JPH0264099A - Production of single crystal of tl-ca-ba-cu-o based high-temperature superconducting material - Google Patents

Production of single crystal of tl-ca-ba-cu-o based high-temperature superconducting material

Info

Publication number
JPH0264099A
JPH0264099A JP21777388A JP21777388A JPH0264099A JP H0264099 A JPH0264099 A JP H0264099A JP 21777388 A JP21777388 A JP 21777388A JP 21777388 A JP21777388 A JP 21777388A JP H0264099 A JPH0264099 A JP H0264099A
Authority
JP
Japan
Prior art keywords
single crystal
raw material
temperature
based high
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21777388A
Other languages
Japanese (ja)
Other versions
JPH0818911B2 (en
Inventor
Toshihiro Kotani
敏弘 小谷
Hiromi Takei
武井 広見
Tetsuyuki Kaneko
哲幸 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63217773A priority Critical patent/JPH0818911B2/en
Publication of JPH0264099A publication Critical patent/JPH0264099A/en
Publication of JPH0818911B2 publication Critical patent/JPH0818911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain a single crystal of the subject high-temperature super conducting material with a high critical temperature by specifying the total content of Ca and copper, the contents of Tl and Ba and the atomic ratio of Tl to Ba in the raw material containing Tl, Ca, Ba and copper and treating the raw material using the flux method. CONSTITUTION:Compounds such as Tl2O3, CaO, BaO2 and CuO are mixed to prepare a starting material with 50-80at% (Ca+Cu) composition, 1:1 atomic ratio of Tl to Ba and respectively 10-25at% compositions of Tl and Ba. The resultant starting material is then treated using the flux method, smelted and subsequently kept preferably within the range of 910-860 deg.C for 1-12hr, thus stably obtaining the objective single crystal of Tl-Ca-Ba-Cu-O-based high- temperature superconducting material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はTl−Ca−Ba−Cu−0系高温超電導材料
の単結晶製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a single crystal of a Tl-Ca-Ba-Cu-0 based high temperature superconducting material.

[従来技術] T I −Ca−B a−Cu−0系では曲の酸1ヒ物
超電導材料と同様 CuOやCuO+(Ca、Ba)0
をフラックスとして使用した単結晶の成長が試みられた
が、安定して製造することが難しい状態にあった。
[Prior art] In the T I -Ca-B a-Cu-0 system, CuO and CuO + (Ca, Ba) 0 are similar to the acid 1 arsenide superconducting material in the song.
Attempts have been made to grow single crystals using this as a flux, but it has been difficult to produce them stably.

〔発明が解決しようとする課題] 従来の原料組成ではいわゆる高温和と呼ばれるTcの高
いmmサイズの結晶が得られなかった。これは高温相の
晶出する組成や生成する構造が不明であったため製造条
件がずれていたことによるからであった。
[Problems to be Solved by the Invention] With conventional raw material compositions, mm-sized crystals with a high Tc, which is called a high-temperature sum, cannot be obtained. This was because the manufacturing conditions were different because the composition in which the high-temperature phase crystallized and the structure formed were unknown.

[問題点を解決するための手段とその効果]そこで発明
者らはかかる課題を解決せんとして精力的に努力した結
果、特許請求の範囲に記載の製造方法を見い出したもの
であって、 ■結晶成長に使用する原料中の(Ca+Cu)の原子比
が50〜80at%、TlとBaの原子比がl:1でか
つ10at%〜25at%となるよう配合比を調整する
こと ■原料融合f&910〜860℃の温度範囲内で1〜1
2時間温度を保持すること を要件にしたものである。
[Means for Solving the Problems and Their Effects] Therefore, the inventors made strenuous efforts to solve the problems, and as a result, they discovered the manufacturing method described in the claims, which is: ■Crystals. Adjust the blending ratio so that the atomic ratio of (Ca+Cu) in the raw materials used for growth is 50 to 80 at%, the atomic ratio of Tl and Ba is 1:1, and 10 at% to 25 at% ■ Raw material fusion f&910 ~ 1-1 within the temperature range of 860℃
The requirement is to maintain the temperature for 2 hours.

即ち、Tl系超超電導体高温相の原子比はTl:Ca:
Ba:Cu=2:2:2:3であるが、フラックス法に
よる単結晶育成には原料として2223組成比にさらに
フラックス材を添加する必要がある0発明者らはフラッ
クス材として。
That is, the atomic ratio of the high temperature phase of the Tl-based superconductor is Tl:Ca:
Ba:Cu=2:2:2:3, but in order to grow a single crystal by the flux method, it is necessary to further add a flux material to the composition ratio of 2223 as a raw material.The inventors used this as a flux material.

