JPH0264363A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH0264363A
JPH0264363A JP21659888A JP21659888A JPH0264363A JP H0264363 A JPH0264363 A JP H0264363A JP 21659888 A JP21659888 A JP 21659888A JP 21659888 A JP21659888 A JP 21659888A JP H0264363 A JPH0264363 A JP H0264363A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
separator
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21659888A
Other languages
Japanese (ja)
Other versions
JPH0737856B2 (en
Inventor
Mitsuhiro Ikoma
生駒 光博
Kazuo Nakatani
和生 中谷
Yuji Yoshida
雄二 吉田
Takeshi Tomizawa
猛 富澤
Koji Arita
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21659888A priority Critical patent/JPH0737856B2/en
Publication of JPH0264363A publication Critical patent/JPH0264363A/en
Publication of JPH0737856B2 publication Critical patent/JPH0737856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To maintain the proper feed rate of liquid refrigerant to a rectifying column in order to separate compositions with sufficient rectifying action, by connecting the upper outlet of a gas-liquid separator to a low pressure side pipe of a main cycle through a second pressure reducing device, and providing a reservoir on the lower portion of the rectifying column. CONSTITUTION:As a heater 19 is turned on, and an on-off valve 21 is closed, mainly low boiling point refrigerant is evaporated from the refrigerant in a reservoir 20, and rises through the inside of a rectifying column 16. At this time, the liquid refrigerant sent from the outlet of a condenser 12 enters the second inlet of a gas-liquid separator 15 in gas-liquid mixed phase after its pressure is reduced by a first pressure reducing device 17, and gas-liquid separation takes place. Liquid refrigerant only is fed from the lower outlet to the top of the rectifying column 16 at a proper feed rate, and rectifying action is carried out in the rectifying column 16 with a sufficient gas-liquid contact. In the reservoir 20, high boiling point refrigerant is stored as condensed liquid. The rising gas refrigerant rich with low boiling point refrigerant flows through the first inlet into the gas-liquid separator, and after mixed with the gas-liquid separated refrigerant supplied from the second inlet, the gas refrigerant is introduced to the suction port of a compressor 11 through a second pressure reducing device 18.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用い、組成分離により、高
沸点冷媒を貯留して組成を可変するヒートポンプ装置の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a heat pump device that uses a non-azeotropic mixed refrigerant and stores a high boiling point refrigerant to vary its composition through composition separation.

従来の技術 従来、非共沸混合冷媒を用い、組成分離により高沸点冷
媒を貯留して組成を可変するヒートポンプ装置として、
第3図に示すような装置が提案されている。第3図にお
いて、1は圧縮機、2は凝縮型、3は絞り装置、4は蒸
発器であり、これらを配管接続することにより主回路を
構成している。
Conventional technology Conventionally, a heat pump device uses a non-azeotropic mixed refrigerant and stores a high boiling point refrigerant through composition separation to vary the composition.
A device as shown in FIG. 3 has been proposed. In FIG. 3, 1 is a compressor, 2 is a condensing type, 3 is a throttle device, and 4 is an evaporator, which are connected by piping to form a main circuit.

5は充填材を充填した精留分離器であり、上部は配管6
により凝縮器2出口と、また減圧器7を介して蒸発器4
入口とそれぞれ接続されている。また精留分離器5の下
部には貯留器8が配置され、その底部は開閉弁9を介し
て減圧器7と接続され、貯留器8の内部には加熱ヒータ
ー10が設けられている。
5 is a rectification separator filled with filler, and the upper part is a pipe 6
to the condenser 2 outlet, and also to the evaporator 4 via the pressure reducer 7.
Each is connected to the entrance. Further, a reservoir 8 is disposed below the rectification separator 5, the bottom of which is connected to a pressure reducer 7 via an on-off valve 9, and a heater 10 is provided inside the reservoir 8.

このような装置において非共沸混合冷媒を封入し、組成
を可変する方法について説明する。まず封入した混合冷
媒の組成のままで運転する場合(分離なしモード)には
、加熱ヒーター10をOFFすることにより、貯留器8
は余剰冷媒を単に貯留し、開閉弁9の閉止時はそのまま
貯め込むし、開放時は貯留しながら一部は減圧器7を経
由して蒸発器4に流出するのみとなるため、主回路は封
入した状態の高沸点冷媒の富んだ混合冷媒の組成のまま
運転することになる。次に高沸点冷媒を貯留して低沸点
冷媒の富んだ組成で運転する場合(分離ありモード)に
は、開閉弁9を閉止し加熱ヒーター10をONすると、
貯留器8内部の冷媒中主に低沸点冷媒が気化され、精留
分離器5内部を上昇する。このとき凝縮器2出口からは
配管6を経由して液冷媒が供給され、精留分離器5内部
で気液接触により精留作用が起こり、上昇する気体は低
沸点冷媒の濃度が高まり、逆に下降する液体は高沸点冷
媒の濃度が高まり、貯留器8には高沸点冷媒が凝縮液の
状態で貯留されることになる。
A method of enclosing a non-azeotropic mixed refrigerant in such an apparatus and varying the composition will be described. First, when operating with the composition of the sealed mixed refrigerant unchanged (no separation mode), by turning off the heating heater 10, the reservoir 8
simply stores surplus refrigerant, and when the on-off valve 9 is closed, it is stored as is, and when it is open, it is stored and a part of it only flows out to the evaporator 4 via the pressure reducer 7, so the main circuit is The system will be operated with the composition of the sealed mixed refrigerant rich in high boiling point refrigerant. Next, when storing high boiling point refrigerant and operating with a composition rich in low boiling point refrigerant (separation mode), close the on-off valve 9 and turn on the heating heater 10.
Among the refrigerants inside the reservoir 8, mainly low boiling point refrigerants are vaporized and rise inside the rectification separator 5. At this time, liquid refrigerant is supplied from the outlet of the condenser 2 via the pipe 6, and a rectification action occurs due to gas-liquid contact inside the rectification separator 5, and the rising gas increases the concentration of the low-boiling point refrigerant, causing The concentration of the high boiling point refrigerant in the liquid that descends increases, and the high boiling point refrigerant is stored in the reservoir 8 in the form of a condensed liquid.

