JPH0262004A - Thermistor - Google Patents

Thermistor

Info

Publication number
JPH0262004A
JPH0262004A JP63213932A JP21393288A JPH0262004A JP H0262004 A JPH0262004 A JP H0262004A JP 63213932 A JP63213932 A JP 63213932A JP 21393288 A JP21393288 A JP 21393288A JP H0262004 A JPH0262004 A JP H0262004A
Authority
JP
Japan
Prior art keywords
thermistor
lithium
cobalt oxide
content
metal elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63213932A
Other languages
Japanese (ja)
Inventor
Kaori Okamoto
岡本 香織
Takuoki Hata
畑 拓興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63213932A priority Critical patent/JPH0262004A/en
Publication of JPH0262004A publication Critical patent/JPH0262004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a thermistor whose reliability is excellent by a method wherein four kinds of metals, Co, Li, Cu and Ti, are contained as constituent metal elements and 85% or higher of a content of Li is melted and solidified inside a crystal grain of cobalt oxide of an NaCl type. CONSTITUTION:A thermistor is formed on a sintered and mixed substance of a metal oxide. A total of 100atomic% of four kinds of Co, Li, Cu and Ti are contained as constituent metal elements. At least 85% or higher of a content of Li is melted and solidified inside a crystal grain of cobalt oxide of an NaCl type. Then, it is possible to realize the thermistor whose stability is more excellent than that of a conventional thermistor in a direct-current load test and a wet load test. Thereby, the thermistor whose reliability is excellent can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高応答性、高精度の温度センサとして利用で
きるところの大きな負の抵抗温度係数を有するサーミス
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermistor having a large negative temperature coefficient of resistance and which can be used as a highly responsive and highly accurate temperature sensor.

従来の技術 従来、酸化コバルトとリチウムを組み合わせた酸化物半
導体としては、一般的に酸化物半導体材料の導電機構の
一つとして説明される原子価制御理論の実例で、古(V
arweyらにより取り上げられている( Ph1li
ps Re5earch Report61了a (1
950))。
Conventional technology Conventionally, oxide semiconductors made by combining cobalt oxide and lithium have been developed using the old (V
It has been taken up by Arway et al. (Ph1li
ps Re5search Report61了a (1
950)).

しかしながら、Vertvey  らの検討はあくまで
も学究的な段階のもので、リチウムの固溶量も1wt%
以下と、サーミスタとしての用途開発以前のものであっ
た。
However, the study by Vertvey et al. is only at the academic stage, and the solid solution amount of lithium is 1 wt%.
The following was a product that had not yet been developed for use as a thermistor.

日本国内においては、二本による報告((株)日立製作
所、中央研究所創立二十周年記念論文集、p30〜46
、昭和37年)があるが、サーミスタ特性としては比抵
抗およびB定数とも低く、サーミスタとして適するもの
ではなく、これに準するものと記載されている。
In Japan, two reports (Hitachi, Ltd., Collection of papers commemorating the 20th anniversary of the founding of the Central Research Institute, pages 30-46)
, 1960), but the thermistor characteristics are low in both specific resistance and B constant, and are not suitable as a thermistor, but are described as similar to this.

これに対して、本発明者らが再度検討した結果、酸化コ
バルトとリチウムの組み合わせでもって、かつ特定の結
晶構造とした場合には、比抵抗が小さく、B定数の高い
優れたサーミスタ材料が得られることを見出した。
On the other hand, as a result of re-examination by the present inventors, an excellent thermistor material with a low specific resistance and a high B constant can be obtained by combining cobalt oxide and lithium with a specific crystal structure. I found out that it can be done.

発明が解決しようとする課題 そして、上記サーミスタ材料は、コバ#l−に対してリ
チウムを3〜35%含有する組成領域で最も優れた特性
を示した。すなわち、ディスクサーミスタとして、16
0℃の高温放置においても、従来のコバルト、マンガン
、銅、ニッケルを主成分とする遷移金属酸化物のスピネ
ル結晶型のサーミスタと比較しても非常に安定な結果が
得られるものであった。しかしながら、直流負荷試験、
特に湿中での直流負荷試験では、もう−歩、従来の汎用
サーミスタに及ばないという問題を有していた。この欠
点の原因を解析した結果、酸化コバルトに固溶している
と考えられていたリチウムが粒界あるいは結晶の接合部
に偏析し、直流負荷によりリチウムイオンが移動するこ
とによることを突き止めた。
Problems to be Solved by the Invention The above-mentioned thermistor material exhibited the best characteristics in a composition range containing 3 to 35% lithium with respect to Coba #l-. That is, as a disk thermistor, 16
Even when left at a high temperature of 0°C, very stable results were obtained compared to conventional spinel crystal type thermistors made of transition metal oxides whose main components are cobalt, manganese, copper, and nickel. However, the DC load test
Particularly in a DC load test in humidity, the problem was that they were not as good as conventional general-purpose thermistors. After analyzing the cause of this defect, we found that lithium, which was thought to be solidly dissolved in cobalt oxide, segregates at grain boundaries or crystal junctions, and the lithium ions move under direct current load.

