JPH02209439A - Manufacture of precision member having mirror-like surface - Google Patents

Manufacture of precision member having mirror-like surface

Info

Publication number
JPH02209439A
JPH02209439A JP2844189A JP2844189A JPH02209439A JP H02209439 A JPH02209439 A JP H02209439A JP 2844189 A JP2844189 A JP 2844189A JP 2844189 A JP2844189 A JP 2844189A JP H02209439 A JPH02209439 A JP H02209439A
Authority
JP
Japan
Prior art keywords
mirror
precision
alloy
surface roughness
stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2844189A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukunaga
浩 福永
Tomiharu Matsushita
富春 松下
Suguru Motonishi
本西 英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2844189A priority Critical patent/JPH02209439A/en
Publication of JPH02209439A publication Critical patent/JPH02209439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To manufacture the precision member made of Al alloy having extremely fine surface roughness and having an excellent mirror-like face by casting the molten metal of Al alloy into the stock having a directionally solidified structure, subjecting the stock to plastic working at high working rate and thereafter executing mirror-like finishing. CONSTITUTION:The opening side of a mold 1 lined with graphite is blocked with a holder 2, to which the molten metal of Al-Mn alloy as the material for a magnetic disk is charged hold and is heated, e.g. to about 750 deg.C by a heater 3; at the same time, cooling is executed by passing cooling water through a holder with a cooling water pipe 4 and the Al-Mn molten metal in the mold 1 is solidified so that the alloy possesses a directional structure to manufacture a casting stock. The stock is subjected to plastic deformation working by hot rolling, cold polling or the like at >=90% working rate and is thereafter subjected to mirror-like finishing by ultra precision machining or the like to finish into an ultra mirror-like face having <=0.02mum surface roughness. The member having an ultra mirror-like face such as magnetic disks, molds and reflection mirrors can stably be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高い形状寸法精度を有し、特に表面粗さの小
さい鏡面を有することを要求される精密部材、例えば磁
気ディスク、金型、反射ミラー等の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to precision members that are required to have high shape and dimensional accuracy and in particular to have mirror surfaces with small surface roughness, such as magnetic disks, molds, etc. It relates to a method of manufacturing reflective mirrors, etc.

(従来の技術) この種の鏡面を有する精密部材は、従来技術では次のよ
うにして製造される。すなわちアルミニウム合金磁気デ
ィスクを例とすると、(1)第7図(イ)のように、所
定組成のアルミニウム合金溶湯(a)から連続鋳造によ
って鋳造素材(b)を作成する。この鋳造素材(ハ)の
組織は、溶湯が鋳型(C)の表面に接して冷却される部
分から凝固を開始するので、外表層には鋳造方向に対し
直角に発達した柱状晶(d)が生じている。
(Prior Art) A precision member having a mirror surface of this type is manufactured in the following manner in the prior art. Specifically, taking an aluminum alloy magnetic disk as an example, (1) as shown in FIG. 7(a), a cast material (b) is created by continuous casting from a molten aluminum alloy (a) of a predetermined composition. The structure of this casting material (c) is such that solidification starts from the part where the molten metal contacts the surface of the mold (C) and is cooled, so the outer surface layer has columnar crystals (d) that develop perpendicularly to the casting direction. It is occurring.

(ii)鋳造素材(b)の表面を切削し表面の偏析層を
除去して手入れする。
(ii) Cut the surface of the casting material (b) to remove the segregation layer on the surface and care for it.

(ji)この手入れ鋳造素材を、第7図(ロ)のように
熱間で粗圧延し、さらに第7図(ハ)のように冷間で仕
上圧延して、厚さ2〜3飾の所定の厚さの板材(e)と
する。圧延後の板材は種々の方位を持つ結晶柱の集合体
からなる組織となる。
(ji) This treated casting material is hot roughly rolled as shown in Figure 7 (B), and then cold finished rolled as shown in Figure 7 (C) to give a thickness of 2 to 3 decorations. The plate material (e) has a predetermined thickness. After rolling, the sheet material has a structure consisting of an aggregate of crystal columns with various orientations.

(1v)第7図(ニ)のように所定の形状、精度の円板
素材(f)を打抜く。
(1v) Punch out a disk material (f) with a predetermined shape and precision as shown in FIG. 7(d).