一方上昇する低沸点冷媒に富んだ気体は減圧器7を経由
して蒸発器4に流入するため、主回路は低沸点冷媒の富
んだ組成で運転できるものである。
On the other hand, since the rising gas rich in low-boiling point refrigerant flows into the evaporator 4 via the pressure reducer 7, the main circuit can be operated with a composition rich in low-boiling point refrigerant.

このようなタイプの組成可変型のヒートポンプ装置は、
例えば給湯装置に適用され、通常使用時には高温水を得
るため高沸点冷媒の冨んだ封入X■成のままで運転し、
できるだけ短時間で貯湯する必要がある場合には加熱能
力の高い低沸点冷媒の冨んだ組成で運転することが可能
となる。
This type of compositionally variable heat pump device is
For example, it is applied to water heaters, and during normal use, in order to obtain high-temperature water, it is operated with a high boiling point refrigerant filled with X.
When it is necessary to store hot water in the shortest possible time, it is possible to operate with a rich composition of low boiling point refrigerant with high heating capacity.

発明が解決しようとする課題 しかしながら、上記のようなヒートポンプ装置では、精
留分離器が高圧側配管に直接接続されているため、精留
分離器への液冷媒の供給が多くなり過ぎ、そのため、十
分な精留作用が行えず、組成分離が不十分で主回路の冷
媒の組成可変中を十分大きくすることができなくなると
いった欠点があった。
Problems to be Solved by the Invention However, in the heat pump device as described above, since the rectification separator is directly connected to the high pressure side piping, too much liquid refrigerant is supplied to the rectification separator. There were disadvantages in that sufficient rectification action could not be performed, compositional separation was insufficient, and the composition variation period of the refrigerant in the main circuit could not be made sufficiently large.

本発明のヒートポンプ装置は、減圧器と気液分離器を介
して精留分離器を主回路に接続するこ七により、精留分
離を行なう際に、精留分離器への液冷媒の供給が適正と
なり、十分な精留作用により組成分離を行なうことがで
き、主回路の冷媒の組成可変中を十分大きくすることが
できるヒートポンプサイクル構成を提供するものである
The heat pump device of the present invention connects the rectification separator to the main circuit via a pressure reducer and a gas-liquid separator, so that when carrying out rectification separation, liquid refrigerant can be supplied to the rectification separator. The purpose of the present invention is to provide a heat pump cycle configuration in which the composition of the refrigerant in the main circuit can be sufficiently varied, and the composition can be separated by sufficient rectification action.

課題を解決するための手段 本発明のヒートポンプ装置は、気液分離器の第1入口お
よび下部出口を、精留分離器の上部にそれぞれ接続し、
前記気液分離器の第2入口は第1減圧器を介して主回路
の高圧側配管に接続し、さらに、前記気液分離器の上部
出口は第2減圧器を介して主回路の低圧側配管に接続し
、前記精留分離器の下部に貯留器を設けたことを特徴と
するものである。
Means for Solving the Problems The heat pump device of the present invention connects the first inlet and the lower outlet of the gas-liquid separator to the upper part of the rectification separator, respectively,
The second inlet of the gas-liquid separator is connected to the high-pressure side piping of the main circuit via a first pressure reducer, and the upper outlet of the gas-liquid separator is connected to the low-pressure side of the main circuit via the second pressure reducer. The apparatus is characterized in that it is connected to piping and a reservoir is provided below the rectification separator.

さらに、気液分離器の第1入口および下部出口を、精留
分離器の上部にそれぞれ接続し、前記気液分離器の第2
入口は絞り装置と並列に接続された第1減圧器と第2減
圧器の中間に接続し、さらに、前記気液分離器の上部出
口は第3減圧器を介して主回路の低圧側配管に接続し、
前記精留分離器の下部に貯留器を設けたことを特徴とす
るものである。
Further, a first inlet and a lower outlet of the gas-liquid separator are respectively connected to an upper part of the rectification separator, and a second
The inlet is connected between the first pressure reducer and the second pressure reducer which are connected in parallel with the throttling device, and the upper outlet of the gas-liquid separator is connected to the low pressure side piping of the main circuit via the third pressure reducer. connection,
The present invention is characterized in that a reservoir is provided below the rectification separator.

