JPH0262318B2 - - Google Patents

Info

Publication number
JPH0262318B2
JPH0262318B2 JP2199883A JP2199883A JPH0262318B2 JP H0262318 B2 JPH0262318 B2 JP H0262318B2 JP 2199883 A JP2199883 A JP 2199883A JP 2199883 A JP2199883 A JP 2199883A JP H0262318 B2 JPH0262318 B2 JP H0262318B2
Authority
JP
Japan
Prior art keywords
sludge
water
calcium
phosphate
extremely
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2199883A
Other languages
Japanese (ja)
Other versions
JPS59147695A (en
Inventor
Hideki Kamyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2199883A priority Critical patent/JPS59147695A/en
Publication of JPS59147695A publication Critical patent/JPS59147695A/en
Publication of JPH0262318B2 publication Critical patent/JPH0262318B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水中のリン酸塩類を除去するための脱
リン材の製造方法に関する。 従来液中のリン酸塩類を除去すると方法として
凝集沈殿法があつた。これは液中のリン酸塩とカ
ルシウムイオンをPH10〜12で反応させることによ
り不溶性のリン酸カルシウムを生成させて沈降分
離したり、硫酸ばん土又はポリ塩化アルミニウム
などの凝集剤を添加して凝集沈殿させ除去する方
法である。これらの方法はリン酸カルシウムだけ
でなく金属水酸化物が同時に多量発生し、しかも
極めて脱水が困難な汚泥が発生するという欠点が
あつた。 これを克服するためリン酸カルシウムを主成分
とするリン鉱石と被処理水をカルシウムイオン存
在下で接触せしめて液中のリン酸塩類を除去する
方法が提案されている(Dissertation Abstrocts
International Vol.30、No.12、Part )。この
方法は上記凝集沈殿法よりもリン除去性能がすぐ
れており、さらに汚泥の発生量が極めて少ないと
いう長所があるものの、次のような問題点があ
る。 (1) リン鉱石は硬度が低く、外力を与えると容易
に砕けて微細な粒子になりやすい。微細な粒子
となつて水に懸濁すると被処理水との分離が難
しく、処理水中に混入して見掛け上リン除去性
能を低下せしめる。 (2) 実際の液(たとえば下水二次処理水など)と
リン鉱石をカルシウムイオン存在下で接触する
とそのうちリンの除去性能が悪化する。この原
因は被処理水中に含まれるM−アルカリ度成分
(HCO3 -)が添加したCa2+イオンと反応し、リ
ン酸カルシウムと同時に炭酸カルシウムを形成
してリン鉱石表面上に析出し、リン酸カルシウ
ムの結晶析出を妨害するからである。これを防
ぐため被処理水のM−アルカリ度成分
(HCO3 -)をあらかじめ酸性域で脱炭酸するか
又は消石灰をHCO3 -相当量添加して炭酸カル
シウムとして沈殿除去(コールドライム法)し
た被処理水のPHを8〜9に再調整してカルシウ
ムイオン存在下でリン鉱石と接触させる方法が
提案されているが、この方法の欠点は次のとお
りである。 通常し尿、下水などの二次処理水は中性又は
弱塩基性であり、多量のHCO3 -を含有してい
るため脱炭酸に要する酸の量又は消石灰の量は
非常に多い。特に消石灰を用いる場合炭酸カル
シウムが多量に発生するため晶析法によるリン
除去法の特徴である汚泥発生量がないという長
所を失なわせる。さらに脱炭酸後リン除去に適
したPH8〜9迄に再調整しなければならず、酸
およびアルカリ剤の消費量が極めて多く、実用
的とは言い難い。 (3) リン鉱石は比較的高価であるだけでなく、リ
ン資質の涸渇が懸念される現在、排水中のリン
除去のために貴重な鉱物資源を使わなければな
らない。 他方、オイルシヨツク以来エネルギー源の多様
化をめざす我国では石炭火力発電所の建設が相つ
いで進められている。これに伴つて公害防止のた
め排煙脱硫装置もこれに併設されている。該排煙
脱硫装置の排水処理設備から発生する余剰汚泥は
廃棄物として最終処分するしかないとされてき
た。本発明者らはこの汚泥の再利用を検討した結
果、一方の公害源である水中のリン酸塩類を除去
するための脱リン材としてこの汚泥が極めてすぐ
れていることを確認し、この汚泥を用いる水中の
リン酸塩類の除去法を先に提案した(特開昭59−
142894号公報)。しかしこの汚泥は微粉末である
ため固定床型の充填材として使用することができ
ない。本発明はこれらの欠点を解決し、取扱い簡
便で安価な脱リン材を得る方法を提供するもので
ある。 すなわち、たとえば石炭火力発電所排煙脱硫装
置の排水処理設備の凝集沈殿汚泥はカルシウムお
よびフツ素化合物などに富んでおり、その一例の
組成を第1表に示す。
The present invention relates to a method for producing a dephosphorizing material for removing phosphates from water. Conventionally, the coagulation-sedimentation method was used to remove phosphates from the solution. This is done by reacting phosphate and calcium ions in the liquid at pH 10 to 12 to generate insoluble calcium phosphate, which is then separated by sedimentation, or by adding a flocculant such as sulfuric acid clay or polyaluminum chloride to coagulate and sediment. This is a method of removing it. These methods have the disadvantage that not only calcium phosphate but also metal hydroxides are generated in large amounts at the same time, and sludge is generated that is extremely difficult to dewater. To overcome this problem, a method has been proposed in which phosphate rock containing calcium phosphate as a main component is brought into contact with the water to be treated in the presence of calcium ions to remove phosphates from the liquid.
