JPH0261330B2 - - Google Patents

Info

Publication number
JPH0261330B2
JPH0261330B2 JP58063999A JP6399983A JPH0261330B2 JP H0261330 B2 JPH0261330 B2 JP H0261330B2 JP 58063999 A JP58063999 A JP 58063999A JP 6399983 A JP6399983 A JP 6399983A JP H0261330 B2 JPH0261330 B2 JP H0261330B2
Authority
JP
Japan
Prior art keywords
metal strip
rolling
edge
strain
sheared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58063999A
Other languages
Japanese (ja)
Other versions
JPS59189016A (en
Inventor
Teruo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP6399983A priority Critical patent/JPS59189016A/en
Publication of JPS59189016A publication Critical patent/JPS59189016A/en
Publication of JPH0261330B2 publication Critical patent/JPH0261330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、金属帯片の残留歪低減方法に関す
るものであつて、更に詳細には、剪断加工により
得られた金属帯片のスリツト端縁部に残留する剪
断歪を低減させ、これによつて該帯片の後工程で
の加工精度を向上させることを目的として提案さ
れた新規な技術に関するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method for reducing residual strain in a metal strip, and more particularly, it relates to a method for reducing residual strain in a metal strip, and more particularly, to This invention relates to a new technique proposed for the purpose of reducing the shear strain remaining in the strip, thereby improving the processing accuracy of the strip in subsequent processes.

「従来技術とその欠点」 板厚の充分薄い金属帯片(これは薄くて柔軟性
のある金属帯状材料の総称であつて、金属リボン
とも称する)を製造する手段としては、予め所望
の製品板厚にまで展延した幅広の金属帯体をスリ
ツテイングシヤーにかけ、長手方向に剪断して複
数条の幅狭な金属帯片を得る方法が一般に採用さ
れている。このように金属帯体を剪断加工して金
属帯片を製造した場合、前記金属帯片のスリツト
端縁部の金属組織中には、スリツテイングシヤー
により付与された剪断歪が残留している。すなわ
ち、剪断加工された金属帯片の端縁部には、第1
図のaに示すように著しい伸び変形が生じてお
り、この伸び変形に基づく残留応力の板幅方向の
分布を観察すると、bに示す如く大きな圧縮応力
を生じていることが判る。この歪を残留放置して
おくと、当該金属帯片の用途によつては、後工程
での加工精度を撹乱する障害となることがある。
例えば、第2図に示すように集積回路素子用リー
ドフレームの打抜き素材として供給される金属帯
片10は、42%ニツケル鋼を材質とする金属母材
12の表面中央部に所定幅のアルミニウム14を
長手方向にクラツドした構成となつており、この
金属帯片10に打抜きプレスおよび曲げ加工を施
すことにより、第3図に示す形状のリードフレー
ム16が得られる。この場合、前述した如くスリ
ツト端縁部に著しい残留歪を内在している金属帯
片を加工素材として使用すると、リードフレーム
16に形成されるリード18は前記残留歪が解放
されて幅方向に変形し、各リード18の対向し合
う端部間の間隔寸法a1、およびa2が不均一となる
事態を招来する。このようにリード端部の間隔が
不揃いになると、集積回路チツプのアルミニウム
リード線(図示せず)をリード端部の前記アルミ
ニウムクラツド部に臨ませる自動位置決めが困難
となり、後工程での超音波ボンデイング作業に重
大な支障をきたすことになる。
"Prior Art and Its Disadvantages" As a means of manufacturing a sufficiently thin metal strip (this is a general term for thin and flexible metal strip-shaped materials, and is also called a metal ribbon), it is necessary to prepare a desired product sheet in advance. A commonly used method is to apply a slitting shear to a wide metal strip that has been expanded to a certain thickness, and then shear it in the longitudinal direction to obtain a plurality of narrow metal strips. When a metal strip is manufactured by shearing a metal strip in this way, the shear strain imparted by the slitting shear remains in the metal structure of the slit edge of the metal strip. . That is, the edge of the sheared metal strip has a first
As shown in a of the figure, significant elongation deformation has occurred, and when the distribution of residual stress due to this elongation deformation in the sheet width direction is observed, it can be seen that large compressive stress has been generated as shown in b. If this strain is left to remain, depending on the use of the metal strip, it may become an obstacle that disturbs the processing accuracy in subsequent steps.
For example, as shown in FIG. 2, a metal strip 10 supplied as a punching material for a lead frame for an integrated circuit element has an aluminum strip 10 of a predetermined width attached to the center of the surface of a metal base material 12 made of 42% nickel steel. By punching and bending this metal strip 10, a lead frame 16 having the shape shown in FIG. 3 is obtained. In this case, if a metal strip containing significant residual strain at the edge of the slit is used as the processing material as described above, the leads 18 formed on the lead frame 16 will be deformed in the width direction as the residual strain is released. However, this results in a situation where the distance dimensions a 1 and a 2 between the opposing ends of each lead 18 become non-uniform. If the spacing between the lead ends becomes uneven in this way, it becomes difficult to automatically position the aluminum lead wires (not shown) of the integrated circuit chip so that they face the aluminum cladding of the lead ends. This will seriously impede the bonding work.