作用 本発明は上記した構成により、分Nlありモードにおい
ては、加熱ヒーターにより、中間圧力となっている貯留
器内部の冷媒中主に低沸点冷媒が気化され、精留分離器
内部を上昇する。このとき高圧側配管である凝縮器とな
る熱交換器の出口からは、減圧器を介して気液分離器で
分離された液冷媒のみが供給され、精留分離器内部で気
液接触により精留作用が起こり、上昇する気体は低沸点
冷媒の濃度が高まり、逆に下降する液体は高沸点冷媒の
濃度が高まり、貯留器には高沸点冷媒が凝縮液の状態で
貯留されることになる。一方上昇した低沸点冷媒に富ん
だ気体は、精留分離器上部より前記気液分離器を介して
、減圧器を経て、低圧側配管である蒸発器となる熱交換
器の入口側に導かれる。このように精留分離器には、気
液分離器で分離されることにより高沸点冷媒の濃度の高
まった液冷媒のみが適正量供給されることになり、精留
分離器の性能を十分に活かした分離作用を行なうことが
でき、主回路の冷媒の組成可変中を十分大きくすること
ができるものである。また、分離なしモードの時には、
加熱ヒーターをOFF’することにより、封入された混
合冷媒の組成のままで運転できるものである。
Operation According to the above-described structure, in the Nl mode, mainly the low boiling point refrigerant in the refrigerant inside the reservoir, which is at intermediate pressure, is vaporized by the heater and rises inside the rectification separator. At this time, only the liquid refrigerant separated by the gas-liquid separator is supplied from the outlet of the heat exchanger, which is the high-pressure side piping, and is purified by gas-liquid contact inside the rectification separator. Retention occurs, and the rising gas increases the concentration of low-boiling point refrigerant, while the descending liquid increases the concentration of high-boiling point refrigerant, and the high-boiling point refrigerant is stored in the reservoir in the form of condensate. . On the other hand, the gas rich in low boiling point refrigerant that has risen is led from the upper part of the rectification separator, through the gas-liquid separator, through the pressure reducer, and to the inlet side of the heat exchanger that becomes the evaporator, which is the low-pressure side piping. . In this way, the rectification separator is supplied with only the appropriate amount of liquid refrigerant, which has an increased concentration of high-boiling point refrigerant by being separated by the gas-liquid separator, and the performance of the rectification separator is fully maintained. It is possible to carry out a separation action that takes full advantage of this, and to make it possible to sufficiently change the composition of the refrigerant in the main circuit. Also, when in non-separation mode,
By turning off the heater, the system can be operated with the composition of the enclosed mixed refrigerant unchanged.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図は本発明のヒートポンプ装置の一実施例であり、
11は圧縮機、12は凝縮器、13は絞り装置、14は
蒸発器であり、これらを配管接続することにより主回路
を構成している。15は気液分離器であり、その第1入
口および下部出口を、充填材を充填した精留分離器16
の上部にそれぞれ接続し、また気液分離器15の第2入
口は第1減圧器17を介して凝縮器12と絞り装置13
の間の高圧側配管に接続し、さらに、気液分離器15の
上部出口は第2減圧器18を介して蒸発器14と圧縮機
11の間の低圧側配管に接続すると共に、精留分離器1
8の下部には加熱ヒーター19を内蔵した貯留器20を
設け、この貯留器20は開閉弁21および第3減圧器2
2を介して絞り装置13と蒸発器14の間の配管に接続
された構成となっている。
FIG. 1 shows an embodiment of the heat pump device of the present invention,
11 is a compressor, 12 is a condenser, 13 is a throttle device, and 14 is an evaporator, and these are connected by piping to constitute a main circuit. 15 is a gas-liquid separator, whose first inlet and lower outlet are connected to a rectification separator 16 filled with a filler.
The second inlet of the gas-liquid separator 15 is connected to the condenser 12 and the throttle device 13 via the first pressure reducer 17.
Furthermore, the upper outlet of the gas-liquid separator 15 is connected to the low-pressure side pipe between the evaporator 14 and the compressor 11 via the second pressure reducer 18, and the rectification separation Vessel 1
A reservoir 20 containing a heating heater 19 is provided at the bottom of the 8, and this reservoir 20 is connected to an on-off valve 21 and a third pressure reducer 2.
2 to the piping between the throttle device 13 and the evaporator 14.

このようなヒートポンプ装置において非共i弗混合冷媒
を封入し、組成を可変する方法について説明する。まず
分離なしモードでは、加熱ヒーター19をOF F L
、開閉弁21を開放することにより、第1減圧器17、
気液分離器15、精留分離器16を介して貯留器20に
は余剰冷媒が貯留され、一部は開閉弁21、第3減圧器
22を経由して蒸発器工4に流出するのみとなるため、
主回路は封入した状態の高沸点冷媒の富んだ混合冷媒の
組成のまま運転することになる。次に分離ありモードで
は、加熱ヒーター19をONし、開閉弁21を閉止する
ことにより、貯留器20内部の冷媒中主に低沸点冷媒が
気化され、精留分離器16内部を上昇する。このとき凝
縮器12出口からは液冷媒が第1減圧器17で減圧され
気液二相の状態で、気液分離器15の第2入口から入り
、ここで気液分離されて下部出口より液冷媒のみが精留
骨jff516上部に適正量供給され、精留分離器16
内部で十分な気液接触により精留作用が起こり一1上昇
する気体は低沸点冷媒の濃度が高まり、逆に下降する液
体は高沸点冷媒の濃度が高まり、貯留器20には高沸点
冷媒が凝縮液の状態で貯留されることになる。一方上昇
した低沸点冷媒に富んだ気体は気液分離器15に第1入
口より入り、ここで第2入口より供給され気液分離され
た気体冷媒と混合されたのち、第2減圧器18を介して
圧縮機11の吸入側に導かれる。このようにして主回路
は低沸点冷媒の富んだ混合冷媒の組成で運転できるもの
である。
A method of enclosing a non-component i-fluor mixture refrigerant in such a heat pump device and varying the composition will be described. First, in the non-separation mode, the heating heater 19 is turned off.
, by opening the on-off valve 21, the first pressure reducer 17,
Excess refrigerant is stored in the reservoir 20 via the gas-liquid separator 15 and the rectification separator 16, and a portion only flows out to the evaporator 4 via the on-off valve 21 and the third pressure reducer 22. To become
The main circuit will operate with the composition of the mixed refrigerant containing the high boiling point refrigerant in the enclosed state. Next, in the separation mode, by turning on the heating heater 19 and closing the on-off valve 21, mainly the low boiling point refrigerant in the refrigerant inside the reservoir 20 is vaporized and rises inside the rectification separator 16. At this time, the liquid refrigerant from the outlet of the condenser 12 is depressurized by the first pressure reducer 17 and enters the gas-liquid two-phase state from the second inlet of the gas-liquid separator 15, where it is separated into gas and liquid, and the liquid refrigerant is released from the lower outlet. Only the refrigerant is supplied in an appropriate amount to the upper part of the rectification bone jff516, and the rectification separator 16
A rectification effect occurs due to sufficient gas-liquid contact inside.The rising gas increases the concentration of low-boiling point refrigerant, and conversely, the descending liquid increases the concentration of high-boiling point refrigerant, and the high-boiling point refrigerant is in the reservoir 20. It will be stored in the form of condensate. On the other hand, the increased gas rich in low boiling point refrigerant enters the gas-liquid separator 15 from the first inlet, where it is mixed with the gas-liquid separated gas refrigerant supplied from the second inlet, and then passed through the second pressure reducer 18. The air is guided to the suction side of the compressor 11 through the air. In this way, the main circuit can be operated with a mixed refrigerant composition rich in low boiling point refrigerants.