(CaO+Cu0)を使用し、その添加量の最適化を図
った。
(CaO+Cu0) was used, and the amount added was optimized.

その結果は第1図に示す通りで、原料としてTl:Ca
:Ba:Cu=2:6:2:6の時に最も高いTcを有
する結晶が得られることが判明した。
The results are shown in Figure 1, with Tl:Ca as the raw material.
It has been found that a crystal having the highest Tc can be obtained when :Ba:Cu=2:6:2:6.

これはこの組成比が丁度高温相結晶が晶出する組成範囲
にあるためである。また、(Ca+Cu)が50〜80
at%内のその他の組成でも原料溶融後910〜860
℃の温度内で1〜12時間保持することにより高温相の
生成が進行することが判明した。これは高温相が上記温
度内で包晶反応により生成するためである。保持時間は
組成比や温度によって異なるが900℃では1時間程度
、860℃付近では12時間程度の反応時間が必要であ
る。
This is because this composition ratio is exactly within the composition range in which high-temperature phase crystals crystallize. In addition, (Ca+Cu) is 50 to 80
Even with other compositions within the at% range, after melting the raw materials, the
It has been found that the formation of a high temperature phase progresses by holding the sample at a temperature of 1 to 12 hours. This is because the high temperature phase is generated by a peritectic reaction within the above temperature range. Although the holding time varies depending on the composition ratio and temperature, a reaction time of about 1 hour is required at 900°C, and about 12 hours at around 860°C.

[実施例] 各原料組成比におけるTc (K)は次の通りであった
。すなわち。
[Example] Tc (K) at each raw material composition ratio was as follows. Namely.

原料組成比         Tc (K)Tl:Ca
:Ba:Cu 2  3  2  3.75 114−1152  4
  2  4.5  115 2  5  2  5.25 118 2  7  2  6.75 115 2 8 2 7゜5  94 上記組成比でT 1203 、CaO、BaO2,Cu
Oを混合、約1〜2t o n / c m・でペレッ
ト成形したものを原料とした。原料は内径10〜12m
mφのAuパイプ中に封入し、さらにこの、A uパイ
プをpするつぼ内に挿入し、炉内に入れ、結晶を成長さ
せた。成長条件は第2図に示すとおりである。炉内は流
量200〜500m1/分のo2ガスフローとし、原料
チャージ量は2〜5gとした。冷却tIiI料を扮砕 
フラックスより結晶を取り出したところ、結晶は0.5
〜2.5mm口のサイズのものが得られた。これらの結
晶をDC帯磁4!測定によりTcを測定したところ10
8〜120にの種々のTcを持つ結晶が得られた。この
うち118〜120にのTcを示す結晶は0.5〜1.
5mm口程度であった9 [本発明の効果] これまでTl−Ca−Ba−Cu−0系超電導体の低T
c相単結晶しか得られながったが、本発明によりmmサ
イズの大型の高温和(Tc=118〜120K>の単結
晶が安定して得られるようになり、産業上における実施
範囲が格段に広がる効果は極めて大きい。
Raw material composition ratio Tc (K)Tl:Ca
:Ba:Cu 2 3 2 3.75 114-1152 4
2 4.5 115 2 5 2 5.25 118 2 7 2 6.75 115 2 8 2 7゜5 94 At the above composition ratio, T 1203, CaO, BaO2, Cu
The raw material was prepared by mixing O and forming pellets at about 1 to 2 tons/cm. The raw material has an inner diameter of 10 to 12 m.
The material was sealed in an Au pipe of mφ, and the Au pipe was further inserted into a p-type crucible and placed in a furnace to grow crystals. The growth conditions are as shown in FIG. The inside of the furnace had an O2 gas flow of 200 to 500 m1/min, and the raw material charge amount was 2 to 5 g. Crush the cooled tIiI material
When the crystal was taken out from the flux, the crystal was 0.5
A sample with a mouth size of ~2.5 mm was obtained. These crystals are DC magnetized 4! When Tc was measured, it was 10
Crystals with various Tc's from 8 to 120 were obtained. Among these, crystals exhibiting a Tc of 118 to 120 are 0.5 to 1.
9 [Effects of the present invention] Until now, the low T of Tl-Ca-Ba-Cu-0 based superconductors
Previously, only c-phase single crystals could be obtained, but with the present invention, it is now possible to stably obtain mm-sized large single crystals with a high temperature sum (Tc = 118 to 120 K>), which greatly expands the scope of industrial implementation. The effects that spread over the world are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (2)

