として、種々の方位を有する結晶粒の影響を
受けないようにするという立場からは、単結晶の素材を
用いることが考えられるが、機械的強度が低下し、コス
トも割高になる等、新たに解決を要する多くの問題が生
ずる。また非晶質コーティングにより素材の結晶面を覆
うことも考えられるが、この目的の非晶質メツキは耐熱
性に欠け、さらに硬度が高いために工具の摩耗が著しく
形状精度が出にくい等の問題が別に生ずる。
Another method of manufacturing is to use a single-crystal material from the standpoint of avoiding the effects of crystal grains with various orientations, but this reduces mechanical strength and increases cost. Many new problems will arise that require solutions. It is also possible to cover the crystalline surfaces of the material with an amorphous coating, but amorphous plating for this purpose lacks heat resistance, and its high hardness causes significant tool wear, making it difficult to achieve shape accuracy. occurs separately.

一方、鏡面を有する精密部材の用途の面からすれば、磁
気ディスクの場合、表面粗さの小さいほうが記憶密度が
向上することが知られている。金型の場合には、粒界段
差が製品に転写されることが問題となる。また反射ミラ
ーの場合には、乱反射の原因となる可能性があることに
問題がある。これらの要求に対し素材の結晶粒界段差の
影響をできるだけ受けないようにして鏡面の表面粗さを
さらに小さくすることが望まれる。
On the other hand, from the standpoint of the use of precision members having mirror surfaces, it is known that in the case of magnetic disks, the smaller the surface roughness, the better the storage density. In the case of molds, the problem is that grain boundary steps are transferred to the product. Further, in the case of a reflective mirror, there is a problem in that it may cause diffused reflection. In order to meet these demands, it is desirable to further reduce the surface roughness of the mirror surface by minimizing the influence of grain boundary steps in the material.

(問題点を解決するための手段) 本発明は、従来技術の製作法からする鏡面の表面粗さの
限界を克服して鏡面を有する精密部材の機能を向上させ
るためになされたものであって、一方向凝固組織を有す
る鋳造素材を作成し、これに許容される程度に小さい加
工度の塑性変形加工を含む加工を施して成品精密部材の
形状、寸法精度の加工素材とし、のち所定面を鏡面加工
して仕上げるようにする。
(Means for Solving the Problems) The present invention has been made in order to overcome the limitations of surface roughness of mirror surfaces caused by conventional manufacturing methods and to improve the functions of precision members having mirror surfaces. , a cast material having a unidirectional solidification structure is created, and processed including plastic deformation processing at an allowable degree of processing to obtain a processed material with the shape and dimensional accuracy of a finished precision part, and then a predetermined surface is Give it a mirror finish.

すなわち工程順序を逆にして言い換えると、成品精密部
材に基づいて鏡面加工を行いうるまでに精密部材の形状
、寸法精度を有する加工素材を鋳造素材か、らつ(るに
は、その間に必要とするだけの熱間、冷間の塑性変形加
工、切削、研磨、打抜き等の機械加工、歪取り焼鈍等の
熱処理を加えるが、そのうちに含まれる塑性変形加工は
一定程度以下に留めるものとし、またそれに適合するよ
うに一方向凝固組織を有する鋳造素材の形状を与えるよ
うにする。こうして−連の製作方案を策定し、施工条件
を決定して加工工程数が最小限であるようにする。
In other words, in other words, by reversing the process order, in order to perform mirror finishing based on a finished precision part, a workpiece having the shape and dimensional accuracy of a precision part is transformed from a casting material to a casting material. Hot and cold plastic deformation processing, machining processing such as cutting, polishing, and punching, and heat treatment such as strain relief annealing shall be applied to the extent necessary, but the plastic deformation processing included in these shall be kept below a certain level, and The shape of the casting material having a unidirectional solidification structure is given to match this.Thus, a manufacturing plan for the series is formulated and construction conditions are determined so that the number of processing steps is minimized.