(v)円板素材に歪を除去する熱処理を施す。(v) Heat treatment is applied to the disc material to remove distortion.

(vi)歪除去円板素材の円板面に、ダイヤモンドバイ
トを用いた超精密切削による鏡面加工を施す。
(vi) The disk surface of the strain-removal disk material is mirror-finished by ultra-precision cutting using a diamond cutting tool.

精密部材が反射ミラーの場合、上記と同様な工程を経て
、ミラー面は超精密切削または、ラッピング、ポリシン
グにより鏡面加工される。
When the precision member is a reflective mirror, the mirror surface is mirror-finished by ultra-precision cutting, lapping, or polishing through the same steps as above.

精密部材が金型の場合、鋳造、熱処理された金型素材の
型面がラッピング、ボリシング等の鏡面加工法によって
鏡面仕上げされる。
When the precision component is a mold, the mold surface of the cast and heat-treated mold material is mirror-finished by mirror-finishing methods such as lapping and boring.

(発明が解決しようとする問題点) 従来技術の工程により製作された鏡面を有する精密部材
は、所定の寸法精度にまで加工された加工素材の組織が
任意の方位を持つ結晶粒の集合体、すなわち多結晶体で
あることに基づいて、鏡面加工した表面は結晶粒界が明
確に認められ、この粒界に段差が生じ、段差は0.02
〜0.03μmにも達する。
(Problems to be Solved by the Invention) A precision member having a mirror surface manufactured by the process of the prior art is an aggregate of crystal grains having an arbitrary orientation in the structure of a processed material that has been processed to a predetermined dimensional accuracy. In other words, based on the fact that it is a polycrystalline material, crystal grain boundaries are clearly recognized on the mirror-finished surface, and a step is created at this grain boundary, and the step is 0.02
It reaches ~0.03 μm.

超精密切削、ラッピング、ポリシング等の鏡面加工方法
に種々の工夫を加え、電解複合研磨する等しても、鏡面
の表面粗さをこの粒界段差より小さくすることは従来出
来ていない。
Even if various improvements are made to mirror finishing methods such as ultra-precision cutting, lapping, polishing, and electrolytic composite polishing, it has not been possible to make the surface roughness of the mirror surface smaller than this grain boundary step.

これは粒界を挟む結晶粒に方位差があって、各結晶粒の
変形能が異なるため、加工感受性の差によって粒界段差
の影響を受けないようにすることが事実上不可能であっ
たことに因ると考えられる。
This is because the crystal grains that sandwich the grain boundaries have different orientations, and the deformability of each grain differs, so it is virtually impossible to avoid being affected by grain boundary steps due to differences in processing sensitivity. This is thought to be due to this.

他の製作法として、種々の方位を有する結晶粒の影響を
受けないようにするという立場からは、単結晶の素材を
用いることが考えられるが、機械的強度が低下し、コス
トも割高になる等、新たに解決を要する多くの問題が生
ずる。また非晶質コーティングにより素材の結晶面を覆
うことも考えられるが、この目的の非晶質メツキは耐熱
性に欠け、さらに硬度が高いために工具の摩耗が著しく
形状精度が出にくい等の問題が別に生ずる。
Another method of manufacturing is to use a single-crystal material from the standpoint of avoiding the effects of crystal grains with various orientations, but this reduces mechanical strength and increases cost. Many new problems will arise that require solutions. It is also possible to cover the crystalline surfaces of the material with an amorphous coating, but amorphous plating for this purpose lacks heat resistance, and its high hardness causes significant tool wear, making it difficult to achieve shape accuracy. occurs separately.

一方、鏡面を有する精密部材の用途の面からすれば、磁
気ディスクの場合、表面粗さの小さいほうが記憶密度が
向上することが知られている。金型の場合には、粒界段
差が製品に転写されることが問題になる。また反射ミラ
ーの場合には、乱反射の原因となる可能性があることに
問題がある。これらの要求に対し素材の結晶粒界段差の
影響をできるだけ受けないようにして鏡面の表面粗さを
さらに小さくすることが望まれる。
On the other hand, from the standpoint of the use of precision members having mirror surfaces, it is known that in the case of magnetic disks, the smaller the surface roughness, the better the storage density. In the case of molds, the problem is that grain boundary steps are transferred to the product. Further, in the case of a reflective mirror, there is a problem in that it may cause diffused reflection. In order to meet these demands, it is desirable to further reduce the surface roughness of the mirror surface by minimizing the influence of grain boundary steps in the material.