そこで、前記金属帯片の端縁部に残留する内部
歪の傾向を簡単に観察するために、金属帯片をフ
オトエツチングしてその長手方向にくし歯状の細
片を形成し、各細片の変形度により歪の程度およ
び分布を判定した。先ず、剪断加工したままの金
属帯片10に前記フオトエツチングを施したとこ
ろ、第4図のaに示すように、スリツト端縁部側
の細片20は金属組織内に残留していた歪が解放
されて、夫々相互に内方に湾曲変形する傾向を示
した。このように金属帯片の端縁部に残留する歪
が後工程での製品の仕上加工精度に影響を与える
事実に鑑み、前記有害な歪を除去する手段とし
て、例えば低温焼鈍方法が実施されている。しか
しこの低温焼鈍方法は、還元性または非酸化性ガ
スの気流中で焼きなましを行う高価な連続光輝焼
鈍炉を必要とし、設備費が嵩む難点がある。加え
て集積回路素子のリードフレーム用素材にクラツ
ド被着してあるアルミニウムの融点は660℃と低
く、しかも該素材は、550℃以上の温度に晒すと
アルミニウムと42%ニツケル鋼母材との界面にア
ルミ一鉄の金属間化合物を生じ、その化合物は著
しい脆性を示して後加工の際にクラツクを生じる
難点がある。このため焼鈍は550℃以下で行なわ
なければならないが、前記550℃以下の温度では、
金属帯片に内在する残留歪を低減するに充分でな
い。従つて金属帯片を高温に晒すことなく、室温
乃至それに近い温度で剪断歪を低減させる方法の
確立が要請されている。
Therefore, in order to easily observe the tendency of internal strain remaining at the edge of the metal strip, the metal strip was photoetched to form comb-like strips in the longitudinal direction, and each strip was The degree and distribution of strain was determined based on the degree of deformation. First, when the sheared metal strip 10 was subjected to the photoetching process, as shown in FIG. When released, they each exhibited a tendency to curve inwardly toward each other. In view of the fact that the strain remaining at the edge of the metal strip affects the finishing accuracy of the product in the subsequent process, low-temperature annealing methods, for example, have been implemented as a means to remove the harmful strain. There is. However, this low-temperature annealing method requires an expensive continuous bright annealing furnace for annealing in a stream of reducing or non-oxidizing gas, and has the disadvantage of increasing equipment costs. In addition, the melting point of aluminum, which is used as a cladding for the lead frame material of integrated circuit devices, is as low as 660°C, and when exposed to temperatures of 550°C or higher, the interface between aluminum and 42% nickel steel base material will melt. The problem is that an intermetallic compound of aluminum and iron is formed, and this compound exhibits significant brittleness and causes cracks during post-processing. For this reason, annealing must be performed at a temperature of 550°C or lower, but at a temperature of 550°C or lower,
This is not sufficient to reduce residual strains inherent in the metal strip. Therefore, there is a need to establish a method for reducing shear strain at or near room temperature without exposing the metal strip to high temperatures.