International Vol.30, No.12, Part ). Although this method has superior phosphorus removal performance than the coagulation-sedimentation method and has the advantage of generating extremely little sludge, it has the following problems. (1) Phosphate rock has low hardness and easily breaks into fine particles when external force is applied to it. When fine particles are suspended in water, it is difficult to separate them from the water to be treated, and when they are mixed into the treated water, the phosphorus removal performance is apparently reduced. (2) When an actual liquid (for example, secondary treated sewage water, etc.) comes into contact with phosphate rock in the presence of calcium ions, the phosphorus removal performance deteriorates over time. The cause of this is that the M-alkalinity component (HCO 3 - ) contained in the water to be treated reacts with the added Ca 2+ ions, forming calcium carbonate at the same time as calcium phosphate, precipitating on the surface of phosphate rock, and forming calcium phosphate crystals. This is because it interferes with precipitation. To prevent this, the M-alkalinity component (HCO 3 - ) of the water to be treated should be decarboxylated in an acidic region in advance, or slaked lime should be added in an equivalent amount of HCO 3 - to precipitate and remove it as calcium carbonate (cold lime method). A method has been proposed in which the pH of the treated water is readjusted to 8 to 9 and brought into contact with phosphate rock in the presence of calcium ions, but the drawbacks of this method are as follows. Secondary treated water such as human waste and sewage is usually neutral or weakly basic and contains a large amount of HCO 3 - , so the amount of acid or slaked lime required for decarboxylation is extremely large. In particular, when slaked lime is used, a large amount of calcium carbonate is generated, which eliminates the advantage of no sludge generation, which is a characteristic of phosphorus removal by crystallization. Further, after decarboxylation, the pH must be readjusted to 8 to 9, which is suitable for phosphorus removal, and the amount of acid and alkaline agents consumed is extremely large, making it difficult to say that it is practical. (3) Not only is phosphate rock relatively expensive, but there are concerns about the depletion of phosphorus resources, and valuable mineral resources must be used to remove phosphorus from wastewater. On the other hand, in Japan, which has been aiming to diversify its energy sources since the advent of oil shocks, the construction of coal-fired power plants is proceeding one after another. Along with this, an exhaust gas desulfurization device is also installed to prevent pollution. It has been thought that the surplus sludge generated from the wastewater treatment equipment of the flue gas desulfurization equipment has no choice but to be disposed of as waste. As a result of examining the reuse of this sludge, the present inventors confirmed that this sludge is extremely effective as a dephosphorizing material for removing phosphates from water, which is one of the sources of pollution. We previously proposed a method for removing phosphates from water (Japanese Unexamined Patent Application Publication No. 1989-1999).
Publication No. 142894). However, since this sludge is a fine powder, it cannot be used as a fixed bed filler. The present invention solves these drawbacks and provides a method for obtaining a dephosphorizing material that is easy to handle and inexpensive. That is, for example, coagulated and precipitated sludge from wastewater treatment equipment of a coal-fired power plant flue gas desulfurization equipment is rich in calcium and fluorine compounds, and the composition of an example thereof is shown in Table 1.

【表】 当該汚泥は通常含水率が60〜70wt%の汚泥と
して得られるが、前記のように粉末で取り扱いが
不便なため、これをさらに乾燥して含水率を10〜
30wt%程度に調整し、次いでこのものを通常の
成型方法により成型し粒状にする。成型方法には
転動、加圧、押し出し等の方法があるが、いずれ
を用いてもよい。 本発明では成型した当該汚泥をオートクレーブ
中で加圧水熱処理することにより固化させるもの
である。オートクレーブの処理条件は通常2〜10
気圧の飽和水蒸気存在下で1〜5時間程度であ
る。圧力が高ければ高い程処理時間は短くてよ
い。 なお固化状態が不充分であれば、必要に応じて
固化促進剤を添加する。固化促進剤としては、水
ガラス等のけい酸塩物質、ベントナイト等の粘土
類などが効果的であり、これらの物質を組合せて
適当量(1〜10wt%程度)を添加する。 このようにして得られる固化物を20〜150メツ
シユの粒度に調整する。この固化物の圧縮強度は
20〜30Kg/cm2で、カラムに充填するためには充分
な強度であることが判つた。 この脱リン材をカラムに充填し、PH8.0〜8.5に
調整した小規模下水の二次処理水を接触時間が20
〜30分となるように通水した結果を第2表に示
す。
[Table] The sludge is usually obtained as a sludge with a water content of 60 to 70 wt%, but as mentioned above, it is powder and is inconvenient to handle, so it is further dried to reduce the water content to 10 to 70 wt%.
The amount is adjusted to about 30 wt%, and then this product is molded into granules using a normal molding method. Molding methods include methods such as rolling, pressurization, and extrusion, any of which may be used. In the present invention, the molded sludge is solidified by subjecting it to pressurized hydrothermal treatment in an autoclave. Autoclave processing conditions are usually 2 to 10
It takes about 1 to 5 hours in the presence of saturated steam at atmospheric pressure. The higher the pressure, the shorter the processing time. If the solidification state is insufficient, a solidification accelerator may be added as necessary. As a solidification accelerator, silicate substances such as water glass, clays such as bentonite, etc. are effective, and a suitable amount (about 1 to 10 wt%) of these substances is added in combination. The solidified product thus obtained is adjusted to a particle size of 20 to 150 mesh. The compressive strength of this solidified material is
It was found that 20 to 30 Kg/cm 2 was sufficient strength to fill the column. This dephosphorization material was packed into a column and the secondary treated water of small-scale sewage adjusted to pH 8.0 to 8.5 was applied for a contact time of 20 minutes.
Table 2 shows the results of water flowing for ~30 minutes.

【表】 上記の実験例から明らかなように、排煙脱硫排
水処理工程からの固体廃棄物を成形後、オートク
レーブ中で加圧水熱処理することにより、汚泥の
固化が起きる。その過程は明らかでないが、硫酸
カルシウム、フツ化カルシウム等の水和物の生成
に伴い、汚泥粒子同志の結合が生じるものと推定
される。 本発明はこのような知見に基き、前記従来のリ
ン酸塩類の除去法における問題点を解決するもの
で、本発明は排煙脱硫排水処理工程からのカルシ
ウムおよびフツ素化合物に富む固体廃棄物を成形
し、次いで加圧水熱処理することを特徴とする脱
リン材の製造方法である。なお、本発明は上記固
体廃棄物の成形の前に固化促進剤を添加すること
を妨げるものではない。 この脱リン材の脱リン反応機構は明らかでない
が、次のような反応が併行して進行するのではな
いかと推定される。 (イ) ヒドロキシアパタイト(以下HAPと略する)
の生成 5Ca2++7OH-+3H2PO4 - →Ca5(PO43(OH)+6H2O HAP (ロ) フルオロアパタイト(以下FAPと略する)
の生成 5CaF2+6OH-+3H2PO4 - →Ca5(PO43+6H2O+9F- FAP Ca5(PO43(OH)+F-→Ca5(PO43F+OH- HAP FAP 上記HAPおよびFAPは上記脱リン材表面上で
微量に溶解するCa2+イオンとリン酸イオン
(H2PO4 -)が反応して粒子表面上に晶析するも
のと考えられ、通常の凝集沈殿とは異なる。汚泥
中のAl2O3が反応機構でどのような作用をおよぼ
しているかは不明である。 本発明方法により得られる脱リン材は次のよう
な効果を奏するものである。 (1) 廃棄物を利用するため、リン鉱石などの高価
な脱リン材にくらべて安価な脱リン材である。 (2) リン濃度が極めて低く安定した処理水質が得
られ、PHも8.3〜8.5と弱アルカリ性で、放流す
るためにPHの再調整をする必要がない。 (3) 粒状の脱リン材であるため、カラムに充填す
ることが可能となり、極めて取扱いやすく、し
かも汚泥が発生しないため汚泥処理が不要とな
る。 (4) リン資源の涸渇が懸念される現在、排水処理
のために貴重な鉱物資源を使用しなくてよいだ
けでなく、回収したリンを再利用することがで
きる。 (5) 本来最終処分するしかないとされてきた廃棄
物を有用物として再利用することが可能とな
り、経済的効果が極めて高い。 (6) HAP、FAPなどの相互作用により、リン鉱
石の晶析反応にくらべて反応が多岐に進行する
ため極めて効率がよい。
[Table] As is clear from the above experimental examples, solid waste from the flue gas desulfurization wastewater treatment process is molded and then subjected to pressurized hydrothermal treatment in an autoclave, causing solidification of the sludge. Although the process is not clear, it is presumed that sludge particles bond with each other as hydrates such as calcium sulfate and calcium fluoride are produced. The present invention is based on such knowledge, and aims to solve the problems in the conventional method for removing phosphates. This is a method for producing a dephosphorizing material, which is characterized by molding and then pressurized hydrothermal treatment. Note that the present invention does not preclude adding a solidification accelerator before shaping the solid waste. Although the dephosphorization reaction mechanism of this dephosphorization material is not clear, it is presumed that the following reactions proceed in parallel. (b) Hydroxyapatite (hereinafter abbreviated as HAP)
Generation of 5Ca 2+ +7OH - +3H 2 PO 4 - →Ca 5 (PO 4 ) 3 (OH) +6H 2 O HAP (b) Fluoroapatite (hereinafter abbreviated as FAP)
Generation of 5CaF 2 +6OH - +3H 2 PO 4 - →Ca 5 (PO 4 ) 3 +6H 2 O+9F - FAP Ca 5 (PO 4 ) 3 (OH)+F - →Ca 5 (PO 4 ) 3 F+OH - HAP FAP Above HAP It is thought that FAP and FAP are caused by the reaction between Ca 2+ ions and phosphate ions (H 2 PO 4 - ) dissolved in small amounts on the surface of the dephosphorizing material, and crystallize on the particle surface, which is different from ordinary coagulation and precipitation. is different. It is unclear what role Al 2 O 3 in sludge plays in the reaction mechanism. The dephosphorizing material obtained by the method of the present invention has the following effects. (1) Because it uses waste, it is a cheaper dephosphorizing material compared to expensive dephosphorizing materials such as phosphate rock. (2) Stable treated water quality with extremely low phosphorus concentration is obtained, and the pH is slightly alkaline at 8.3 to 8.5, so there is no need to readjust the pH before discharge. (3) Since it is a granular dephosphorizing material, it can be packed into a column, making it extremely easy to handle, and since no sludge is generated, sludge treatment is not necessary. (4) At present, when there is concern about the depletion of phosphorus resources, this not only eliminates the need to use valuable mineral resources for wastewater treatment, but also allows the recovered phosphorus to be reused. (5) It is now possible to reuse waste that was originally considered to have no choice but to be disposed of as a useful product, which has extremely high economic effects. (6) Due to the interaction of HAP, FAP, etc., the reaction proceeds in a more diverse manner than the crystallization reaction of phosphate rock, making it extremely efficient.