(問題点を解決するための手段) 本発明は、従来技術の製作法からする鏡面の表面粗さの
限界を克服して鏡面を有する精密部材の機能を向上させ
るためになされたものである。
(Means for Solving the Problems) The present invention has been made in order to overcome the limitations of surface roughness of mirror surfaces caused by conventional manufacturing methods and to improve the functionality of precision members having mirror surfaces.

本発明においては、一方向凝固組織を有する鋳造素材を
作成し、手入れの後これに高加工率の塑性加工を加えて
、所定の部材形状の加工素材とし、その所定面に鏡面加
工を施す。その塑性変形加工の加工率を90%とし、そ
のため鋳造素材は部材形状の加工素材とするまでに90
%以上の高加工率の塑性変形加工を加え得るだけの厚さ
を有するものとする。塑性変形加工は圧延以外の加工法
によることができるが、通常圧延する。この圧延は熱間
圧延、冷間圧延の何れによることもでき、その圧下率を
90%以上とする。
In the present invention, a cast material having a unidirectionally solidified structure is created, and after being maintained, plastic working is applied to the material at a high processing rate to obtain a processed material in a predetermined member shape, and a predetermined surface is mirror-finished. The processing rate of the plastic deformation processing is set to 90%, so that the casting material has a processing rate of 90% before it can be processed into a part shape.
The thickness shall be sufficient to allow plastic deformation processing at a high processing rate of % or more. Plastic deformation processing can be performed by a processing method other than rolling, but rolling is usually used. This rolling can be done by either hot rolling or cold rolling, and the rolling reduction is 90% or more.

この加工素材に超精密切削等による鏡面加工を施せば、
後記実施例に示すように、表面粗さ0.02μmRma
x以下の超鏡面が得られる。
If this processed material is mirror-finished by ultra-precision cutting,
As shown in the examples below, the surface roughness is 0.02 μm Rma
A super mirror surface of x or less can be obtained.

これは加工素材は多結晶体になるが、はじめの鋳造素材
組織の方向性はある程度受継がれること、そして高加工
率の塑性加工によって結晶粒の微細化が一層進むこと、
また加工硬化によって、後記実施例に示すように硬度が
上昇すること、そしてこのようにして到達された結晶粒
組織と硬度とにより、結晶粒の加工感受性の差が縮まり
、粒界段差の影響が克服されることになるものと考えら
れる。
This is because although the processed material becomes polycrystalline, the orientation of the initially cast material structure is inherited to some extent, and the crystal grains are further refined by plastic working at a high processing rate.
In addition, work hardening increases the hardness as shown in the examples below, and the grain structure and hardness achieved in this way reduce the difference in work sensitivity of grains, and the effect of grain boundary steps is reduced. It is thought that this will be overcome.

これらを総合して、本発明の鏡面を有する精密部材の製
造法は、構成上、所定組成の合金溶湯から一方向鋳造組
織を有する鋳造素材を作成し、この鋳造素材に高加工率
の塑性変形加工を含む加工を加えて所定の部材形状の加
工素材とし、この加工素材の所定面に鏡面加工を施すこ
とを特徴とする。
Taking all of this into account, the manufacturing method of precision parts with mirror surfaces of the present invention consists of creating a cast material having a unidirectional casting structure from a molten alloy of a predetermined composition, and plastically deforming the cast material at a high working rate. The method is characterized in that a processed material is processed into a predetermined member shape through processing, and a predetermined surface of the processed material is mirror-finished.

(作 用) 本発明により、一方向凝固組織の鋳造素材を使用し、9
0%以上の高加工率の塑性加工を加えることにより、従
来ダイヤモンドハイドを用いた超精密切削では達し得な
かった表面粗さ0.020μmRmax以下の超鏡面を
得ることができる。鏡面加工法とし前記の他、電解複合
研磨、ラッピング、ボリシングを用いても表面粗さの結
果に変わりはない。このことは到達した加工素材の結晶
粒組織と硬度との相乗作用が有効に働いていることを示
す。表面粗さの小さい精密部材は、例えば磁気ディスク
であれば、従来より記憶密度を高くするよう作用する。
(Function) According to the present invention, a cast material with a unidirectional solidification structure is used, and 9
By adding plastic working with a high working rate of 0% or more, it is possible to obtain a super mirror surface with a surface roughness of 0.020 μmRmax or less, which could not be achieved by conventional ultra-precision cutting using diamond hide. Even if electrolytic composite polishing, lapping, and borising are used in addition to the above-mentioned mirror finishing method, the result of surface roughness remains the same. This indicates that the synergistic effect between the grain structure and hardness of the processed material is working effectively. For example, in the case of a magnetic disk, a precision member with a small surface roughness acts to increase the storage density compared to the conventional one.