このようにすれば、表面粗さが0.02μm Rmax
より小さい鏡面を有する精密部材が新たに得られる。ま
たそのためには前記の塑性変形加工度は全加工率で50
%以下に留まるようにするのがよい。
In this way, the surface roughness will be 0.02μm Rmax
A new precision component with a smaller mirror surface is obtained. In addition, for that purpose, the plastic deformation processing rate mentioned above must be 50 at the total processing rate.
It is best to keep it below %.

精密部材が平面の鏡面を有する磁気ディスク、反射ミラ
ーのような板材の場合は、塑性変形加工として加える熱
間あるいは冷間の圧延の全圧下率が50%以下であるよ
うにする。
If the precision member is a plate material such as a magnetic disk or a reflective mirror having a flat mirror surface, the total reduction ratio of hot or cold rolling applied as plastic deformation processing should be 50% or less.

すなわち、本発明の鏡面を有する精密部材の製造法は、
構成としては、所定組成の合金溶湯から一方向凝固組織
を有する鋳造素材を作成しこの鋳造素材に低加工率の塑
性変形加工を含む加工を加えて所定の部材形状の加工素
材とし、この加工素材の所定面に鏡面加工を施すことを
特徴とする。
That is, the method for manufacturing a precision member having a mirror surface according to the present invention is as follows:
The structure is to create a cast material with a unidirectional solidification structure from a molten alloy of a predetermined composition, process this cast material including plastic deformation processing at a low processing rate to obtain a processed material into a predetermined member shape, and then process the processed material into a predetermined member shape. It is characterized by applying a mirror finish to a predetermined surface.

(作 用) 本発明方法によると、一方向凝固組織を有する鋳造素材
は、所要寸法精度を有する精密部材に賦形する過程で各
種加工を施しても、塑性変形加工を50%以下の程度の
低加工率に留める限り、結晶粒組織は変化しても結晶粒
相互間の方位の変化は殆どなく、もとの方位性は維持さ
れるので、種々の方位を有する結晶粒の集合体になるこ
とはない。従ってこれにダイヤモンドバイトによる超精
密切削等による鏡面加工を施した場合に、結晶粒毎の加
工感受性の差、従って結晶粒界段差は生じても僅かとな
り、表面粗さが0.02μm Rmaxより小さい超鏡
面を得ることができる。
(Function) According to the method of the present invention, even if a cast material having a unidirectional solidification structure is subjected to various processing in the process of shaping into a precision member having the required dimensional accuracy, the plastic deformation processing is less than 50%. As long as the processing rate is kept low, even if the grain structure changes, there is almost no change in the orientation between grains, and the original orientation is maintained, resulting in an aggregate of grains with various orientations. Never. Therefore, when mirror-finishing is performed using ultra-precision cutting using a diamond tool, etc., the difference in machining sensitivity of each grain, and therefore the grain boundary step, will be slight even if it occurs, and the surface roughness will be less than 0.02 μm Rmax. A super mirror surface can be obtained.

鏡面加工法として、前記の他、電解複合研磨、ラッピン
グ、ボリシングを用いてもこのことには変わりはない。
This does not change even if electrolytic composite polishing, lapping, or borising is used as a mirror finishing method in addition to the above-mentioned methods.

製作された表面粗さの小さい鏡面を有する精密部材は、
磁気ディスクであれば従来より記憶密度が高いという作
用を発揮し、金型′、反射ミラーでも従来の問題点が軽
減、解消されるという作用をする。
The manufactured precision parts with mirror surfaces with small surface roughness are
A magnetic disk has a higher storage density than conventional disks, and the problems of conventional molds and reflective mirrors are reduced or eliminated.

