JPH0264007A - Production of hydrated silicate - Google Patents

Production of hydrated silicate

Info

Publication number
JPH0264007A
JPH0264007A JP21281888A JP21281888A JPH0264007A JP H0264007 A JPH0264007 A JP H0264007A JP 21281888 A JP21281888 A JP 21281888A JP 21281888 A JP21281888 A JP 21281888A JP H0264007 A JPH0264007 A JP H0264007A
Authority
JP
Japan
Prior art keywords
water
silicate
metal
silicic acid
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21281888A
Other languages
Japanese (ja)
Inventor
Tadashi Mizutani
義 水谷
Yoshiaki Fukushima
喜章 福嶋
Haruo Doi
土井 晴夫
Osami Uegakito
上垣外 修己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP21281888A priority Critical patent/JPH0264007A/en
Publication of JPH0264007A publication Critical patent/JPH0264007A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain a hydrated silicate having a partial structure of water coordinated with metal ions by reacting a base with silicic acid or a silicate and a specific water-soluble metal salt under specified conditions. CONSTITUTION:A hydrated silicate having a partial structure of water coordinated with metal ions is formed by the following method. That is a base is reacted with at least one of silicic acid and a silicate and a water-soluble metal salt (the metal is preferably a metal assuming 6 coordination number) in an amount of 3-100mol based on 1mol at least one of the silicic acid and silicate. Salts of sodium, potassium, ammonium, etc., are cited as the silicate. For example, Mg, Ca, Ba, Fe, Co, Ni Cu, Zn, Cr and Mn are cited as the metal of the water- soluble metal salt. Furthermore, sodium hydroxide, potassium hydroxide, aqueous ammonia, etc., are cited as the base.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マグネシウムやカルシウム等の金属イオンに
水が配位した部分構造を有する水和珪酸塩を安定に製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for stably producing a hydrated silicate having a partial structure in which water is coordinated with a metal ion such as magnesium or calcium.

〔従来の技術〕[Conventional technology]

シリカゲルやゼオライトに代表されるように珪酸塩や珪
酸は、その表面特性を生かして吸着剤や触媒として広く
利用されている。シリカゲルやゼオライトの構成元素で
ある珪素、アルミニウムはいずれも四配位の状態で存在
するが、このような四配位をとる金属イオンは種類が限
られている。
Silicates and silicic acids, such as silica gel and zeolite, are widely used as adsorbents and catalysts due to their surface properties. Silicon and aluminum, which are the constituent elements of silica gel and zeolite, both exist in a four-coordinated state, but the types of metal ions that have such four coordinations are limited.

一方、スメクタイト、セピオライト等の粘土鉱物は、珪
酸の四面体と六配位の金属イオンの八面体の組合せで構
成され、その六配位の金属イオンの種類は多数ある。
On the other hand, clay minerals such as smectite and sepiolite are composed of a combination of tetrahedrons of silicic acid and octahedrons of hexacoordinated metal ions, and there are many types of hexacoordinated metal ions.

上記珪酸塩、珪酸、あるいは粘土鉱物中の珪酸塩に含ま
れる金属イオンに水が配位した部分構造を有するとその
水分子は金属イオンにより分極し、酸としての活性を有
する他、他の配位子と置換する性質が生じて、吸着剤、
触媒等に利用することができる。このような金属イオン
に配位した水を結合水と呼んでいる。
When water molecules have a partial structure in which water is coordinated to the metal ions contained in the silicates, silicic acid, or silicates in clay minerals, the water molecules are polarized by the metal ions and have acid activity, as well as other coordination. Adsorbent,
It can be used as a catalyst, etc. Water coordinated to such metal ions is called bound water.

−aに、珪酸塩に水が吸着あるいは結合したものである
水和珪酸塩の製造方法については多くの報告がある。例
えば、六配位の金属イオンの水和珪酸塩の製造方法とし
ては、特開昭52−82689号を挙げることができる
。この方法は、珪酸と水溶性金属塩とを、pHを調整し
ながら反応させるものである。しかしながら、この方法
では金属イオンに対して珪酸を過剰に用いているために
金属イオンの配位子として珪酸陰イオンが優先的に占め
、水が金属イオンに配位する構造を取りにくいという問
題点がある。
-a, there are many reports on methods for producing hydrated silicates in which water is adsorbed or bonded to silicates. For example, as a method for producing a hydrated silicate of a hexacoordinated metal ion, JP-A-52-82689 can be mentioned. In this method, silicic acid and a water-soluble metal salt are reacted while adjusting the pH. However, this method uses an excess of silicic acid relative to the metal ion, so the silicate anion preferentially occupies the ligand of the metal ion, making it difficult to form a structure in which water coordinates with the metal ion. There is.

〔第1発明の説明〕 本発明者らは、上記従来技術の問題点に鑑み、水和珪酸
塩を製造する際の珪酸あるいは珪酸塩、及び金属塩の反
応条件等について鋭意検討した結果、本発明を完成させ
たものである。
[Description of the First Invention] In view of the problems of the prior art described above, the present inventors have made extensive studies on the reaction conditions of silicic acid or silicates, and metal salts when producing hydrated silicates, and have developed the present invention. It is a completed invention.

本第1発明(特許請求の範囲に記載の発明)の目的は、
金属イオンの配位子を制御して、安定して、金属イオン
に水が配位した部分構造を有する水和珪酸塩を製造する
ことができる方法を提供しようとするものである。
The purpose of the first invention (invention described in the claims) is to
The present invention aims to provide a method that can stably produce a hydrated silicate having a partial structure in which water is coordinated with a metal ion by controlling the ligand of the metal ion.

本第1発明は、金属イオンに水が配位した部分構造を有
する水和珪酸塩の製造方法であって、塩基と、珪酸また
は珪酸塩の少なくとも1種と、該珪酸または珪酸塩の少
なくとも1種1モルに対して3〜100モルの水溶性金
属塩(該金属は六配位をとる金属である。)とを反応さ
せることを特徴とする水和珪酸塩の製造方法である。
The first invention is a method for producing a hydrated silicate having a partial structure in which water is coordinated with a metal ion, comprising: a base, at least one of silicic acid or a silicate, and at least one of the silicic acid or silicate. This is a method for producing a hydrated silicate, which comprises reacting 1 mole of a seed with 3 to 100 moles of a water-soluble metal salt (the metal is a hexacoordinated metal).

本第1発明によれば、金属イオンに水が配位した部分構
造を有する水和珪酸塩を安定に製造することができる。
According to the first invention, a hydrated silicate having a partial structure in which water is coordinated with a metal ion can be stably produced.

〔第2発明の説明] 以下、本第1発明をより具体的にした発明(本第2発明
とする。)を説明する。
[Description of the Second Invention] Hereinafter, an invention that is a more specific version of the first invention (referred to as the second invention) will be described.

本第2発明において製造する水和珪酸塩は、金属イオン
に水が配位した部分構造を有するものであり、一般式と
して 5tot ・ (MO)x  ・ (OHz )y  
’ ZHz Oで表されるものである(式中、MはMg
、Ca。
The hydrated silicate produced in the second invention has a partial structure in which water is coordinated with a metal ion, and has a general formula of 5tot・(MO)x・(OHz)y
' ZHz O (where M is Mg
, Ca.

Ba、Fe、Co、Ni、Cu、Zn、Cr、Mn等の
少なくとも1種の金属元素、Xは珪酸に対する金属イオ
ンの割合、yは結合水の数、Zは吸着水の数であり、O
H,は上記金属(M)イオンに配位した結合水、H2O
は吸着水を示す。)。
At least one metal element such as Ba, Fe, Co, Ni, Cu, Zn, Cr, Mn, etc., X is the ratio of metal ions to silicic acid, y is the number of bound water, Z is the number of adsorbed water, O
H, is bound water coordinated to the above metal (M) ion, H2O
indicates adsorbed water. ).

なお、この水和した珪酸塩は、一般に珪酸塩ゲルと呼ば
れているものである。
Note that this hydrated silicate is generally called a silicate gel.

本第2発明では、珪酸または珪酸塩の少なくとも1種と
、水溶性金属塩と、塩基とを、該水溶性金属塩が過剰の
条件で混合・反応させることにより上記水和珪酸塩を製
造する。
In the second invention, the hydrated silicate is produced by mixing and reacting at least one type of silicic acid or silicate, a water-soluble metal salt, and a base under conditions where the water-soluble metal salt is in excess. .

珪酸あるいは珪酸塩の少なくとも1種(以下、珪酸類と
する。)は、アルカリ土類金属や遷移金属等の水溶性金
属塩と反応することによってゲル化するが、そのゲル化
の開始反応は、下記式(1)、(2)に示すように(式
中、Mは金属、nは金属イオンの価数)塩基からの水酸
化物イオンと珪酸類、または水酸化物イオンと金属イオ
ンとの平衡が関与している。
Silicic acid or at least one type of silicate (hereinafter referred to as silicates) gels by reacting with water-soluble metal salts such as alkaline earth metals and transition metals, but the initiation reaction of the gelation is As shown in the following formulas (1) and (2) (where M is a metal and n is the valence of the metal ion), the reaction between hydroxide ions and silicic acids from a base, or between hydroxide ions and metal ions Equilibrium is involved.

上記式(1)、(2)のどちらのメカニズムで進行する
かは、その金属イオンの加水分解定数と珪酸類の酸解離
定数との大小関係によって決まる。金属イオンの加水分
解定数が大きい場合には式(1)、珪酸類の酸解離定数
が大きい場合には式(2)のメカニズムで進行する。そ
の後、どのようなメカニズムでゲルになるかは明らかで
はないが、珪酸類と金属イオンとの濃度比が生成するゲ
ルの構造を変えることはこのメカニズムから明らかであ
る。すなわち、金属イオンは、珪酸類と反応して、シリ
ケートを配位子としてとるか、未反応のまま水を配位子
としてとるかは珪酸類に対して金属イオンが過剰に存在
するかどうかで決まると考えられる。実際、金属イオン
を過剰条件で反応させたゲルには、赤外線吸収スペクト
ルから金属イオンに水が配位した部分構造(M”−OH
,+ 、Mは金属、nは金属イオンの価数)が確認され
ている。
Which mechanism of formula (1) or (2) above is used is determined by the magnitude relationship between the hydrolysis constant of the metal ion and the acid dissociation constant of the silicic acid. When the hydrolysis constant of the metal ion is large, the process proceeds according to the mechanism of formula (1), and when the acid dissociation constant of silicic acids is large, the process proceeds according to the mechanism of formula (2). Although it is not clear by what mechanism the gel is formed after that, it is clear from this mechanism that the concentration ratio of silicic acid and metal ions changes the structure of the gel formed. In other words, whether metal ions react with silicates and use silicate as a ligand, or remain unreacted and use water as a ligand, depends on whether metal ions are present in excess relative to silicates. It is thought that it will be decided. In fact, gels made by reacting metal ions in excess conditions have a partial structure (M”-OH
, +, M is the metal, and n is the valence of the metal ion).

本第2発明により製造するM”  OHz構造を有する
水和珪酸塩の金属イオンに配位した水は、分極している
ために、触媒作用を有し、かつ吸着サイトとなるもので
ある。また、この水分子は、他の配位子と置換し得るの
で水分子の置換による吸着にも利用できる。
Since the water coordinated to the metal ions of the hydrated silicate having an M" OHz structure produced according to the second invention is polarized, it has a catalytic action and serves as an adsorption site. Since this water molecule can be substituted with other ligands, it can also be used for adsorption by water molecule substitution.

本第2発明においては、上記珪酸類と、水溶性金属塩と
塩基とを反応させる。
In the second invention, the silicic acid, a water-soluble metal salt, and a base are reacted.

上記珪酸類と水溶性金属塩との混合割合は、珪酸類1モ
ルに対して水溶性金属塩が3〜100モルの範囲内とす
る。珪酸類1モルに対して水溶性金属塩が3モル未満で
は、金属イオンの配位子として珪酸陰イオンが優先的に
入り、結合水の割合が減少する。また、100モルを越
える場合には、塩基と金属塩とが直接反応して金属の水
酸化物が生じる副反応がおこるために上記の範囲が適当
である。
The mixing ratio of the silicic acid and the water-soluble metal salt is within the range of 3 to 100 mol of the water-soluble metal salt per 1 mol of the silicic acid. When the amount of water-soluble metal salt is less than 3 moles per mole of silicic acid, silicate anions enter preferentially as ligands of metal ions, and the proportion of bound water decreases. If the amount exceeds 100 moles, the above range is appropriate because the base and the metal salt react directly, resulting in a side reaction in which a metal hydroxide is produced.

更に、塩基の混合割合は、珪酸類1モルに対して2当量
以下が望ましい。これ以上の塩基を加えると、上記の金
属の水酸化物が生じてしまうからである。
Furthermore, the mixing ratio of the base is preferably 2 equivalents or less per mole of silicic acid. This is because if more base is added, hydroxides of the metals mentioned above will be produced.

上記珪酸塩としては、珪酸ナトリウム、珪酸カリウム、
珪酸アンモニウム等が挙げられ、それらのうちの少なく
とも1種を用いる。また、水溶性金属塩の金属は、六配
位をとる金属、例えば、Mg、Ca、Ba、Fe、Co
、Ni、Cu、Zn。
Examples of the silicates include sodium silicate, potassium silicate,
Examples include ammonium silicate, and at least one of them is used. In addition, the metal of the water-soluble metal salt is a hexacoordinated metal, such as Mg, Ca, Ba, Fe, Co.
, Ni, Cu, Zn.

Cr、Mn等であり、それらの少なくとも1種のもので
ある。これは、これらの金属イオンが六配位をとり、水
を配位子としてとり得るからである。
Cr, Mn, etc., and at least one of them. This is because these metal ions are hexacoordinated and can take water as a ligand.

また、この水溶性金属塩としては、塩化物、硫酸塩、硝
酸塩、過塩素酸塩等が挙げられ、それらのうちの少なく
とも1種を用いる。
Examples of the water-soluble metal salt include chlorides, sulfates, nitrates, perchlorates, etc., and at least one of them is used.

また、塩基としては、水酸化ナトリウム、水酸化カリウ
ム、アンモニア水等が挙げられ、それらのうちの少なく
とも1種を用いる。
Furthermore, examples of the base include sodium hydroxide, potassium hydroxide, ammonia water, etc., and at least one of them is used.

上記珪酸類と、水溶性金属塩と、塩基とを反応させる方
法としては、上記反応物を水中で混合する方法がある。
As a method for reacting the silicic acid, water-soluble metal salt, and base, there is a method of mixing the above reactants in water.

この混合方法としては、例えば、珪酸類の水溶液を水溶
性金属塩の水溶液に撹拌しながら滴下する方法がある。
This mixing method includes, for example, a method of dropping an aqueous solution of silicic acids into an aqueous solution of a water-soluble metal salt while stirring.

この場合、珪酸類の濃度としては、滴下・混合後におけ
る反応物及び水溶液の全反応系の体積に対して10〜5
00ppm、また、水溶性金属塩の濃度としては、滴下
・混合後における全反応系の体積に対して0.01〜0
.3Mとするのが望ましい。0. OI M未満では用
いた水の量当たりの収量が減り濾過などの操作が困難と
なり、0.3Mを越えると水酸化物イオンと金属イオン
との副反応がおこって好ましくないためである。
In this case, the concentration of silicic acids is 10 to 5% based on the volume of the total reaction system of reactants and aqueous solution after dropping and mixing.
00 ppm, and the concentration of the water-soluble metal salt is 0.01 to 0 with respect to the volume of the entire reaction system after dropping and mixing.
.. 3M is preferable. 0. This is because if it is less than OIM, the yield per amount of water used will decrease and operations such as filtration will become difficult, and if it exceeds 0.3M, a side reaction between hydroxide ions and metal ions will occur, which is undesirable.

また、混合時の温度としては、5°C〜80 ’Cが望
ましく、混合時間としては、1−10時間が望ましい。
Further, the temperature during mixing is preferably 5°C to 80'C, and the mixing time is preferably 1 to 10 hours.

生成した水和珪酸塩は濾過によって未反応の金属塩と分
離し、水で洗浄して、その後80°C以下の温度で乾燥
するのがよい。
The produced hydrated silicate is preferably separated from unreacted metal salts by filtration, washed with water, and then dried at a temperature below 80°C.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例I JISa号珪酸ナトリウム0.3gを蒸留水100dで
希釈し、これを撹拌しながら0.1 M塩化マグネシウ
ム水溶液11に滴下した(塩化マグネシウムは珪酸ナト
リウム1モルに対して6゛7モル)。
Example I 0.3 g of JISa sodium silicate was diluted with 100 d of distilled water, and this was added dropwise to 0.1 M aqueous magnesium chloride solution 11 while stirring (magnesium chloride was 6 to 7 mol per 1 mol of sodium silicate). .

室温で30分間撹拌の後、生じた沈澱を吸引濾過により
集めた。生成物は40°Cで一晩真空乾燥した。生成物
の赤外線吸収スペクトルは、3500−3600cl’
にO−Hの伸縮振動を示しており、生成物は、Mg  
OHzの部分構造を有する水和珪酸塩であることが確認
された。
After stirring for 30 minutes at room temperature, the resulting precipitate was collected by suction filtration. The product was dried under vacuum at 40°C overnight. The infrared absorption spectrum of the product is 3500-3600cl'
shows O-H stretching vibration, and the product is Mg
It was confirmed that it was a hydrated silicate having an OHz partial structure.

実施例2 JISa号珪酸ナトリウム0.3gを蒸留水100dで
希釈し、これを撹拌しながら窒素気流下で0、1 M塩
化第1鉄水溶液12に滴下した(塩化第1鉄は珪酸ナト
リウム1モルに対して67モル)。
Example 2 0.3 g of JISa sodium silicate was diluted with 100 d of distilled water, and this was added dropwise to a 0.1 M ferrous chloride aqueous solution 12 under a nitrogen stream while stirring (ferrous chloride is 1 mol of sodium silicate). 67 mol).

室温で30分間撹拌の後、生じた沈澱を吸引濾過により
集めた。生成物は40°Cで一晩真空乾燥した。生成物
の赤外線吸収スペクトルは3500−3600cm−’
にO−Hの伸縮振動を示し、Fe−0H2の部分構造を
有することが分かった。また、赤外線吸収スペクトルの
5i−0の伸縮振動領域(900〜1200cm−’)
は、珪酸の金属塩と類憤の吸収を示した。以上より、生
成物は、Fe−0Htの部分構造を有する水和珪酸塩で
あることが確認された。
After stirring for 30 minutes at room temperature, the resulting precipitate was collected by suction filtration. The product was dried under vacuum at 40°C overnight. The infrared absorption spectrum of the product is 3500-3600 cm-'
showed O-H stretching vibration and was found to have a partial structure of Fe-0H2. In addition, the 5i-0 stretching vibration region (900 to 1200 cm-') of the infrared absorption spectrum
showed absorption of metal salts of silicic acid and similar indigestion. From the above, it was confirmed that the product was a hydrated silicate having a partial structure of Fe-0Ht.

比較例 JISa号珪酸ナトリウム3.3gを蒸留水lI!で希
釈し、ここへ1M塩化マグネシウム水溶液20dを室温
で撹拌しながら加え沈澱を得た(塩化マグネシウムは珪
酸ナトリウム1モルに対して1゜2モル)。室温で30
分間撹拌の後、沈澱を濾過で集め、40°Cで一晩真空
乾燥した。赤外線吸収スペクトルは、O−Hの伸縮振動
領域には、3350cm−’にブロードな吸収を示すの
みで、Mg−OH,の部分構造を有さないことが確認さ
れた。
Comparative Example 3.3 g of JISa sodium silicate was added to distilled water! 20 d of a 1M aqueous magnesium chloride solution was added thereto with stirring at room temperature to obtain a precipitate (1.2 mol of magnesium chloride per 1 mol of sodium silicate). 30 at room temperature
After stirring for a minute, the precipitate was collected by filtration and vacuum dried at 40°C overnight. The infrared absorption spectrum showed only broad absorption at 3350 cm-' in the O-H stretching vibration region, and it was confirmed that there was no Mg-OH partial structure.

また、蛍光X線による分析では、生成物のSi/Mg比
は43であり、マグネシウムイオンがゲルにほとんど取
り込まれていないことがわかった。
Furthermore, analysis using fluorescent X-rays revealed that the Si/Mg ratio of the product was 43, indicating that almost no magnesium ions were incorporated into the gel.

Claims (1)

【特許請求の範囲】[Claims] 金属イオンに水が配位した部分構造を有する水和珪酸塩
の製造方法であって、塩基と、珪酸または珪酸塩の少な
くとも1種と、該珪酸または珪酸塩の少なくとも1種1
モルに対して3〜100モルの水溶性金属塩(該金属は
六配位をとる金属である。)とを反応させることを特徴
とする水和珪酸塩の製造方法。
A method for producing a hydrated silicate having a partial structure in which water is coordinated with a metal ion, the method comprising: a base; at least one kind of silicic acid or a silicate; and at least one kind of the silicic acid or silicate.
1. A method for producing a hydrated silicate, which comprises reacting 3 to 100 moles of a water-soluble metal salt (the metal is a hexacoordinated metal).
JP21281888A 1988-08-26 1988-08-26 Production of hydrated silicate Pending JPH0264007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21281888A JPH0264007A (en) 1988-08-26 1988-08-26 Production of hydrated silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21281888A JPH0264007A (en) 1988-08-26 1988-08-26 Production of hydrated silicate

Publications (1)

Publication Number Publication Date
JPH0264007A true JPH0264007A (en) 1990-03-05

Family

ID=16628866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21281888A Pending JPH0264007A (en) 1988-08-26 1988-08-26 Production of hydrated silicate

Country Status (1)

Country Link
JP (1) JPH0264007A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106535A1 (en) * 2002-06-18 2003-12-24 協和化学工業株式会社 Process for purification of crude polyether and adsorbent
CN107683173A (en) * 2015-06-01 2018-02-09 株式会社Lg化学 The preparation method of metal oxide silicon dioxide composite aerogel and the metal oxide silicon dioxide composite aerogel prepared
KR20180105981A (en) * 2017-03-16 2018-10-01 주식회사 엘지화학 Preparation method of plate type metal-silica complex aerogel and plate type metal-silica complex aerogel prepared by the same
US10752509B2 (en) 2015-06-01 2020-08-25 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same
US10941043B2 (en) 2015-06-01 2021-03-09 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106535A1 (en) * 2002-06-18 2003-12-24 協和化学工業株式会社 Process for purification of crude polyether and adsorbent
US7247699B2 (en) 2002-06-18 2007-07-24 Kyowa Chemical Industry Co., Ltd. Process for purification of crude polyether and adsorbent
KR100895235B1 (en) * 2002-06-18 2009-05-04 교와 가가꾸고교 가부시키가이샤 Process for purification of crude polyether and adsorbent
US10752509B2 (en) 2015-06-01 2020-08-25 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same
EP3305726A4 (en) * 2015-06-01 2018-05-23 LG Chem, Ltd. Method for preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by means of same
US10526207B2 (en) 2015-06-01 2020-01-07 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same
CN107683173A (en) * 2015-06-01 2018-02-09 株式会社Lg化学 The preparation method of metal oxide silicon dioxide composite aerogel and the metal oxide silicon dioxide composite aerogel prepared
CN107683173B (en) * 2015-06-01 2021-02-19 株式会社Lg化学 Preparation method of metal oxide-silicon dioxide composite aerogel and prepared metal oxide-silicon dioxide composite aerogel
US10941043B2 (en) 2015-06-01 2021-03-09 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same
KR20180105981A (en) * 2017-03-16 2018-10-01 주식회사 엘지화학 Preparation method of plate type metal-silica complex aerogel and plate type metal-silica complex aerogel prepared by the same
CN109790037A (en) * 2017-03-16 2019-05-21 株式会社Lg化学 Manufacture plate-type metal-silicon dioxide composite aerogel method and the plate-type metal-silicon dioxide composite aerogel thus manufactured
EP3492429A4 (en) * 2017-03-16 2019-10-30 LG Chem, Ltd. Method for preparing plate-type metal-silica composite aerogel and plate-type metal-silica composite aerogel prepared thereby
US11452979B2 (en) 2017-03-16 2022-09-27 Lg Chem, Ltd. Method for producing plate type metal-silica composite aerogel and plate type metal-silica composite aerogel produced thereby

Similar Documents

Publication Publication Date Title
US6960328B2 (en) Zirconium phosphate and method of making same
US5338525A (en) MFI-type zeolite and its preparation process
JPH0264007A (en) Production of hydrated silicate
US4326961A (en) Magnesium aluminate anion exchangers
JP3332817B2 (en) Mesoporous silica and method for producing the same
JP3644051B2 (en) Method for producing basic aluminum acetate aqueous solution
JP2003026418A (en) Method of manufacturing hydrotalcite
JPS5988311A (en) Crystalline zeolite substance and manufacture
JPH02175609A (en) Production of clay mineral having chain structure
US4392961A (en) Magnesium aluminate anion exchangers
US4830999A (en) Zeolite containing entrapped anionic material
JP2021524432A (en) Method for producing high-purity AFX-structured zeolite using a nitrogen-containing organic structuring agent
JPH10139417A (en) Silicate of large specific surface area and its synthesis
EP0560545B1 (en) Crystalline substituted stannosilicates and preparation and use thereof
JP3004291B2 (en) Method for producing crystalline layered phosphoric acid compound
JP2555637B2 (en) Method for producing copper-containing zeolite
JP3507912B2 (en) Synthetic charcoal alumite compound and method for producing the same
JP4015212B2 (en) Ion exchanger
JP2555636B2 (en) Method for producing copper-containing zeolite compact
JP2704270B2 (en) Method for producing chain-structured clay
JP2007154037A (en) Zn COMPLEX-CONTAINING LAYERED POLYMER AND ITS PRODUCTION METHOD, CALCIUM CARBONATE SYNTHESIS CATALYST, AND SYNTHETIC METHOD OF CALCIUM CARBONATE
JP4547528B2 (en) Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same
JP2001335308A (en) Porous substance and method for production of porous substance
JPH01228554A (en) Platinum group metal supporting mordenite and manufacture thereof
WO1998050307A1 (en) Actinide-containing molecular sieves