なお主回路の組成を元に戻すには、加熱ヒーター19を
OFFし、開閉弁21を開放すると、貯留器20内の高
沸点冷媒を開閉弁21、第3減圧器22を介して、主回
路を流れる低沸点冷媒の富んだ混合冷媒に強制的に混入
させることができ、短時間で主回路は封入した状態の高
沸点冷媒の富んだ混合冷媒の組成となるものである。
In order to restore the composition of the main circuit to its original state, turn off the heating heater 19 and open the on-off valve 21. It can be forcibly mixed into the mixed refrigerant rich in low boiling point refrigerant flowing through the main circuit, and in a short time the main circuit becomes the composition of the mixed refrigerant rich in high boiling point refrigerant sealed in the main circuit.

また、開閉弁21および第3減圧器22を設けない場合
にも、貯留器20内の高沸点冷媒が主回路を流れる低沸
点冷媒の富んだ混合冷媒に自然に拡散混入して、主回路
は封入した状態の高沸点冷媒の富んだ混合冷媒の組成と
なるものである。
Further, even when the on-off valve 21 and the third pressure reducer 22 are not provided, the high boiling point refrigerant in the reservoir 20 naturally diffuses and mixes with the mixed refrigerant rich in low boiling point refrigerant flowing through the main circuit, and the main circuit is The composition of the sealed refrigerant mixture is rich in high boiling point refrigerants.

なお、加熱ヒーター19の代わりに圧縮機11の吐出配
管等ヒートポンプサイクル中の高温熱源を用いてもよい
ことはもちろんのことであり、さらに、本発明において
は、精留分離器16が中間圧力となるよう第1減圧器1
7を介して主回路に接続したため、精留分離を行なう際
には、中間温度の熱源、例えば凝縮器出口の液冷媒の顕
熱などを有効に利用できるものである。
Note that it goes without saying that a high-temperature heat source during the heat pump cycle, such as the discharge pipe of the compressor 11, may be used instead of the heater 19. Furthermore, in the present invention, the rectification separator 16 may be used at an intermediate pressure or The first pressure reducer 1
7 to the main circuit, it is possible to effectively utilize an intermediate temperature heat source, such as the sensible heat of the liquid refrigerant at the condenser outlet, when performing rectification separation.

第2図は本発明のヒートポンプ装置の他の実施例の構成
図であり、23は圧縮機、24は四方弁、25は利用側
熱交換器、2θは絞り装置、27は熱源側熱交換器であ
り、これらを配管接続することにより主ヒートポンプ回
路を構成している。28は気液分離器であり、その第1
入口および下部出口を、精留分離器29の上部にそれぞ
れ接続し、また気液分離器28の第2入口は絞り装置2
6と並列に接続された第1減圧器30と第2減圧器31
の中間lこ接続し、さらに、気液分離器28の上部出口
は第3減圧器32を介して四方弁24と圧縮機23の吸
入側の間の低圧側配管に接続すると共に、精留分離器2
9の下部には加熱ヒーター33を内蔵した貯留器34を
設け、この貯留器34は開閉弁35および第4減圧器3
Bを介して絞り装置26と熱源側熱交換器27の間の配
管に接続された構成となっている。
FIG. 2 is a configuration diagram of another embodiment of the heat pump device of the present invention, where 23 is a compressor, 24 is a four-way valve, 25 is a utilization side heat exchanger, 2θ is a throttle device, and 27 is a heat source side heat exchanger. The main heat pump circuit is constructed by connecting these with piping. 28 is a gas-liquid separator, the first
The inlet and lower outlet are respectively connected to the upper part of the rectification separator 29, and the second inlet of the gas-liquid separator 28 is connected to the throttling device 2.
6 and a first pressure reducer 30 and a second pressure reducer 31 connected in parallel.
Furthermore, the upper outlet of the gas-liquid separator 28 is connected to the low-pressure side pipe between the four-way valve 24 and the suction side of the compressor 23 via the third pressure reducer 32, and the rectification separation Vessel 2
A reservoir 34 containing a heating heater 33 is provided at the bottom of the 9, and this reservoir 34 is connected to an on-off valve 35 and a fourth pressure reducer 3.
It is connected to piping between the expansion device 26 and the heat source side heat exchanger 27 via B.