本発明はこのような問題点を解決するもので、センサと
して信頼性に優れたサーミスタを提供することを目的と
するものである。
The present invention solves these problems and aims to provide a thermistor that is highly reliable as a sensor.

課題を解決するだめの手段 上記のような問題を解決するだめに本発明は、種々改善
検討を行った結果、金属酸化物の焼結混合体からなり、
その構成金属元素として、コバルト(Co)、リチウム
(L工)、銅(Cu)およびチタン(Ti)の4種を合
計100原子係含み、かつリチウムの含有量の少なくと
も86係以上がNへCl型酸化コバルトの結晶粒内に固
溶していることを特徴とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention, as a result of various improvement studies, consists of a sintered mixture of metal oxides.
Its constituent metal elements include cobalt (Co), lithium (L), copper (Cu), and titanium (Ti) with a total of 100 atoms, and at least 86 or more of the lithium content is converted to N to Cl. It is characterized by being a solid solution within the crystal grains of type cobalt oxide.

作用 このセラミック微細構造を満たすことにより、直流負荷
試験ならびに湿中負荷試験においても従来のサーミスタ
以上の優れた安定性を発現することになる。
Function By satisfying this ceramic microstructure, it exhibits better stability than conventional thermistors even in DC load tests and humidity load tests.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

まず、市販の硝酸コバルト、炭酸リチウムを出発原料と
して、Co : Li : Cu : Ti=sa :
10:3:3の原子係の比になるように溶解させ、これ
を蒸発乾固させた後、600’Cの温度で仮焼し、この
仮焼物をボールミルで湿式粉砕した。このスラリーを乾
燥後、ポリビニルアルコールをバインダーとして添加混
合し、所要量採って円板状に加圧成形して成形品を多数
作り、これらを窒素ガスフロー中で、1200〜130
0’Cで2時間焼成した。こうして得られた円板状焼結
体の両面に人gを主成分とする電極を設けて試料とした
First, using commercially available cobalt nitrate and lithium carbonate as starting materials, Co: Li: Cu: Ti=sa:
The mixture was dissolved in an atomic ratio of 10:3:3, evaporated to dryness, calcined at a temperature of 600'C, and the calcined product was wet-pulverized in a ball mill. After drying this slurry, add and mix polyvinyl alcohol as a binder, take the required amount and pressure mold it into a disk shape to make many molded products.
It was baked at 0'C for 2 hours. Electrodes containing human g as a main component were provided on both sides of the disk-shaped sintered body thus obtained, and a sample was prepared.

上記プロセスの中で、スラリーの乾燥方法、条件および
焼成条件を変えて数種類の試料を作成し、60℃、90
〜95係RH中、負荷電力0.4Wの湿中負荷と、15
0℃での高温放置(2000時間)の試験を実施した。
In the above process, several types of samples were prepared by changing the slurry drying method, conditions, and firing conditions.
~95 section RH, humid load with load power 0.4W, and 15
A high temperature storage test (2000 hours) at 0°C was conducted.

また、素子の元素分析を素子成分と溶出成分に分けて原
子吸光分光法により行った。その結果を下記の表にまと
めて示す。
In addition, elemental analysis of the device was performed using atomic absorption spectroscopy, dividing the device into device components and eluted components. The results are summarized in the table below.

(*印は比較例であり、請求範囲外である)この表でリ
チウム含有量の内、粒内の項で示した値は、全体量から
溶出量を減じたもので、粒界他(粒界および接合部)の
項で示した値が溶出成分量である。ここで、サーミスタ
の製品仕様としては、耐湿負荷試験での抵抗値変化率は
±6係以内であることから、上表の試料AA 、Bおよ
びCが満足することになる。すなわち、uac6型の酸
化コバルトの結晶粒内にリチウムの含有量の86原子チ
以上が固溶しておれば、十分仕様を満足できることとな
る。
(Those marked with * are comparative examples and are outside the scope of claims.) In this table, the values shown in the grain section of the lithium content are the total amount minus the elution amount. The value shown in the section (fields and junctions) is the amount of eluted components. Here, as for the product specifications of the thermistor, samples AA, B, and C in the above table satisfy the resistance value change rate in the humidity load test, which is within ±6 coefficients. That is, if the lithium content of 86 atoms or more is dissolved in the crystal grains of UAC6 type cobalt oxide, the specifications can be fully satisfied.