Claims (1)

【特許請求の範囲】[Claims] 1 排煙脱硫排水処理工程からのカルシウムおよ
びフツ素化合物に富む固体廃棄物を成形し、次い
で加圧水熱処理することを特徴とする脱リン材の
製造方法。
1. A method for producing a dephosphorizing material, which comprises forming solid waste rich in calcium and fluorine compounds from a flue gas desulfurization wastewater treatment process, and then subjecting it to pressurized hydrothermal treatment.
JP2199883A 1983-02-15 1983-02-15 Manufacture of dephosphorizing material Granted JPS59147695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199883A JPS59147695A (en) 1983-02-15 1983-02-15 Manufacture of dephosphorizing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199883A JPS59147695A (en) 1983-02-15 1983-02-15 Manufacture of dephosphorizing material

Publications (2)

Publication Number Publication Date
JPS59147695A JPS59147695A (en) 1984-08-24
JPH0262318B2 true JPH0262318B2 (en) 1990-12-25

Family

ID=12070684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199883A Granted JPS59147695A (en) 1983-02-15 1983-02-15 Manufacture of dephosphorizing material

Country Status (1)

Country Link
JP (1) JPS59147695A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827045B2 (en) * 2004-07-22 2011-11-30 長崎県 Water purification material and method for producing water purification material
JP4747587B2 (en) * 2005-01-27 2011-08-17 株式会社ニコン Method for producing calcium fluoride sintered body
CN109293073A (en) * 2018-11-14 2019-02-01 林方杰 A kind of thermal power plant's sewage treatment process

Also Published As

Publication number Publication date
JPS59147695A (en) 1984-08-24

Similar Documents

Publication Publication Date Title
CN101774669B (en) Composite dephosphorizing agent for treating acidic wastewater containing phosphorus and preparation and application methods thereof
JP2006341226A (en) Method for removing phosphorus from water
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
JP2007175673A (en) Treatment method of ammonia-containing drain
JPH0262318B2 (en)
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JPS6366278B2 (en)
JPH07504116A (en) Immobilization of metal contaminants from liquid to solid media
JPH01288335A (en) Waste water treatment agent
JP4153267B2 (en) Dephosphorization / ammonia removal method, ammonia fertilizer production method, and melt solidification method
JP3105347B2 (en) How to treat phosphate sludge
JPS62260708A (en) Production of high purity hydroxyapatite
JP2004330039A (en) Recovery method of phosphorus and coagulant
JPS55114388A (en) Clarifying treatment of waste water
WO1997002101A1 (en) Wastes disposing material and method for disposing of wastes
JPH0126756B2 (en)
JP4565836B2 (en) Phosphorus remover
JP2650616B2 (en) Method for producing phosphoric acid
JPS59142894A (en) Process for removing phosphate in liquid
JPS59177191A (en) Treatment of phosphate-containing water
JP2004008865A (en) Dephosphorization method and method of manufacturing melted and solidified product
JPS6238291A (en) Dephosphorization treatment
JPS6214985A (en) Method for removing phosphorus
JPS59147611A (en) Preparation of filter medium for treatment of waste water containing fluorine
JP2003126869A (en) Agricultural drainage purification system