(実施例) (I)l気ディスク(A) 第1図の装置を用い、その黒鉛内面の鋳型(1)内に開
口側をホルダ(2)で閉じて磁気ディスク材料のA f
f1−Mg合金(JIS 5086・相当)の溶湯を注
入して保持しヒータ(3)で750’Cに加熱する一方
、ホルダ(2)に冷却水パイプ(4)を通じて冷却水を
循環させその側から冷却して凝固を開始させながら、ホ
ルダ(2)を鋳型(1)と相対的に0.5mm/分の速
度で後退して凝固材を引抜いてゆくことにより、・幅9
5IIIT11、厚さ20胴、長さ250mmの一方向
凝固組織を有する鋳造素材を作成した。
(Example) (I) Magnetic disk (A) Using the apparatus shown in FIG. 1, the open side of the graphite inner mold (1) is closed with a holder (2) to form a magnetic disk material.
Molten f1-Mg alloy (JIS 5086/equivalent) is injected and held and heated to 750'C with a heater (3), while cooling water is circulated through the cooling water pipe (4) to the holder (2) on that side. While cooling and starting solidification, the holder (2) is retreated at a speed of 0.5 mm/min relative to the mold (1) and the solidified material is pulled out.
A cast material having a unidirectional solidification structure of 5IIIT11, a thickness of 20 mm, and a length of 250 mm was prepared.

この鋳造素材を冷間および熱間で、本発明例から比較例
にわたる各種の圧下率で圧延して板状素材を作成した。
This cast material was cold-rolled and hot-rolled at various rolling reductions ranging from the present invention example to the comparative example to create a plate-shaped material.

熱処理を行ったのち、ダイヤモンドバイトにより超精密
切削により鏡面加工を行い、得られた鏡面の表面粗さを
測定した。
After heat treatment, mirror polishing was performed by ultra-precision cutting using a diamond cutting tool, and the surface roughness of the resulting mirror surface was measured.

第3図はその結果を示し、横軸に圧延加工の全圧下率(
%)をとり、縦軸に表面粗さRmax (nm)をとり
、冷間圧延のものは白丸印で、熱間圧延は黒丸印で表示
しである。全圧下率で示される加工率が50%以下の範
囲ではRmaにが0.02μm以下となり本発明例の範
囲で、この限度以上の圧下率の比較例では表面粗さが従
来程度に留まることが知られる。
Figure 3 shows the results, and the horizontal axis shows the total reduction rate of rolling (
%) and the surface roughness Rmax (nm) is plotted on the vertical axis, with white circles indicating cold rolling and black circles indicating hot rolling. In the range where the processing rate indicated by the total rolling reduction is 50% or less, Rma is 0.02 μm or less, which is within the range of the present invention example, and in the comparative example where the rolling reduction is above this limit, the surface roughness remains at the conventional level. known.

(n)磁気ディスク(B) 実施例(1)と同様にして得た板状素材に、鏡面加工と
して電解複合研磨を施した。
(n) Magnetic disk (B) A plate-shaped material obtained in the same manner as in Example (1) was subjected to electrolytic composite polishing as mirror finishing.

第4図はその結果を第3図と同様の表示法で示す。ただ
し冷間圧延のものは白画角印で、熱間圧延のものは黒画
角印で表示しである。
FIG. 4 shows the results in a similar representation to FIG. However, cold-rolled items are shown with white angle of view marks, and hot-rolled items are shown with black angle of view marks.

この場合も、実施例(1)と同様、圧延加工の全圧下率
が50%以下では、鏡面表面粗さをRmaxは0.02
μmより小さくなっている。
In this case, as in Example (1), when the total reduction rate of rolling is 50% or less, the mirror surface roughness Rmax is 0.02
It is smaller than μm.

(I[[)磁気ディスク(C) この実施例では、一方向凝固組織を有する鋳造素材を、
特公昭55−46265号に準する第2図の装置を用い
て作成した。
(I [[) Magnetic disk (C) In this example, a cast material having a unidirectional solidification structure is
It was prepared using the apparatus shown in Fig. 2, which is based on Japanese Patent Publication No. 55-46265.

すなわち、690″Cの前記と同じ^1−Mg合金溶湯
をタンデイツシュ(5)から鋳型(6)に注ぐ。
That is, the same ^1-Mg alloy molten metal of 690″C as described above is poured from the tundish (5) into the mold (6).