なお、これら試料の比抵抗とB定数(25°Cと60℃
の抵抗値に基づく)は、いずれも1010Ω’cm±1
oチ、B定数:5430±3%であった。
In addition, the specific resistance and B constant of these samples (25°C and 60°C
) are all 1010Ω'cm±1
B constant: 5430±3%.

ここで、コバルトは65〜99原子係、リチウムは35
〜1原子係の組成範囲のものが、低比抵抗、高B定数を
満足する上では好1しく、センサとして機器側から要望
される電気特性をより一層満たすことができる。これに
ついては、本発明者らが先に特願昭63−61049号
にて明らかにしている通りである。
Here, cobalt has 65 to 99 atoms, and lithium has 35 atoms.
A composition in the range of ~1 atomic ratio is preferable in order to satisfy low resistivity and high B constant, and can further satisfy the electrical characteristics required by the device as a sensor. This is as previously disclosed by the present inventors in Japanese Patent Application No. 63-61049.

発明の効果 以上述べたように、本発明は低比抵抗、高B定数を有す
る負の抵抗温度係数を有し、高温放置試験および耐湿負
荷試験においても、信頼性の点で優れたサーミスタを提
供するものであるが、センサとして温度に対して高精度
化、高応答性化および高信頼性が図れ、さらに新しい用
途が期待できるものである。
Effects of the Invention As described above, the present invention provides a thermistor that has a low specific resistance, a high B constant, and a negative temperature coefficient of resistance, and is excellent in reliability even in high temperature storage tests and humidity load tests. However, as a sensor, it is possible to achieve high accuracy, high responsiveness, and high reliability with respect to temperature, and new applications can be expected.

Claims (1)

【特許請求の範囲】[Claims]  金属酸化物の焼結混合体からなり、その構成金属元素
として、コバルト(Co)、リチウム(Li)、銅(C
u)およびチタン(Ti)の4種を合計100原子%含
み、かつリチウムの含有量の少なくとも85%以上がN
aCl型酸化コバルトの結晶粒内に固溶していることを
特徴とするサーミスタ。
It consists of a sintered mixture of metal oxides, and its constituent metal elements include cobalt (Co), lithium (Li), and copper (C
u) and titanium (Ti) at a total of 100 atomic %, and at least 85% of the lithium content is N.
A thermistor characterized in that it is a solid solution in the crystal grains of aCl type cobalt oxide.
JP63213932A 1988-08-29 1988-08-29 Thermistor Pending JPH0262004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63213932A JPH0262004A (en) 1988-08-29 1988-08-29 Thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63213932A JPH0262004A (en) 1988-08-29 1988-08-29 Thermistor

Publications (1)

Publication Number Publication Date
JPH0262004A true JPH0262004A (en) 1990-03-01

Family

ID=16647431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63213932A Pending JPH0262004A (en) 1988-08-29 1988-08-29 Thermistor

Country Status (1)

Country Link
JP (1) JPH0262004A (en)

Similar Documents

Publication Publication Date Title
EP0028510B1 (en) Oxide thermistor compositions and thermistors containing them
JPH0262004A (en) Thermistor
JP2578891B2 (en) Thermistor
JP2578890B2 (en) Thermistor
JP2578889B2 (en) Thermistor
JPH01239804A (en) Thermistor
JP2578892B2 (en) Thermistor
JPH01239809A (en) Thermistor
JPH01239808A (en) Thermistor
JPH01239803A (en) Thermistor
JPH01239807A (en) Thermistor
JPH01239805A (en) Thermistor
JPS5927081B2 (en) Oxide semiconductor for thermistor
JP2578807B2 (en) Oxide semiconductor for thermistor
JPS6013285B2 (en) Oxide semiconductor for thermistor
JPS63296301A (en) Oxide semiconductor for thermistor
JPS63284801A (en) Oxide semiconductor for thermistor
JPS63296302A (en) Oxide semiconductor for thermistor
JPS6015124B2 (en) Oxide semiconductor for thermistor
JPS63296304A (en) Oxide semiconductor for thermistor
JPH039601B2 (en)
JPH01192102A (en) Thermistor composition
JPS5933242B2 (en) Manufacturing method of oxide semiconductor material for thermistor
JPS63296303A (en) Oxide semiconductor for thermistor
JPH03271154A (en) Composition for thermistor