このようなヒートポンプ装置において非共沸混合冷媒を
封入し、組成を可変する方法について説明する。まず分
離なしモードでは、加熱ヒーター33をOF F t、
、開閉弁35を開放することにより、加熱運転時には、
利用側熱交換器2Sで凝縮された冷媒の一部が分流され
、絞り装置26と並列に接続された第1減圧器301 
第2減圧器31を介して蒸発器となる熱源側熱交換器2
7に流入すると共に、第1″t4圧器30をでた冷媒の
一部は気液分離器28に入り、液冷媒は下部出口より精
留分離器29、貯留器34、開閉弁35、第4減圧器3
6を介して蒸発器となる熱源側熱交換器27に流入する
。また、気体冷媒は上部出口より第3減圧器32を介し
て圧縮機23の吸入側に導かれる。この時、貯留器34
には中間圧力の余剰冷媒が貯留されるが、主回路は封入
した状態の高沸点冷媒の富んだ混合冷媒の組成のまま運
転することになる。また、冷却運転時にも同様に、熱源
側熱交換器27で凝縮された冷媒の一部が分流され、絞
り装置26と並列に接続された第2減圧器31、第1減
圧器30を介して蒸発器となる利用側熱交換器25に流
入すると共に、一部の冷媒は第4g圧器36、開閉弁3
5、貯留器34、精留分離器29、気液分離器28、第
1減圧器30を介して蒸発器となる利用側熱交換器25
に流入し、貯留器34には中間圧力の余剰冷媒が貯留さ
れ、主回路は封入した状態の高沸点冷媒の富んだ混合冷
媒の組成のまま運転することになる。
A method of enclosing a non-azeotropic mixed refrigerant in such a heat pump device and varying the composition will be described. First, in the non-separation mode, the heater 33 is turned off.
, by opening the on-off valve 35, during heating operation,
A part of the refrigerant condensed in the user-side heat exchanger 2S is divided into a first pressure reducer 301 connected in parallel with the throttle device 26.
Heat source side heat exchanger 2 that becomes an evaporator via the second pressure reducer 31
At the same time, a part of the refrigerant that exits the first T4 pressure vessel 30 enters the gas-liquid separator 28, and the liquid refrigerant flows from the lower outlet to the rectifying separator 29, the reservoir 34, the on-off valve 35, and the fourth Pressure reducer 3
6 and flows into the heat source side heat exchanger 27 which serves as an evaporator. Further, the gaseous refrigerant is guided from the upper outlet to the suction side of the compressor 23 via the third pressure reducer 32. At this time, the reservoir 34
Surplus refrigerant at intermediate pressure is stored in the refrigerant, but the main circuit operates with the composition of the mixed refrigerant rich in high-boiling refrigerant sealed in the refrigerant. Similarly, during the cooling operation, a part of the refrigerant condensed in the heat source side heat exchanger 27 is divided and passed through the second pressure reducer 31 and the first pressure reducer 30 connected in parallel with the expansion device 26. While flowing into the user side heat exchanger 25 which becomes an evaporator, some of the refrigerant also flows into the fourth g pressure vessel 36 and the on-off valve 3.
5. Utilization-side heat exchanger 25 that becomes an evaporator via the storage device 34, rectification separator 29, gas-liquid separator 28, and first pressure reducer 30
The surplus refrigerant at intermediate pressure is stored in the reservoir 34, and the main circuit operates with the composition of the mixed refrigerant rich in high boiling point refrigerant sealed therein.

次に加熱運転時の分離ありモードでは、加熱ヒーター3
3をONし、開閉弁35を閉じることにより、加熱ヒー
ター33により中間圧力になっている貯留器34内部の
冷媒中主に低沸点冷媒が気化され、精留分離器29内部
を上昇する。このとき利用側熱交換器25出口からは液
冷媒が第1減圧器30で減圧され気液二相の状態で、気
液分離器28の第2入口から入り、ここで気液分離され
て下部出口より液冷媒のみが精留分I1g器29上部に
適正量供給され、精留分離器29内部で気液接触により
精留作用が起こり、上昇する気体は低沸点冷媒の濃度が
高まり、逆に下降する液体は高沸点冷媒の濃度が高まり
、貯留器34には高沸点冷媒が凝縮液の状態で貯留され
ることになる。一方上昇した低沸点冷媒に富んだ気体冷
媒は、気液分離器28に第1入口より入り、ここで第2
入口より供給され気液分離された気体冷媒と混合された
のち、第3減圧器32を介して圧縮機23の吸入側に導
かれる。このようにして主回路は低沸点冷媒の富んだ混
合冷媒の組成で運転できるものである。
Next, in the mode with separation during heating operation, heating heater 3
3 is turned ON and the on-off valve 35 is closed, mainly the low boiling point refrigerant in the refrigerant inside the reservoir 34, which is at an intermediate pressure by the heating heater 33, is vaporized and rises inside the rectification separator 29. At this time, the liquid refrigerant from the outlet of the heat exchanger 25 on the user side is depressurized by the first pressure reducer 30 and enters the gas-liquid two-phase state from the second inlet of the gas-liquid separator 28, where it is separated into gas and liquid and lowered. Only the liquid refrigerant is supplied in an appropriate amount from the outlet to the upper part of the rectification fraction I1g device 29, and a rectification action occurs due to gas-liquid contact inside the rectification separator 29, and the rising gas increases the concentration of the low boiling point refrigerant, and conversely The concentration of the high boiling point refrigerant in the descending liquid increases, and the high boiling point refrigerant is stored in the reservoir 34 in the form of a condensed liquid. On the other hand, the increased gas refrigerant rich in low boiling point refrigerant enters the gas-liquid separator 28 from the first inlet, where it enters the second inlet.
After being mixed with the gas-liquid separated gas refrigerant supplied from the inlet, it is led to the suction side of the compressor 23 via the third pressure reducer 32. In this way, the main circuit can be operated with a mixed refrigerant composition rich in low boiling point refrigerants.