そこで本願の発明者は、前記要請に鑑み種々検
討を重ねた結果、第1図に示す傾向の残留歪が生
じている金属帯片に適正な減面率で圧延加工を施
せば、この圧延時の応力により前記残留歪は打消
されて、実用上無視し得る程度まで著しく低減す
ることが判つた。
Therefore, as a result of various studies in view of the above-mentioned request, the inventor of the present application found that if a metal strip with residual strain as shown in FIG. It was found that the residual strain was canceled out by the stress of 100 mL, and was significantly reduced to a practically negligible extent.

「発明の目的」 従つて本発明は、金属帯片の端縁部に残留する
剪断歪を特殊な専用装置を使用することなく常温
で低減させ、該金属帯片の後加工時における仕上
精度を向上させることを目的とする。
``Object of the Invention'' Therefore, the present invention reduces the shear strain remaining at the edge of a metal strip at room temperature without using any special equipment, and improves the finishing accuracy during post-processing of the metal strip. The purpose is to improve.

「問題点を解決するための手段」 前述した欠点を克服し、所期の目的を達成する
ため、本発明に係る金属帯片の残留歪低減方法
は、幅広の金属帯片を長手方向に剪断した際に、
剪断により得られた金属帯片の端縁部に残留する
剪断歪を低減させるために、回転軸が上下の関係
で整列するよう配置した一対の超硬合金製の圧延
ロールにより、前記金属帯片を圧下率3〜14%で
圧延することを特徴とする。
"Means for Solving the Problems" In order to overcome the above-mentioned drawbacks and achieve the intended purpose, the method for reducing residual strain in a metal strip according to the present invention involves shearing a wide metal strip in the longitudinal direction. When you do,
In order to reduce the shear strain remaining at the edge of the metal strip obtained by shearing, the metal strip is cut by a pair of cemented carbide rolling rolls whose rotating axes are aligned vertically. It is characterized by rolling at a reduction rate of 3 to 14%.

また、前記目的を同様に達成するため、本願の
別発明に係る金属帯片の残留歪低減方法は、幅広
の金属帯片を長手方向に剪断した際に、剪断によ
り得られた金属帯片の端縁部に残留する剪断歪を
低減させるために、回転軸が上下の関係で整列す
るように配置した一対の鍛鋼製の圧延ロールによ
り、前記金属帯片を圧下率3〜10%で2回圧延す
ることを特徴とする。
Further, in order to similarly achieve the above object, a method for reducing residual strain in a metal strip according to another invention of the present application is such that when a wide metal strip is sheared in the longitudinal direction, the resulting metal strip is In order to reduce the shear strain remaining at the edge, the metal strip is rolled twice at a reduction rate of 3 to 10% using a pair of forged steel rolling rolls whose rotating axes are aligned vertically. Characterized by rolling.

次に本発明に係る金属帯片の残留歪低減方法に
つき、好適な実施例を挙げて説明する。
Next, a method for reducing residual strain in a metal strip according to the present invention will be described with reference to preferred embodiments.