【特許請求の範囲】[Claims] (1)、Tl、Ca、Ba、Cuを構成元素として含む
酸化物超電導材料の単結晶をフラックス法により製造す
る際に、出発原料中の(Ca+Cu)の組成が50at
%〜80at%、TlとBaの原子比が1:1でかつ1
0at%〜25at%であることを特徴とするTl−C
a−Ba−Cu−O系高温超電導材料の単結晶製造方法
(1) When producing a single crystal of an oxide superconducting material containing Tl, Ca, Ba, and Cu as constituent elements by a flux method, the composition of (Ca+Cu) in the starting material is 50 at.
% to 80 at%, the atomic ratio of Tl and Ba is 1:1, and 1
Tl-C characterized by being 0 at% to 25 at%
A method for producing a single crystal of a-Ba-Cu-O based high temperature superconducting material.
(2)、原料融解後910〜860℃の温度範囲内で1
〜12時間原料の温度を保持する請求第1項のTl−C
a−Ba−Cu−O系高温超電導材料の単結晶製造方法
(2), 1 within the temperature range of 910-860℃ after melting the raw material.
Tl-C according to claim 1, which maintains the temperature of the raw material for ~12 hours.
A method for producing a single crystal of a-Ba-Cu-O based high temperature superconducting material.
JP63217773A 1988-08-30 1988-08-30 Method for producing single crystal of T1-Ca-Ba-Cu-O high temperature superconducting material Expired - Lifetime JPH0818911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217773A JPH0818911B2 (en) 1988-08-30 1988-08-30 Method for producing single crystal of T1-Ca-Ba-Cu-O high temperature superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217773A JPH0818911B2 (en) 1988-08-30 1988-08-30 Method for producing single crystal of T1-Ca-Ba-Cu-O high temperature superconducting material

Publications (2)

Publication Number Publication Date
JPH0264099A true JPH0264099A (en) 1990-03-05
JPH0818911B2 JPH0818911B2 (en) 1996-02-28

Family

ID=16709505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217773A Expired - Lifetime JPH0818911B2 (en) 1988-08-30 1988-08-30 Method for producing single crystal of T1-Ca-Ba-Cu-O high temperature superconducting material

Country Status (1)

Country Link
JP (1) JPH0818911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026330A (en) * 1988-03-07 1990-01-10 Sanyo Electric Co Ltd Production of superconducting material and superconducting single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353043A (en) * 1986-08-22 1988-03-07 Tokyo Electric Co Ltd Laser diode driving control circuit of laser printer
JPH026330A (en) * 1988-03-07 1990-01-10 Sanyo Electric Co Ltd Production of superconducting material and superconducting single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353043A (en) * 1986-08-22 1988-03-07 Tokyo Electric Co Ltd Laser diode driving control circuit of laser printer
JPH026330A (en) * 1988-03-07 1990-01-10 Sanyo Electric Co Ltd Production of superconducting material and superconducting single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026330A (en) * 1988-03-07 1990-01-10 Sanyo Electric Co Ltd Production of superconducting material and superconducting single crystal

Also Published As

Publication number Publication date
JPH0818911B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JPH02107520A (en) Production of t1-ba-ca-cu-o superconductor
JPH0264099A (en) Production of single crystal of tl-ca-ba-cu-o based high-temperature superconducting material
Lee et al. Fast synthesis and single crystal growth of Pb-free and Pb-doped Bi-2223 superconductors using alkali chlorides flux technique
JPH02243519A (en) Oxide superconductor and production thereof
JPH02275799A (en) Oxide superconductor and its production
JPH05258625A (en) Manufacture for superconductive wire
JP3725197B2 (en) Method for producing superconducting oxide crystal
CA2453922C (en) Oxide high-critical temperature superconductor acicular crystal and method for producing the same
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
JPH0465395A (en) Superconducting fibrous crystal and its production
JPH02133320A (en) Production of superconducting thin film
JPH02157195A (en) Production of superconducting material
JPH04182394A (en) Production of single crystal superconductor
JPH03137083A (en) Production of oxide superconducting material
Chiang et al. Comparative study to enhance the phase formation of Tl-based superconductor with three Cu O layers
JPH0465396A (en) Superconducting single crystal and its production
JPH05193950A (en) Production of oxide superconducting material
JPH0226897A (en) Production of crystal of bi-based superconducting material
JPH05124819A (en) Bismuth-containing oxide superconductor and its production
JPH02229787A (en) Production of oxide superconductor
JPS63242997A (en) Production of ceramics superconducting material
JPH02252621A (en) Superconducting fibrous crystal and production thereof
JPH0259496A (en) Production of high-temperature superconducting oxide single crystal
JPH09157097A (en) Production of superconducting fibrous crystal
JPS63313430A (en) Manufacture of ceramic high-temperature superconductive material fine wire