加えて90%以上の高率塑性加工は加工素材の硬度を高
くするよう作用する。
In addition, high rate plastic working of 90% or more acts to increase the hardness of the processed material.

(実施例) (I)磁気ディスク(A) 第1図の装置を用い、その黒鉛内面の鋳型(1)内に開
口側をホルダ(2)で閉じて磁気ディスク材料のJIS
 5086相当の^1−Mg合金の溶湯を充填して保持
し、ヒータ(3)で750°C程度に加熱する一方、ホ
ルダ(2)に冷却水パイプ(4)を通じて冷却水を循環
させ、その側から冷却して凝固を開始させなから、ホル
ダ(2)をヒータ(3)から0.5mm/分の速度で矢
印で示すように後退させて鋳型(1)向凝固材を引抜い
てゆくことにより凝固を進行させ、幅95胴、厚さ50
mm、長さ300 nunの一方向凝固組織を有する鋳
造素材を作成した。この厚さは90%以上の圧下率の圧
延により厚さ2〜3胴の磁気ディスク板状素材をつくる
のに充分な厚さとして選ばれたものである。
(Example) (I) Magnetic disk (A) Using the device shown in Fig. 1, the opening side of the graphite inner mold (1) is closed with a holder (2), and the magnetic disk material is JIS
A molten metal of ^1-Mg alloy equivalent to 5086 is filled and held, and heated to approximately 750°C with a heater (3), while cooling water is circulated through the cooling water pipe (4) to the holder (2). Without starting solidification by cooling from the side, move the holder (2) back from the heater (3) at a speed of 0.5 mm/min as shown by the arrow and pull out the solidifying material from the mold (1). Solidification progresses to a width of 95 mm and a thickness of 50 mm.
A cast material having a unidirectionally solidified structure with a length of 300 mm and a length of 300 nun was prepared. This thickness was selected as being sufficient to produce a magnetic disk plate material with a thickness of 2 to 3 cylinders by rolling with a rolling reduction of 90% or more.

この鋳造素材を、冷間および熱間で、本発明例から比較
例にわたる各種の全圧下率で圧延して塑性変形加工し、
板状素材サンプルを作成した。
This cast material is subjected to plastic deformation processing by cold and hot rolling at various total reduction ratios ranging from the present invention example to the comparative example,
A plate material sample was created.

熱処理を行ったのち、ダイヤモンドバイトを用いて超精
密切削により鏡面加工を行い、得られた鏡面の表面粗さ
を測定した。
After heat treatment, mirror finishing was performed by ultra-precision cutting using a diamond cutting tool, and the surface roughness of the resulting mirror surface was measured.

第2図はその結果を示し、横軸に圧延加工の全圧下率(
%)をとり、縦軸に表面粗さ(nmRma×)をとり、
冷間圧延のものは白丸印で、熱間圧延は黒丸印で表示し
である。全圧下率で示される加工率が90%以上の範囲
で表面粗さ0.02μmRmax以下となり、本発明に
よる高加工率の範囲で、これより小さい加工率の比較例
では表面粗さは従来程度に留まることが知られる。
Figure 2 shows the results, and the horizontal axis shows the total reduction rate (
%), and the surface roughness (nmRmax) is plotted on the vertical axis.
Cold-rolled products are indicated by white circles, and hot-rolled products are indicated by black circles. When the machining rate indicated by the total reduction rate is 90% or more, the surface roughness becomes 0.02 μmRmax or less, and in the comparative example with a machining rate smaller than this in the range of high machining rate according to the present invention, the surface roughness is at the conventional level. Known to stay.