また、冷却運転時の分離ありモードでも、加熱ヒーター
33をONし、開閉弁35を閉じることにより、加熱ヒ
ーター33により中間圧力になっている貯留器34内部
の冷媒中主に低沸点冷媒が気化され、精留分難器29内
部を上昇する。このとき熱源側熱交換器27出口からは
液冷媒が第2減圧器31で減圧され気液二相の状態で、
気液分離器28の第2入口から入り、ここで気液分離さ
れて下部出口より液冷媒のみが精留分離器29上部に適
正量供給され、精留分離器29内部で気液接触により精
留作用が起こり、上昇する気体は低沸点冷媒の濃度が高
まり、逆に下降する液体は高沸点冷媒の濃度が高まり、
貯留器34には高沸点冷媒が凝縮液の状態で貯留される
ことになる。
In addition, even in the separation mode during cooling operation, by turning on the heating heater 33 and closing the on-off valve 35, mainly the low boiling point refrigerant in the refrigerant inside the reservoir 34, which is at an intermediate pressure by the heating heater 33, is vaporized. and rises inside the rectification evaporator 29. At this time, the liquid refrigerant from the outlet of the heat source side heat exchanger 27 is depressurized by the second pressure reducer 31 and is in a gas-liquid two-phase state.
It enters from the second inlet of the gas-liquid separator 28, where it is separated into gas and liquid, and only the liquid refrigerant is supplied in an appropriate amount from the lower outlet to the upper part of the rectification separator 29, where it is purified by gas-liquid contact inside the rectification separator 29. Retention action occurs, and the rising gas increases the concentration of low-boiling point refrigerant, and conversely, the descending liquid increases the concentration of high-boiling point refrigerant,
The high boiling point refrigerant is stored in the reservoir 34 in the form of condensate.

方上昇した低沸点冷媒に富んだ気体冷媒は、気液分離器
28に第1入口より入り、ここで第2入口より供給され
気液分離された気体冷媒と混合されたのち、第3減圧器
32を介して圧縮機23の吸入側に導かれる。このよう
にして主回路は低沸点冷媒の富んだ混合冷媒の組成で運
転できるものである。
The gaseous refrigerant enriched with low-boiling point refrigerant that has risen in the temperature direction enters the gas-liquid separator 28 from the first inlet, where it is mixed with the gas-liquid separated gas refrigerant supplied from the second inlet, and then transferred to the third pressure reducer. 32 to the suction side of the compressor 23. In this way, the main circuit can be operated with a mixed refrigerant composition rich in low boiling point refrigerants.

なお主回路の組成を元に戻すには、加熱ヒーター33を
0FFL、開閉弁35を開放すると、貯留器34内の高
沸点冷媒を開閉弁35、第4減圧器36を介して、主回
路を流れる低沸点冷媒の富んだ混合冷媒に強制的に混入
させることができ、短時間で主回路は封入した状態の高
沸点冷媒の富んだ混合冷媒の組成となるものである。
To restore the composition of the main circuit to its original state, turn the heating heater 33 to 0FFL and open the on-off valve 35. It can be forcibly mixed into the flowing mixed refrigerant rich in low boiling point refrigerant, and in a short time the main circuit becomes the composition of the mixed refrigerant rich in high boiling point refrigerant sealed in the main circuit.

また、開閉弁35および第4減圧器3θを設けない場合
にも、貯留器34内の高沸点冷媒が主回路を流れる低沸
点冷媒の富んだ混合冷媒に自然に拡散混入して、主回路
は封入した状態の高沸点冷媒の富んだ混合冷媒の組成と
なるものである。
Further, even when the on-off valve 35 and the fourth pressure reducer 3θ are not provided, the high boiling point refrigerant in the reservoir 34 naturally diffuses and mixes with the mixed refrigerant rich in low boiling point refrigerant flowing through the main circuit, and the main circuit The composition of the sealed refrigerant mixture is rich in high boiling point refrigerants.

発明の効果 以上の説明より明らかなように、本発明のヒートポンプ
装置は、気液分離器の第1入口および下部出口を、精留
分離器の上部にそれぞれ接続し、前記気液分離器の第2
入口は第1減圧器を介して主回路の高圧側配管に接続し
、さらに、前記気液分離器の上部出口は第2減圧器を介
して主回路の低圧側配管に接続すると共に、前記精留分
離器の下部に貯留器を設けたことを特徴とする構成であ
るから、精留分離を行なう際に、精留分離器には気液分
離器で分離されることにより高沸点冷媒の濃度の高まっ
た液冷媒のみが適正量供給されることになり、精留分離
器の性能を十分に活かした分離作用を行なうことができ
、主回路の冷媒の組成可変中を十分大きくすることがで
きるものである。
Effects of the Invention As is clear from the above explanation, the heat pump device of the present invention connects the first inlet and the lower outlet of the gas-liquid separator to the upper part of the rectification separator, and 2
The inlet is connected to the high-pressure side piping of the main circuit via a first pressure reducer, and the upper outlet of the gas-liquid separator is connected to the low-pressure side piping of the main circuit via a second pressure reducer. Since the structure is characterized by a reservoir provided at the bottom of the distillation separator, when performing rectification separation, the concentration of high boiling point refrigerant is reduced in the rectification separator by being separated by the gas-liquid separator. Only the appropriate amount of liquid refrigerant with increased temperature is supplied, making it possible to perform a separation action that takes full advantage of the performance of the rectification separator, and making it possible to sufficiently widen the period during which the composition of the refrigerant in the main circuit can be varied. It is something.