鋳型(5)内の幅60鵬、厚み20n+mの孔断面の黒
鉛製型孔内に注がれた溶湯は、外周に設けたヒータ(7
)により全体を660°Cに保温される。
The molten metal poured into a graphite mold hole with a hole cross section of 60mm wide and 20n+m thick in the mold (5) is heated by a heater (7
) to keep the whole body warm at 660°C.

方、鋳型の出口側には冷却水を噴霧するノズル(8)を
設けて、冷却水を2.012 /minの割合で供給し
、凝固した前記寸法の鋳造素材(9)をグミ−i”(0
0)に後続させてピンチロール(11) ニヨリ40m
/minの速度で鋳型から引抜いてゆく。
On the other hand, a nozzle (8) for spraying cooling water was provided on the outlet side of the mold, and the cooling water was supplied at a rate of 2.012/min, and the solidified casting material (9) of the above dimensions was gummy-i". (0
0) followed by pinch roll (11) grinning 40m
It is pulled out from the mold at a speed of /min.

こうして得られた鋳造素材(9)は一方向凝固組織を有
する。
The cast material (9) thus obtained has a unidirectional solidification structure.

この鋳造素材を実施例(1)と同様の条件で圧延加工を
加え、得られた板状素材にダイヤモンドバイトによる超
精密切削を行って鏡面加工を施し、表面粗さを測定した
This cast material was rolled under the same conditions as in Example (1), and the obtained plate material was subjected to ultra-precision cutting with a diamond cutting tool to give it a mirror finish, and the surface roughness was measured.

第5図はその結果を前同様の表示法で示す。FIG. 5 shows the results in the same way as before.

ただし冷間圧延のものは白玉角印で熱間圧延のものは黒
三角印で表示しである。
However, cold-rolled products are indicated by a white square mark, and hot-rolled products are indicated by a black triangle mark.

前同様の表面粗さの結果が得られることが判る。It can be seen that the same surface roughness results as before can be obtained.

(rV)金型 主要成分C:0.5′g、S(: 0.3XSMn :
 0.1χ、Fe : balの金型鋼()!RC40
)の一方向凝固組織の鋳造素材を作成し、次の工程順序
で型面の鏡面加工を行った。
(rV) Mold main component C: 0.5'g, S(: 0.3XSMn:
0.1χ, Fe: bal mold steel ()! RC40
) A cast material with a unidirectionally solidified structure was created, and the mold surface was mirror-finished in the following process order.

(i)旋削、 (ii)平面研削(WAI1120)、(iii)ラッ
ピング (柿#2000 、WA#4000 、WAI$800
0の順序)(iv)ダイヤモンドラッピング (ダイヤ粒度1μm) (V)ダイヤモンドラッピング (ダイヤ粒度0.5μm) 得られた鏡面の表面粗さを測定した結果は、10点を測
定した平均値で0.018μva RmaxでありSO
,02μm Rn+axより小さし)。
(i) Turning, (ii) Surface grinding (WAI1120), (iii) Lapping (Persimmon #2000, WA #4000, WAI$800
0 order) (iv) Diamond lapping (diamond grain size 1 μm) (V) Diamond lapping (diamond grain size 0.5 μm) The surface roughness of the obtained mirror surface was measured and the average value of 10 points was 0. 018μva Rmax and SO
, 02 μm smaller than Rn+ax).