実施例 1 集積回路用リードフレームの素材として好適に
使用される42%ニツケル鋼の金属帯体を、スリツ
テイングシヤーにより長手方向に剪断し、幅23.1
mm、厚さ0.31〜0.25mmの金属帯片を得た。次いで
この金属帯片を、例えばタングステンカーバイト
をコバルトで焼結した上下一対の超硬合金製圧延
ロールの間を通過させて圧延を行つた。このとき
の圧下率は、前記金属帯片のスリツト端縁部に残
留している歪を打消すに充分な値となるよう適宜
調整したところ、後述するように3〜14%の範囲
に設定すると好適であることが判明した(ちなみ
に前記圧下率は、ロール入口における被圧延材の
厚みを質h1、出口における厚みをh2としたとき、
(h1−h2)/h1(%)の指標であらわされる)。す
なわち、圧延ロールに金属帯片を圧下率3〜14%
の範囲で1回通しによる圧延加工を行い、その金
属帯片に前記フオトエツチングを施したところ、
第4図のbに示すように残留応力の分布は微小と
なり、帯片10の端縁部におけるくし歯状細片に
曲り変形はみられなかつた。またこの金属帯片を
使用して、第3図に示す集積回路素子用リードフ
レームを作成し、リード端部間の間隔寸法差(a1
−a2)と圧下率との相関関係をプロツトしたとこ
ろ、第5図に実線で示す曲線が得られた。この曲
線は、間隔寸法差(a1−a2)を極力低く抑制し得
る圧下率が略3〜14%の範囲内であることを明確
に示している。
Example 1 A metal strip made of 42% nickel steel, which is suitably used as a material for lead frames for integrated circuits, was sheared in the longitudinal direction by slitting shear to a width of 23.1 mm.
A metal strip with a thickness of 0.31 to 0.25 mm was obtained. Next, this metal strip was rolled by being passed between a pair of upper and lower cemented carbide rolling rolls made of, for example, tungsten carbide sintered with cobalt. The rolling reduction ratio at this time was adjusted appropriately to a value sufficient to cancel out the strain remaining at the edge of the slit of the metal strip, and was set in the range of 3 to 14% as described later. It was found to be suitable (by the way, the rolling reduction ratio is calculated as follows: When the thickness of the rolled material at the roll entrance is h 1 and the thickness at the exit is h 2 ,
(expressed as an index of (h 1 − h 2 )/h 1 (%)). In other words, the reduction rate of the metal strip on the rolling roll is 3 to 14%.
When the metal strip was rolled once in the range of , and the photo etching was applied to the metal strip,
As shown in FIG. 4b, the distribution of residual stress became very small, and no bending deformation was observed in the comb-like strips at the edge portions of the strip 10. Also, using this metal strip, a lead frame for an integrated circuit element as shown in Fig. 3 was created, and the difference in spacing between the lead ends (a 1
-a 2 ) and the rolling reduction ratio, a curve shown as a solid line in FIG. 5 was obtained. This curve clearly shows that the rolling reduction rate that can suppress the gap size difference (a 1 -a 2 ) as low as possible is within the range of about 3 to 14%.

なお、この圧下率を更に大きくして14%を超過
させると、第6図のaに矩形として示される金属
帯片10の横断面は、bに示すように幅方向に展
延され、かつ両端縁部でのラウンド(半径R)の
傾向が著しくなつている。この結果、金属帯片1
0の両端縁部近傍では、幅方向に展延されて拡大
した分だけ長さ方向の伸びが小さくなつて第6図
のcに示す伸び分布を呈すると共に、第6図のd
に示すように、端縁部に引張応力が残留する分布
となつている。そしてこの金属帯片に前記フオト
エツチングを施すと、第4図のcに示すように両
端縁部における細片は夫々外側への撓曲変形を呈
し、従つて圧下率を過度に増大させるのも、残留
歪の低減には有効でないことが判る。
Note that when this rolling reduction rate is further increased to exceed 14%, the cross section of the metal strip 10 shown as a rectangle in a of FIG. 6 is expanded in the width direction as shown in b, and both ends are There is a marked tendency for rounding (radius R) at the edges. As a result, metal strip 1
In the vicinity of both end edges of 0, the elongation in the length direction becomes smaller by the amount of expansion in the width direction, resulting in an elongation distribution shown in c in Fig. 6, and d in Fig. 6.
As shown in the figure, the distribution is such that tensile stress remains at the edges. When this metal strip is photo-etched, the strips at both end edges exhibit outward bending deformation, as shown in FIG. It turns out that this method is not effective in reducing residual distortion.

実施例 2 実施例1に供したと同じ42%ニツケル鋼の金属
帯体をスリツテイングシヤーにより長手方向に剪
断し、幅23.1mm、厚さ0.29〜0.25mmの金属帯片を
得た。次いでこの金属帯片を上下一対の鍛鋼製圧
延ロールの間を通過させ、圧下率3〜10%で圧延
を行つた。しかし、前記圧下率の範囲内で圧延ロ
ールに1回通しした金属帯片に前記フオトエツチ
ングを施し、その残留応力分布を観察したとこ
ろ、第7図のaに示す如く両端縁部の細片は夫々
内側に撓曲し、残留歪は低減されていないことが
判つた。これは鍛鋼製圧延ロールのヤング率が低
いため、圧延時にロール表面自体が湾曲して金属
帯片にエツジドロツプ現象を発生させることに起
因する。すなわち、第8図のaに示すようにスリ
ツテイング加工したままの矩形状端縁部を、前記
ヤング率の低い鍛鋼製ロールで圧延すると、第8
図bに示す如くいわゆるエツジドロツプが大きく
生じ、このエツジドロツプ部Aは長さ方向に余分
に延伸してここに圧縮残留応力を生じるため、前
記第7図aに示す撓曲現象を呈するものである。
そこで前記撓曲現象を回避するために、鍛鋼製圧
延ロールに再度減面率3〜10%で通過させたとこ
ろ、第8図cに示すようにエツジドロツプ部Bも
均一に圧下されて、歪の板幅方向分布は均一とな
つた。そして、このように鍛鋼製圧延ロールに3
〜10%の圧下率で2回通しした後の金属帯片に前
記フオトエツチングを施したところ、第7図のb
に示す如く両端縁部における細片の撓曲変形は解
消されていた。またこの金属帯片を使用して、第
3図に示す集積回路素子用リードフレームを打抜
成形し、リード端部間の間隔寸法差(a1−a2)と
圧下率との相関関係をプロツトしたところ、第5
図に破線で示す曲線が得られた。すなわちこの曲
線は、鍛鋼製圧延ロールを使用して残留剪断歪を
低減させるには、圧下率3〜10%で2回通過させ
ればよいことを示している。
Example 2 The same 42% nickel steel metal strip used in Example 1 was sheared in the longitudinal direction using a slitting shear to obtain a metal strip with a width of 23.1 mm and a thickness of 0.29 to 0.25 mm. Next, this metal strip was passed between a pair of upper and lower forged steel rolling rolls, and rolled at a reduction ratio of 3 to 10%. However, when the photoetching was applied to a metal strip that had been passed through a rolling roll once within the range of the rolling reduction ratio and the residual stress distribution was observed, the strips at both end edges were It was found that each was bent inward and the residual strain was not reduced. This is because the Young's modulus of the forged steel rolling roll is low, so the roll surface itself curves during rolling, causing an edge drop phenomenon in the metal strip. In other words, as shown in FIG.
As shown in FIG. 7B, a large so-called edge drop occurs, and this edge drop portion A is stretched excessively in the length direction and compressive residual stress is generated therein, resulting in the bending phenomenon shown in FIG. 7A.
Therefore, in order to avoid the above-mentioned bending phenomenon, when the edge was passed through the forged steel rolling roll again with an area reduction rate of 3 to 10%, the edge drop part B was also rolled down uniformly as shown in Fig. 8c, and the strain was reduced. The distribution in the sheet width direction became uniform. Then, in this way, 3
When the photoetching was applied to the metal strip after passing it twice at a rolling reduction rate of ~10%, the result was shown in Fig. 7b.
As shown in the figure, the bending deformation of the strip at both end edges was eliminated. In addition, this metal strip was used to stamp and form a lead frame for an integrated circuit element as shown in Figure 3, and the correlation between the gap size difference (a 1 - a 2 ) between the lead ends and the rolling reduction ratio was determined. When I plotted, the fifth
A curve indicated by a broken line in the figure was obtained. That is, this curve shows that in order to reduce the residual shear strain using a forged steel roll, it is sufficient to pass the roll twice at a rolling reduction of 3 to 10%.

前述した実施例1では、圧延ロールとして超硬
合金を材質とするロールを使用し、実施例2で
は、圧延ロールとして鍛鋼を材質とするロールを
使用した。このように、超硬合金製圧延ロールと
鍛鋼製圧延ロールとを使い分ける根拠は、主とし
て、後者が前者に比して、格段に低廉なコストで
製造し得ると共に、高精度のロールを容易に製造
可能である点に求められる。すなわち、鍛鋼を材
質とすることにより製造コストを抑制し、かつ高
い精度のロールを容易に製造し得るので、これら
の点を勘案すれば、前者に比して後者に大きなメ
リツトがある。但し、耐久性の点では、後者の鍛
鋼製圧延ロールよりも、前者の超硬合金製圧延ロ
ールの方が圧倒的に優れている。従つて両者は、
前述した諸々の事項を比較考量して、最も適切な
使い分けがなされるものである。
In Example 1 described above, a roll made of cemented carbide was used as the rolling roll, and in Example 2, a roll made of forged steel was used as the rolling roll. As described above, the reason for selectively using cemented carbide rolling rolls and forged steel rolling rolls is that the latter can be manufactured at a much lower cost than the former, and high-precision rolls can be manufactured easily. It is required that it is possible. That is, by using forged steel as the material, manufacturing costs can be suppressed and high-precision rolls can be easily manufactured, so if these points are taken into consideration, the latter has greater advantages than the former. However, in terms of durability, the former cemented carbide roll is overwhelmingly superior to the latter forged steel roll. Therefore, both
The most appropriate use is determined by weighing the various matters mentioned above.

なお、前記第1実施例および第2実施例の何れ
の場合も、圧延方法として冷間圧延および温間圧
延の何れをも好適に採用し得るものである。
In both the first and second embodiments, either cold rolling or warm rolling can be suitably employed as the rolling method.

以上詳細に説明したように、本発明に係る方法
によれば金属帯片を剪断加工して製造した金属帯
片のスリツト端縁部に残留する剪断歪を、圧延時
の応力付加により打消して加工上殆んど無視し得
る程度にまで低減させることがでる。従つて、後
工程での加工時に前記残留歪が解放されて仕上精
度を損う如き不都合は未然に回避され、また高価
で特殊な専用設備を必要とすることなく常温下で
実施し得る等、多くの有益な利点を有するもので
ある。
As explained in detail above, according to the method of the present invention, the shear strain remaining at the slit edge of a metal strip manufactured by shearing a metal strip can be canceled out by applying stress during rolling. It can be reduced to an almost negligible level in processing. Therefore, inconveniences such as the residual strain being released during processing in the subsequent process and impairing finishing accuracy can be avoided, and the process can be carried out at room temperature without the need for expensive and special dedicated equipment. It has many beneficial advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は剪断加工された金属帯片の端縁部に生
じる伸び変形および残留応力分布を示す説明図、
第2図はアルミニウムをクラツド被覆した金属帯
片の斜視図、第3図は集積回路素子用リードフレ
ームの斜視図、第4図はフオトエツチングにより
金属帯片にくし歯状の細片を形成してなる撓曲変
形状態の判定用説明図、第5図はリードフレーム
のリード間隔寸法差と圧下率との相関関係を示す
グラフ図、第6図は圧下率を14%以上に増大させ
て圧延した際の金属帯片の応力分布を示す説明
図、第7図は第4図と同様の擣曲変形状態の判定
用説明図、第8図はエツジドロツプ現象の説明図
である。
FIG. 1 is an explanatory diagram showing elongation deformation and residual stress distribution occurring at the edge of a sheared metal strip;
Figure 2 is a perspective view of a metal strip coated with aluminum, Figure 3 is a perspective view of a lead frame for an integrated circuit element, and Figure 4 is a metal strip coated with comb-like strips by photoetching. Fig. 5 is a graph showing the correlation between the difference in lead spacing of the lead frame and the rolling reduction rate, and Fig. 6 is a graph showing the correlation between the lead frame lead spacing difference and the rolling reduction rate, and Fig. 6 is a graph showing the relationship between the lead frame and the rolling reduction ratio of 14% or more. FIG. 7 is an explanatory diagram for determining the bending deformation state similar to FIG. 4, and FIG. 8 is an explanatory diagram of the edge drop phenomenon.

Claims (1)

【特許請求の範囲】 1 幅広の金属帯体を長手方向に剪断した際に、
剪断により得られた金属帯片の端縁部に残留する
剪断歪を低減させるために、回転軸が上下の関係
で整列するよう配置した一対の超硬合金製の圧延
ロールにより、前記金属帯片を圧下率3〜14%で
圧延することを特徴とする金属帯片の残留歪低減
方法。 2 幅広の金属帯体を長手方向に剪断した際に、
剪断により得られた金属帯片の端縁部に残留する
剪断歪を低減させるために、回転軸が上下の関係
で整列するよう配置した一対の鍛鋼製の圧延ロー
ルにより、前記金属帯片を圧下率3〜10%で2回
圧延することを特徴とする金属帯片の残留歪低減
方法。
[Claims] 1. When a wide metal strip is sheared in the longitudinal direction,
In order to reduce the shear strain remaining at the edge of the metal strip obtained by shearing, the metal strip is cut by a pair of cemented carbide rolling rolls whose rotating axes are aligned vertically. A method for reducing residual strain in a metal strip, characterized by rolling the metal strip at a reduction rate of 3 to 14%. 2 When a wide metal strip is sheared in the longitudinal direction,
In order to reduce the shear strain remaining at the edge of the metal strip obtained by shearing, the metal strip is rolled down using a pair of forged steel rolling rolls whose rotating axes are aligned vertically. A method for reducing residual strain in a metal strip, which comprises rolling twice at a rate of 3 to 10%.
JP6399983A 1983-04-12 1983-04-12 Method for reducing residual strain of metallic strip Granted JPS59189016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6399983A JPS59189016A (en) 1983-04-12 1983-04-12 Method for reducing residual strain of metallic strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6399983A JPS59189016A (en) 1983-04-12 1983-04-12 Method for reducing residual strain of metallic strip

Publications (2)

Publication Number Publication Date
JPS59189016A JPS59189016A (en) 1984-10-26
JPH0261330B2 true JPH0261330B2 (en) 1990-12-19

Family

ID=13245470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6399983A Granted JPS59189016A (en) 1983-04-12 1983-04-12 Method for reducing residual strain of metallic strip

Country Status (1)

Country Link
JP (1) JPS59189016A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080232B2 (en) * 1987-10-27 2000-08-21 日立金属株式会社 Lead frame material excellent in punching workability and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737404A (en) * 1980-08-13 1982-03-01 Textron Inc Slide fastener stringer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737404A (en) * 1980-08-13 1982-03-01 Textron Inc Slide fastener stringer

Also Published As

Publication number Publication date
JPS59189016A (en) 1984-10-26

Similar Documents

Publication Publication Date Title
KR100699424B1 (en) A method for manufacturing an iron-nickel-based alloy thin strip
EP1114871A1 (en) Process for the production of material of metals and alloys having fine microstructure or fine nonmetallic inclusions and having less segregation of alloying elements.
JPH0261330B2 (en)
JP3268369B2 (en) High precision rolled metal sheet manufacturing equipment
JP2560322B2 (en) Method for reducing residual stress in metal strips
JPS63273518A (en) Reducing method for residual stress in metal strip
JPH0668124B2 (en) Manufacturing method of hot-rolled steel strip with excellent cold rolling property
JP3348565B2 (en) Method of producing Fe-Ni-based alloy thin plate for electronic parts and Fe-Ni-Co-based alloy thin plate excellent in degreasing property
JP2775910B2 (en) Method for removing residual strain from lead frame material
JPH02104624A (en) Manufacture of lead frame material
JP2002043498A (en) Copper-based lead material for semiconductor and its manufacturing method
JP2869031B2 (en) Method of manufacturing lead material for semiconductor
JPH04231102A (en) Manufacture of material for ic lead frame
JPH0669565B2 (en) Method for reducing residual stress of metal strip
JPS62158525A (en) Residual deflection adjusting method for metal strip piece
JPH05109960A (en) Lead frame material and its manufacture
JPH06260587A (en) Manufacture of lead frame material of small heating contraction
JP3080232B2 (en) Lead frame material excellent in punching workability and manufacturing method thereof
JPS63112003A (en) Production of copper lead material for semiconductor
JP2002144051A (en) Manufacturing method of asymmetric clad material
JPH04367308A (en) Cold rolling method
JPS64459B2 (en)
JPH0670251B2 (en) Manufacturing method of alloy for glass sealing
JPS60211966A (en) Manufacture of lead frame material
JPS594924A (en) Edge drop correcting method