また、精留分離器が中間圧力となるよう第1減圧器を介
して主回路に接続したため、精留分離を行なう際には、
中間温度の熱源、例えば凝縮器出口の液冷媒の顕熱など
を有効に利用できるものであさらに、精留分離器の下部
に設けた貯留器を開閉弁を介して、主回路に接続するこ
とにより、分目tありモードの運転から分離なしモード
の運転に切り換える際に、開閉弁の操作により、貯留器
内に貯留された高沸点冷媒を主回路を流れる低沸点冷媒
の富んだ混合冷媒に強制的に混入させることができ、短
時間で主回路を封入した状態の高沸点冷媒の富んだ混合
冷媒の組成に戻すことができるものである。
In addition, since the rectification separator was connected to the main circuit via the first pressure reducer so that the pressure was intermediate, when performing rectification separation,
A heat source with an intermediate temperature, such as the sensible heat of the liquid refrigerant at the outlet of the condenser, can be used effectively, and the reservoir installed at the bottom of the rectification separator can be connected to the main circuit via an on-off valve. When switching from the mode with minute t to the non-separation mode, the on-off valve is operated to convert the high boiling point refrigerant stored in the reservoir into a mixed refrigerant rich in low boiling point refrigerant flowing through the main circuit. It can be forcibly mixed in, and the composition of the mixed refrigerant rich in high boiling point refrigerant can be restored in a short time to the state in which the main circuit is enclosed.

さらに、本発明のヒートポンプ装置は、気液分離器の第
1入口および下部出口を、精留分離器の上部にそれぞれ
接続し、前記気液分離器の第2入口は絞り装置と並列に
接続された第1減圧器と第2減圧器の中間に接続し、さ
らに、前記気液分離器の上部出口は第3減圧器を介して
主回路の低圧側配管に接続すると共に、前記精留分離器
の下部に貯留器を設けたことを特徴とする構成であるか
ら、加熱運転時のみならず、冷却運転時にも精留分離を
行なう際に精留分離器には気液分離器で分離されること
により高沸点冷媒の濃度の高まった液冷媒のみが適正量
供給されることになり、精留分離器の性能を十分に活か
した分離作用を行なうことができ、主回路の冷媒の組成
可変中を十分大きくすることができるものである。これ
により、加熱運転時には、高温が必要な場合には高沸点
冷媒の富んだ封入組成のまま運転し、高能力が必要な場
合には加熱能力の高い低沸点冷媒の富んだ組成で運転す
ることが可能であり、また、冷却運転時には、高能力が
必要な場合には冷却能力の高い低沸点冷媒の富んだ組成
で運転し、冷却負荷が小さく能力をセーブする必要のあ
る時には高沸点冷媒の富んだ封入組成のまま運転するこ
とができる等、実用上多大な効果を発揮するものである
Further, in the heat pump device of the present invention, the first inlet and the lower outlet of the gas-liquid separator are connected to the upper part of the rectification separator, and the second inlet of the gas-liquid separator is connected in parallel with the throttling device. Further, the upper outlet of the gas-liquid separator is connected to the low pressure side piping of the main circuit via a third pressure reducer, and the rectification separator Since the structure is characterized by a reservoir provided at the bottom of the rectifier, when performing rectification separation not only during heating operation but also during cooling operation, the rectification separator is separated by a gas-liquid separator. As a result, only the appropriate amount of liquid refrigerant with an increased concentration of high-boiling point refrigerant is supplied, making it possible to perform a separation action that takes full advantage of the performance of the rectification separator, while changing the composition of the refrigerant in the main circuit. can be made sufficiently large. As a result, during heating operation, if high temperature is required, the system can be operated with a high-boiling refrigerant-rich composition, and when high capacity is required, it can be operated with a low-boiling-point refrigerant-rich composition with high heating capacity. In addition, during cooling operation, when high capacity is required, operation is performed with a composition rich in low boiling point refrigerant with high cooling capacity, and when cooling load is small and capacity needs to be saved, high boiling point refrigerant is used. This has great practical effects, such as being able to operate with a rich encapsulated composition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のヒートポンプ装置の構成図
、第2図は本発明の他の実施例のヒートポンプ装置の構
成図、第3図は従来例のヒートポンプ装置の構成図であ
る。 11.23・・・・圧縮機、12・・・・凝縮器、13
、26・・・・絞り装置、14・・・・蒸発器、15.
28・・・・気液分離器、16.29・・・・精留分離
器、24・・・・四方弁、25・・・・利用側熱交換器
、27・・・・熱源側熱交換器 代理人の氏名 弁理士 栗野重孝 ばか1名第1図 // −一 /3−− /4−− /6−− /乙−− 2ノー− 万覇機・ 漠す宅羞 較り 我1 箔発巻 %、渣倉葡羞 ″SV分脅基 貯w]k V1閉升
FIG. 1 is a block diagram of a heat pump device according to an embodiment of the present invention, FIG. 2 is a block diagram of a heat pump device according to another embodiment of the present invention, and FIG. 3 is a block diagram of a conventional heat pump device. 11.23... Compressor, 12... Condenser, 13
, 26... throttle device, 14... evaporator, 15.
28... Gas-liquid separator, 16.29... Rectification separator, 24... Four-way valve, 25... User side heat exchanger, 27... Heat source side heat exchanger. Name of agent Patent attorney Shigetaka Kurino One idiot Figure 1// -1/3-- /4-- /6-- /Otsu-- 2 No- Manhaki/Deceitful home shame I 1 Foil roll %, Atokura Toshi SV minute threat base w]k V1 closure