(発明の効果) 以上のように、本発明方法によると、従来技術によるよ
りも鏡面の表面粗さが小さい精密部材を得ることができ
、磁気ディスク、反射ミラー、金型等としての機能を高
めることができ、またそのための加工工程数を少なくし
、特殊な加工技術に依存しなくても済む等の効果が得ら
れる。
(Effects of the Invention) As described above, according to the method of the present invention, it is possible to obtain a precision member whose mirror surface roughness is smaller than that obtained using the conventional technique, and whose functions as a magnetic disk, a reflective mirror, a mold, etc. are improved. In addition, the number of processing steps for this purpose can be reduced, and there is no need to rely on special processing techniques.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において特定鋳造素材をつくる状況の1
例を示す装置縦断略示側面図、第2図はその他例を示す
装置縦断略示側面図、第3図は横軸の塑性変形加工率と
縦軸の鏡面表面粗さとの関係により比較例とともに本発
明実施結果の1例を示す図表、第4図はその他例を示す
図表、第5図はさらにその他例を示す図表、第6図は従
来技術で、第6図(イ)はその鋳造状況を示す図、第6
図(ロ)はその粗圧延を示す図、第6図(ハ)はその仕
上圧延を示す図、第6図(ニ)はそのディスク打抜状況
を示す図、第7図は従来技術の鏡面の表面の顕微鏡写真
である。 (1)・・・鋳型、(2)・・・ホルダ、(3)・・・
ヒータ、(4)・・・冷却水パイプ、(5)・・・タン
デイツシュ、(6)・・・鋳型、(7)・・・ヒータ、
(8)・・・冷却水ノズル、(9)・・・鋳造素材、G
O)・・・ダミーパー、01)・・・ピンチロール、(
a)・・・溶湯、(b)・・・鋳造素材、(C)・・・
鋳型、(d)・・・柱状晶、(e)・・・板材、(f)
・・・円板素材。 箪1 図 K 21図 こ−7 着を友寅η 全圧下性ゝ (幻 )。 5図 全 反 下 辛 (%) (イ) 図・ 全圧 下 や C’l> 篤6図 (ハ) 手続補 正 書(方 式) 事件の表示 昭和63 年 特 許 願第217975号 2゜ 発明の名称 鏡面を有する精密部材の製造法 3゜ 補正をする者事件との関係 特  許 出願人 神戸市中央区脇浜町1丁目3番18号 (119)株式会社神戸製鋼所 代表者  亀 高 素 吉 4゜ 代 理 人  〒650 (発送日:昭和63年11月29日) 7゜ 補正の内容
Figure 1 shows one of the situations in which a specific casting material is produced in the present invention.
Fig. 2 is a side view schematically showing a vertical cross section of the device showing an example, Fig. 3 is a side view schematically showing a longitudinal cross section of the device showing another example, and Fig. 3 is a comparison example based on the relationship between the plastic deformation processing rate on the horizontal axis and the specular surface roughness on the vertical axis. Figure 4 is a diagram showing one example of the results of implementing the present invention, Figure 4 is a diagram showing other examples, Figure 5 is a diagram showing other examples, Figure 6 is the prior art, and Figure 6 (A) is the casting situation. Figure 6 showing
Figure (B) shows the rough rolling, Figure 6 (C) shows the finish rolling, Figure 6 (D) shows the disk punching situation, and Figure 7 shows the mirror finish of the conventional technology. This is a micrograph of the surface of . (1)...Mold, (2)...Holder, (3)...
Heater, (4)...Cooling water pipe, (5)...Tandish, (6)...Mold, (7)...Heater,
(8)... Cooling water nozzle, (9)... Casting material, G
O)...Dummy par, 01)...Pinch roll, (
a)... Molten metal, (b)... Casting material, (C)...
Mold, (d)...Columnar crystal, (e)...Plate material, (f)
...Disc material. 1 Figure K 21 Figure 7 I'm wearing it, and I'm totally under pressure (phantom). Figure 5: Total pressure (%) (A) Figure: Total pressure and C'l> Atsushi Figure 6 (C) Procedural amendment (method) Indication of the case Patent application No. 217975 of 1988 2゜Name of the invention Mirror surface Patent related to the case of a person making an amendment to the manufacturing method of a precision component having a 3° Applicant: 1-3-18 (119) Wakihama-cho, Chuo-ku, Kobe City, Kobe Steel, Ltd. Representative: Sokichi Kame Taka 4° Person 〒650 (Shipping date: November 29, 1988) Contents of the 7° correction

Claims (3)

【特許請求の範囲】[Claims] (1)所定組成の合金溶湯から一方向凝固組織を有する
鋳造素材を作成し、この鋳造素材に低加工率の塑性変形
加工を含む加工を加えて所定の部材形状の加工素材とし
、この加工素材の所定面に鏡面加工を施すことを特徴と
する鏡面を有する精密部材の製造法。
(1) Create a cast material with a unidirectional solidification structure from a molten alloy of a predetermined composition, process the cast material including plastic deformation at a low processing rate to obtain a processed material into a predetermined member shape, and process the processed material into a predetermined member shape. 1. A method for manufacturing a precision component having a mirror surface, the method comprising applying a mirror finish to a predetermined surface of the component.
(2)前記塑性変形加工の加工率を50%以下とする特
許請求の範囲第1項記載の鏡面を有する精密部材の製造
法。
(2) The method for manufacturing a precision member having a mirror surface according to claim 1, wherein the processing rate of the plastic deformation processing is 50% or less.
(3)板状の精密部材とするため、前記塑性変形加工を
圧下率50%以下の圧延として加工素材を板状とする特
許請求の範囲第1項および第2項のいずれか1に記載の
鏡面を有する精密部材の製造法。
(3) The method according to any one of claims 1 and 2, wherein the plastic deformation process is performed by rolling at a reduction rate of 50% or less to form the processed material into a plate shape, in order to produce a plate-shaped precision member. A method for manufacturing precision parts with mirror surfaces.
JP21797588A 1988-08-30 1988-08-30 Production of precision member having specular surface Pending JPH0264502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21797588A JPH0264502A (en) 1988-08-30 1988-08-30 Production of precision member having specular surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21797588A JPH0264502A (en) 1988-08-30 1988-08-30 Production of precision member having specular surface

Publications (1)

Publication Number Publication Date
JPH0264502A true JPH0264502A (en) 1990-03-05

Family

ID=16712666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21797588A Pending JPH0264502A (en) 1988-08-30 1988-08-30 Production of precision member having specular surface

Country Status (1)

Country Link
JP (1) JPH0264502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663001A (en) * 1991-01-11 1997-09-02 Alusuisse Technology & Management Ltd. Aluminum surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663001A (en) * 1991-01-11 1997-09-02 Alusuisse Technology & Management Ltd. Aluminum surfaces

Similar Documents

Publication Publication Date Title
US6120621A (en) Cast aluminum alloy for can stock and process for producing the alloy
KR101368057B1 (en) Sputter targets and methods of forming same by rotary axial forging
CN100382939C (en) Sharp edged cutting tools
JPH07150274A (en) Titanium alloy and its production
JPH0264502A (en) Production of precision member having specular surface
JPH02165849A (en) Cooling roll for reducing twin roll type rapidly cooled strip
JPH0252683B2 (en)
JPH02209439A (en) Manufacture of precision member having mirror-like surface
CA2030538A1 (en) Process for preparing rollable metal sheet from quench solidified thin cast sheet as starting material
US11548062B2 (en) Method for reducing target surface features in continuous casting
JPS5994555A (en) Cast ingot of aluminum or aluminum alloy to be worked to irregular section
JPS63262213A (en) Mirror surface mold for molding plastic
JPH0261826A (en) Production of ultra-specular surface disk
JP3531942B2 (en) Manufacturing method of light alloy mirror finish
WO1993008941A1 (en) A roll for a twin roll caster
JP3003436B2 (en) Method for manufacturing mold for flat molded product
JPH01290737A (en) Aluminum alloy for die
JP2004351485A (en) Method for working metal and work formed product
JPH03248734A (en) Manufacture of hot die forging die
JP2001219249A (en) Cooling drum for continuous casting of thin strip
JPH0525659B2 (en)
JP4618543B2 (en) Light alloy wheel and manufacturing method thereof
JPS6216266B2 (en)
JPS61120350A (en) Production of magnetic recording medium
JPH02222903A (en) Reflecting mirror made of copper or copper alloy