第3図はこの板状素材の硬度測定結果を示し、横軸に全
圧下率(%)をとり、縦軸に硬度(Hν)をとり、冷間
圧延を白丸印で、熱間圧延を黒丸印で表示しである。こ
れから、全圧下率90%以上で略々40Hv以上の高硬
度が得られることが知られる。
Figure 3 shows the hardness measurement results of this plate material, with the total rolling reduction (%) on the horizontal axis and the hardness (Hν) on the vertical axis, with white circles indicating cold rolling and black circles indicating hot rolling. It is indicated by a mark. From this, it is known that a high hardness of approximately 40 Hv or more can be obtained at a total reduction rate of 90% or more.

(II)磁気ディスク(B) 実施例(1)と同様にして得た板状素材に、鏡面加工と
して電解複合研磨を施し、得られた鏡面の表面粗さを測
定した。
(II) Magnetic disk (B) A plate-like material obtained in the same manner as in Example (1) was subjected to electrolytic composite polishing as a mirror finishing, and the surface roughness of the resulting mirror finish was measured.

第4図はその結果を第2図と同様の表示法で示す。ただ
し冷間圧延のものは白画角印で、熱間圧延のものは黒画
角印で表示しである。
FIG. 4 shows the results in a similar representation to FIG. However, cold-rolled items are shown with white angle of view marks, and hot-rolled items are shown with black angle of view marks.

この場合も、実施例(I)と同様、圧延加工の全圧下率
が90%以上では、表面粗さは0.02μmRmax以
下となる。
In this case, as in Example (I), when the total rolling reduction ratio of rolling is 90% or more, the surface roughness is 0.02 μmRmax or less.

(I[[)磁気ディスク(C) この実施例では、一方向凝固組織を有する鋳造素材を、
特公昭55−46265号に準する第5図の装置を用い
て作成した。
(I [[) Magnetic disk (C) In this example, a cast material having a unidirectional solidification structure is
It was prepared using the apparatus shown in FIG. 5, which is based on Japanese Patent Publication No. 55-46265.

すなわち、上記と同じA 1−Mg合金(JIS 50
86相当)溶湯をタンデイツシュ(5)から鋳型(6)
に注ぐ、鋳型温度を鋳型外周に設けたヒータ(7)によ
り660°Cに保ちつつ、鋳型の出口側ではノズル(8
)から冷却水を2.Oe /minの割合で供給し、凝
固した鋳造素材(9)をダミーパー00に後続させてピ
ンチロール01)により40mm/minの速度で鋳型
から引抜いてゆく。得られた鋳造素材の寸法は、幅60
mm、厚さ50mmであって、一方向凝固組織を有する
That is, the same A1-Mg alloy (JIS 50
86 equivalent)) Transfer the molten metal from the mold (5) to the mold (6).
The temperature of the mold is maintained at 660°C by a heater (7) installed on the outer periphery of the mold, while a nozzle (8
) from 2. The solidified casting material (9) is pulled out from the mold at a speed of 40 mm/min by a pinch roll 01) following a dummy par 00. The dimensions of the obtained casting material are width 60
mm, thickness 50 mm, and has a unidirectional solidification structure.

この鋳造素材を実施例(I) と同様の条件で圧延加工
を加え、得られた板状素材を、熱処理を行ったのち、ダ
イヤモンドバイトを用いて超精密切削により鏡面加工を
行い、表面粗さを測定した。
This cast material was rolled under the same conditions as in Example (I), and the resulting plate material was heat treated, and then mirror-finished by ultra-precision cutting using a diamond cutting tool to improve the surface roughness. was measured.

第6図はその測定結果を前同様の表示法で示す。ただし
、冷間圧延のものは白玉角印で、熱間圧延のものは、黒
三角印で表示している。
FIG. 6 shows the measurement results in the same manner as before. However, cold-rolled products are indicated by a square dot, and hot-rolled products are indicated by a black triangle.

実施例(1)(II)と同様、全圧下率90%以上とす
る場合には、表面粗さは0.02μmRmax以下とな
ることがこれからも知られる。
As in Example (1) (II), it is known that when the total rolling reduction is 90% or more, the surface roughness is 0.02 μmRmax or less.

(発明の効果) 以上のように、本発明方法によると、従来技術によるよ
りも表面粗さが0.02μmRxaxより小さい精密部
材を得ることができ、その硬度も従来より高硬度で、磁
気ディスク、反射ミラー、金型等としての機能を高める
ことができ、またそのために特殊な困難を伴う加工技術
に依存しなくても済む等の効果が得られる。
(Effects of the Invention) As described above, according to the method of the present invention, it is possible to obtain a precision member whose surface roughness is less than 0.02 μmRxax than with the conventional technique, and whose hardness is higher than that of the conventional technique. The function as a reflecting mirror, a mold, etc. can be enhanced, and effects such as eliminating the need to rely on processing techniques that involve special difficulties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法において特定鋳造素材をつくる状況
の1例を示す装置縦断略示側面図、第2図は横軸の全圧
下率と縦軸の鏡面表面粗さとの関係により比較例ととも
に本発明実施結果の1例について示す図表、第3図は横
軸の全圧下率と縦軸の硬度との関係を比較例とともに本
発明実施結果の1例について示す図表、第4図は本発明
実施結果の他例につき鏡面表面粗さと全圧下率との関係
を比較例とともに第2図同様の表示法で示す図表、第5
図は特定鋳造素材をつくる状況の他例を示す装置縦断略
示側面図、第6図はその場合の実施例につき鏡面表面粗
さと全圧下率との関係を第2図と同様の表示法で示す図
表、第7図は従来技術で、第7図(イ)はその鋳造状況
を示す図、第7図(ロ)はその粗圧延を示す図、第7図
(ハ)はその仕上圧延を示す図、第7図(ニ)はそのデ
ィスク打抜状況を示す図である。 (1)・・・鋳型、(2)・・・ホルダ、(3)・・・
ヒータ、(4)・・・冷却水パイプ、(5)・・・タン
デイツシュ、(6)・・・鋳型、(7)・・・ヒータ、
(8)・・・ノズル、(9)・・・鋳造素材、00)・
・・ダミーバー、(11)・・・ピンチロール、(a)
・・・溶湯、(b)・・・鋳造素材、(C)・・・鋳型
、(d)・・・柱状晶、(e)・・・板材、げ)・・・
円板素材。 第 (イ) Aノ令&S蓼渇 (ロ) (ハ) 板村 (ニ) 円板本科
Fig. 1 is a schematic longitudinal sectional side view of the apparatus showing an example of the situation in which a specific casting material is produced by the method of the present invention, and Fig. 2 shows the relationship between the total reduction rate on the horizontal axis and the specular surface roughness on the vertical axis, together with a comparative example. A chart showing an example of the results of implementing the present invention; FIG. 3 is a chart showing the relationship between the total rolling reduction on the horizontal axis and hardness on the vertical axis together with a comparative example; FIG. 4 is a chart showing an example of the results of implementing the present invention. For other examples of the implementation results, a chart showing the relationship between specular surface roughness and total reduction rate in the same display method as Figure 2, along with comparative examples, and Figure 5.
The figure is a schematic longitudinal sectional side view of the equipment showing another example of the situation in which a specific casting material is produced, and Figure 6 shows the relationship between the specular surface roughness and the total reduction rate in the same manner as in Figure 2. Figure 7 shows the conventional technology, Figure 7 (a) shows the casting situation, Figure 7 (b) shows the rough rolling, and Figure 7 (c) shows the finish rolling. The figure shown in FIG. 7(d) is a diagram showing the state of punching out the disk. (1)...Mold, (2)...Holder, (3)...
Heater, (4)...Cooling water pipe, (5)...Tandish, (6)...Mold, (7)...Heater,
(8)... Nozzle, (9)... Casting material, 00)
...Dummy bar, (11) ...Pinch roll, (a)
... Molten metal, (b) ... Casting material, (C) ... Mold, (d) ... Columnar crystal, (e) ... Plate material, ridge) ...
Disc material. Part (B) A-Rei & S-Tsu (B) (C) Itamura (D) Disc Main Course

Claims (3)

【特許請求の範囲】[Claims] (1)所定組成の合金溶湯から一方向凝固組織を有する
鋳造素材を作成し、この鋳造素材に高加工率の塑性変形
加工を含む加工を加えて所定の部材形状の加工素材とし
、この加工素材の所定面に鏡面加工を施すことを特徴と
する鏡面を有する精密部材の製造法。
(1) Create a cast material with a unidirectional solidification structure from a molten alloy of a predetermined composition, process the cast material including plastic deformation at a high working rate to obtain a processed material into a predetermined member shape, and process the processed material into a predetermined member shape. 1. A method for manufacturing a precision component having a mirror surface, the method comprising applying a mirror finish to a predetermined surface of the component.
(2)前記塑性変形加工の加工率を90%以上とする特
許請求の範囲第1項記載の鏡面を有する精密部材の製造
法。
(2) The method for manufacturing a precision member having a mirror surface according to claim 1, wherein the processing rate of the plastic deformation processing is 90% or more.
(3)板状の精密部材とするため、前記塑性変形加工を
圧下率90%以上の圧延として加工素材を板状とする特
許請求の範囲第1項および第2項のいずれか1に記載の
鏡面を有する精密部材の製造法。
(3) The method according to any one of claims 1 and 2, wherein the plastic deformation process is performed by rolling with a reduction rate of 90% or more to form the processed material into a plate shape in order to produce a plate-shaped precision member. A method for manufacturing precision parts with mirror surfaces.
JP2844189A 1989-02-06 1989-02-06 Manufacture of precision member having mirror-like surface Pending JPH02209439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2844189A JPH02209439A (en) 1989-02-06 1989-02-06 Manufacture of precision member having mirror-like surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2844189A JPH02209439A (en) 1989-02-06 1989-02-06 Manufacture of precision member having mirror-like surface

Publications (1)

Publication Number Publication Date
JPH02209439A true JPH02209439A (en) 1990-08-20

Family

ID=12248766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2844189A Pending JPH02209439A (en) 1989-02-06 1989-02-06 Manufacture of precision member having mirror-like surface

Country Status (1)

Country Link
JP (1) JPH02209439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380589A (en) * 2011-10-19 2012-03-21 江苏盛天实业有限公司 Aluminum-magnesium alloy tube continuous solidification and semi-solid forming process
CN108380852A (en) * 2018-02-12 2018-08-10 上海大学 The method in magnetic field and cooling rate regulation and control Mg-Nd alloy object phases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380589A (en) * 2011-10-19 2012-03-21 江苏盛天实业有限公司 Aluminum-magnesium alloy tube continuous solidification and semi-solid forming process
CN108380852A (en) * 2018-02-12 2018-08-10 上海大学 The method in magnetic field and cooling rate regulation and control Mg-Nd alloy object phases

Similar Documents

Publication Publication Date Title
US6120621A (en) Cast aluminum alloy for can stock and process for producing the alloy
JP5325472B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
KR102224687B1 (en) Rolling and preparation method of magnesium alloy sheet
JP2003517101A (en) High strength sputtering target and method for manufacturing the same
US20050000678A1 (en) Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
EP0396862B1 (en) A pair of cooling rolls for a twin-roll type cooling apparatus for producing rapidly solidified strip
WO2012115191A1 (en) Magnesium alloy and manufacturing method for same
JPH02209439A (en) Manufacture of precision member having mirror-like surface
JPH0252683B2 (en)
US11548062B2 (en) Method for reducing target surface features in continuous casting
JPH0264502A (en) Production of precision member having specular surface
JPS61189845A (en) Manufacture of sheet-shaped slab
JPH0261826A (en) Production of ultra-specular surface disk
RU2819336C1 (en) Reduced susceptibility to cracking of cast ingots of 7xxx series, obtained by continuous casting into crystallizer (dc)
US3043754A (en) Decorative aluminum article and method for making the same
JP2002001495A (en) Manufacturing method for austenitic stainless steel sheet iron excellent in surface quality and thin casting slab
JPH05237604A (en) Production of dual phase stainless steel ingot
JP2856440B2 (en) Method for producing Cr-Ni stainless thin cast slab having fine surface crystal structure
JPS6021163A (en) Production of metallic rod
SU1424950A1 (en) Method of continuous casting of a blank
JPS60149717A (en) Manufacture of hot extruded material using cast billet as blank
JPH01108350A (en) Manufacture of aluminum alloy plate for magnetic disk substrate
Finn et al. Systems And Methods For Ingot Head Shaping
JP2574471B2 (en) Cooling drum for continuous casting of thin cast slabs
Haga et al. Forming of Small Projection on Roll-Cast A356 Strip by Cold Rolling and Small Groove on PET Plate Using A356 Die