Claims (4)

【特許請求の範囲】[Claims] (1)非共沸混合冷媒を封入し、圧縮機、凝縮器、絞り
装置、蒸発器を順に配管にて接続して主回路を構成し、
気液分離器の第1入口および下部出口を、精留分離器の
上部にそれぞれ接続し、前記気液分離器の第2入口は第
1減圧器を介して主回路の高圧側配管に接続し、さらに
、前記気液分離器の上部出口は第2減圧器を介して主回
路の低圧側配管に接続し、前記精留分離器の下部に貯留
器を設けたことを特徴とするヒートポンプ装置。
(1) Construct a main circuit by enclosing a non-azeotropic mixed refrigerant and connecting the compressor, condenser, throttle device, and evaporator in order with piping,
A first inlet and a lower outlet of the gas-liquid separator are respectively connected to the upper part of the rectification separator, and a second inlet of the gas-liquid separator is connected to the high-pressure side piping of the main circuit via a first pressure reducer. . A heat pump device further characterized in that an upper outlet of the gas-liquid separator is connected to a low-pressure side pipe of a main circuit via a second pressure reducer, and a reservoir is provided at a lower part of the rectification separator.
(2)精留分離器の下部に設けた貯留器を、開閉弁を介
して主回路に接続したことを特徴とする請求項1記載の
ヒートポンプ装置。
(2) The heat pump device according to claim 1, wherein the reservoir provided at the lower part of the rectification separator is connected to the main circuit via an on-off valve.
(3)非共沸混合冷媒を封入し、圧縮機、四方弁、利用
側熱交換器、絞り装置、熱源側熱交換器を順に配管にて
接続して主ヒートポンプ回路を構成し、気液分離器の第
1入口および下部出口を、精留分離器の上部にそれぞれ
接続し、前記気液分離器の第2入口は絞り装置と並列に
接続された第1減圧器と第2減圧器の中間に接続し、さ
らに、前記気液分離器の上部出口は第3減圧器を介して
主回路の低圧側配管に接続し、前記精留分離器の下部に
貯留器を設けたことを特徴とするヒートポンプ装置。
(3) Enclose a non-azeotropic mixed refrigerant, connect the compressor, four-way valve, user side heat exchanger, expansion device, and heat source side heat exchanger with piping in order to configure the main heat pump circuit and separate gas and liquid. The first inlet and lower outlet of the vessel are respectively connected to the upper part of a rectification separator, and the second inlet of the gas-liquid separator is connected to the middle of the first pressure reducer and the second pressure reducer connected in parallel with a throttling device. Further, the upper outlet of the gas-liquid separator is connected to the low-pressure side piping of the main circuit via a third pressure reducer, and a reservoir is provided at the lower part of the rectification separator. heat pump equipment.
(4)精留分離器の下部に設けた貯留器を開閉弁を介し
て、主回路に接続したことを特徴とする請求項2記載の
ヒートポンプ装置。
(4) The heat pump device according to claim 2, wherein the reservoir provided at the bottom of the rectification separator is connected to the main circuit via an on-off valve.
JP21659888A 1988-08-31 1988-08-31 Heat pump device Expired - Fee Related JPH0737856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21659888A JPH0737856B2 (en) 1988-08-31 1988-08-31 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21659888A JPH0737856B2 (en) 1988-08-31 1988-08-31 Heat pump device

Publications (2)

Publication Number Publication Date
JPH0264363A true JPH0264363A (en) 1990-03-05
JPH0737856B2 JPH0737856B2 (en) 1995-04-26

Family

ID=16690931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21659888A Expired - Fee Related JPH0737856B2 (en) 1988-08-31 1988-08-31 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0737856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207414A (en) * 2019-06-25 2019-09-06 珠海格力电器股份有限公司 Self-cascade refrigeration system, drying device with same and operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207414A (en) * 2019-06-25 2019-09-06 珠海格力电器股份有限公司 Self-cascade refrigeration system, drying device with same and operation method
CN110207414B (en) * 2019-06-25 2023-08-29 珠海格力电器股份有限公司 Self-cascade refrigeration system, drying device with same and operation method

Also Published As

Publication number Publication date
JPH0737856B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
KR890004867B1 (en) Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
EP0301503B1 (en) Heat pump system
US6003323A (en) Refrigerating air-conditioning apparatus
JPH0264363A (en) Heat pump device
JPH0745982B2 (en) Heat pump device
JPH0264367A (en) Heat pump device
JPH0264369A (en) Heat pump device
JPH0264370A (en) Heat pump device
JPS6143188Y2 (en)
JPH01111171A (en) Heat pump device
JPH02238261A (en) Heat pump apparatus
JPH0264362A (en) Heat pump device
JPH02146468A (en) Heat pump apparatus
JPH01252867A (en) Device of heat pump
JPH058350B2 (en)
JPH0544582B2 (en)
JPH0646118B2 (en) Heat pump device
JPH03244970A (en) Heat pump device
JPH01111172A (en) Heat pump device
JPH04263747A (en) Refrigerator cycle device
JPH0577942B2 (en)
JPS61153344A (en) Heat pump device
JPH04260757A (en) Freezing cycle device
JPH0264368A (en) Heat pump device
JPH0481708B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees