JPS62158525A - Residual deflection adjusting method for metal strip piece - Google Patents

Residual deflection adjusting method for metal strip piece

Info

Publication number
JPS62158525A
JPS62158525A JP29741985A JP29741985A JPS62158525A JP S62158525 A JPS62158525 A JP S62158525A JP 29741985 A JP29741985 A JP 29741985A JP 29741985 A JP29741985 A JP 29741985A JP S62158525 A JPS62158525 A JP S62158525A
Authority
JP
Japan
Prior art keywords
surface roughness
roll surface
rolling reduction
metal
reduction rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29741985A
Other languages
Japanese (ja)
Inventor
Takeo Nihei
二瓶 武男
Tomoaki Teramoto
寺本 智明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP29741985A priority Critical patent/JPS62158525A/en
Publication of JPS62158525A publication Critical patent/JPS62158525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)

Abstract

PURPOSE:To reduce the residual deflection in the metal organization and to improve the finishing accuracy of a lea frame by press-fitting a dissimilar metal to a metal strip piece within the range lower than the curve that each coordi nate of the limited roll surface roughness value and the rolling reduction rate value is plotted. CONSTITUTION:The metal strip piece that the dissimilar metal in a narrow width is press-fitted to the base metal of a strip like thin metal sheet is subjected to a roll rolling within the range of 13-30% rolling reduction rate with 0.8-1.3S roll surface roughness and within the range lower than the curve that each coordinate of 13% rolling reduction rate in case of 1.1S roll surface roughness, 22% rolling reduction rate in case of 1.18S roll surface roughness, 25% rolling reduction rate in case of 1.23S roll surface roughness and 27% rolling reduction rate in case of 1.35 roll surface roughness is plotted, in the perpendicularly intersecting coordinate that the roll surface roughness is taken on (y) axis and the rolling reduction rate on (x) axis. In this case, the inconve nience of the finishing accuracy being spoiled with the bend of the metal piece by the release of the residual deflection can be avoided in advance.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、金属帯片の残留歪調整方法に関し、更に詳
細には、例えば集積回路素子のリードフレーム成形素材
として好適に使用される異種金属を圧着した金属帯片に
おいて、当該金属帯片に内在している残留歪を、リード
フレームに加工した際に差支えない程度に調整し得る方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for adjusting residual strain in a metal strip, and more particularly, to a method for crimping dissimilar metals, which is preferably used as a lead frame molding material for an integrated circuit element, for example. The present invention relates to a method for adjusting the residual strain inherent in a metal strip to such an extent that it does not cause any problem when it is processed into a lead frame.

発明の背景 例えば第2図に示すように、プレス打抜き素材となる金
属帯片10は、42%ニッケル鋼を材質とする帯状金属
薄板からなる母材12の表面中央部に、所定幅のアルミ
ニウム帯片14を長手方向に圧着(クラッド)した構成
となっている。そしてこの金属帯片1oに所要の打抜き
プレスおよび曲げ加工を施すことによって、第3図に示
す形状の集積回路素子用リードフレーム16が得られる
BACKGROUND OF THE INVENTION For example, as shown in FIG. 2, a metal strip 10 that is a press punched material has an aluminum strip of a predetermined width at the center of the surface of a base material 12 made of a strip-shaped thin metal plate made of 42% nickel steel. The piece 14 is crimped (clad) in the longitudinal direction. Then, by subjecting this metal strip 1o to the required punching press and bending processes, a lead frame 16 for an integrated circuit element having the shape shown in FIG. 3 is obtained.

このリードフレーム16の両側に折曲げられて延出する
柵状脚部16aは、集積回路(IC)製造工程の最終時
に線A−Aの方向に切断されて、基板接続用の多数のリ
ード片1日となるものである。
The fence-like legs 16a that are bent and extend on both sides of the lead frame 16 are cut in the direction of line A-A at the end of the integrated circuit (IC) manufacturing process to form a large number of lead pieces for board connection. It will be one day.

発明が解決しようとする問題点 しかるに前記金属帯片1oの製造工程では、機械的歪が
発生して、この歪が帯片内部に不可避的に残留するのが
一般的である。このため当該歪の残留量が許容限界を越
えていると、前記リード片18の歪みや変形歪として発
現する難点がある。
Problems to be Solved by the Invention However, in the manufacturing process of the metal strip 1o, mechanical strain is generated and this strain inevitably remains inside the strip. Therefore, if the residual amount of strain exceeds the allowable limit, there is a problem that the lead piece 18 will be distorted or deformed.

例えば前記金属帯片1oを製造するには、予め所望の製
品板厚にまで展延した幅広の金属板に所定間隔で複数条
のアルミニウムを圧着(クラッド)し、この金属板をス
リッティングシャーにより長手方向に剪断して、複数本
のアルミニウム・クラッド金属帯片を得る方法が一般に
採用されている。
For example, in order to manufacture the metal strip 1o, multiple strips of aluminum are crimped (clad) at predetermined intervals on a wide metal plate that has been expanded to a desired product thickness in advance, and the metal plate is clad with a slitting shear. Longitudinal shearing is commonly employed to obtain multiple aluminum clad metal strips.

しかるにこの剪断加工を施した金属帯片10の剪断端縁
部には、その金属組織中にスリッティングシャーにより
付与された剪断歪が内部応力として残留している。すな
わち剪断加工された金属帯片1oの端縁部に著しい伸び
変形が生じ、またこの伸び変形に基づき、板幅方向には
大きな圧縮応力を生じている。更にアルミニウム14を
圧着する際に金属母材12に加えられた強大な圧着応力
も、そのまま残留している場合が多い。
However, the shear strain imparted by the slitting shear remains as internal stress in the metal structure of the sheared edge of the metal strip 10 that has been subjected to this shearing process. That is, significant elongation deformation occurs at the edge of the sheared metal strip 1o, and based on this elongation deformation, large compressive stress is generated in the width direction of the sheet. Furthermore, the enormous pressure stress applied to the metal base material 12 during pressure bonding of the aluminum 14 often remains as it is.

従ってこれらの歪を残留させたアルミニウム・クラッド
金属帯片10を素材としてプレス加工すると、リードフ
レーム16に形成される各リード片18には前記残留歪
が解放されて、幅方向に変形する傾向を示す。例えば第
3図に示すように、各リード片18の対向し合う端部間
の間隔寸法a1およびa2が不均一となる事態を招来す
る。このようにリード端部の間隔が不揃いになると、集
積回路チップのアルミニウムリード線(図示せず)を、
リード端部のアルミニウム圧着部14に臨ませる自動位
置決めが困鷺となり、後工程での自動ボンディング作業
に重大な支障をきたすことになる。
Therefore, when the aluminum clad metal strip 10 with these residual strains is pressed as a raw material, the residual strains are released in each lead piece 18 formed on the lead frame 16, and the tendency to deform in the width direction is reduced. show. For example, as shown in FIG. 3, a situation arises in which the distances a1 and a2 between the opposing ends of each lead piece 18 become uneven. If the spacing between the lead ends becomes uneven in this way, the aluminum lead wires (not shown) of the integrated circuit chip
Automatic positioning of the lead end so as to face the aluminum crimping part 14 becomes difficult, and this causes a serious hindrance to automatic bonding work in a subsequent process.

そこで金属帯片1oの端縁部に残留する内部歪の傾向を
簡単に観察するために、第4図に示すように、前記金属
帯片10をフォトエツチングしてその長手方向に短冊状
の細片20を多数形成し。
Therefore, in order to easily observe the tendency of internal strain remaining at the edge of the metal strip 1o, as shown in FIG. A large number of pieces 20 are formed.

各細片20の変形度によってその歪の程度および分布を
判定することが一般に実施されている。例えば金属帯片
10に前記フォトエツチングを施すと、端縁部側の細片
20はその金属組織内に残留していた歪が解放されて、
第4図(a)または第4図(b)に図示するように、夫
々内方または外方に湾曲変形する傾向を示すのが一般的
である。また残留歪が殆どない場合は、第4図(c)に
示す如く、各細片20は変形しないで直線的に延在する
It is generally practiced to determine the degree and distribution of strain based on the degree of deformation of each strip 20. For example, when the metal strip 10 is photo-etched, the strain remaining in the metal structure of the strip 20 on the edge side is released.
As shown in FIG. 4(a) or FIG. 4(b), it generally shows a tendency to curve inwardly or outwardly, respectively. Further, when there is almost no residual strain, each strip 20 extends linearly without being deformed, as shown in FIG. 4(c).

そして集積回路素子のリードフレームとして最も好適に
使用し得るのは、ユーザーの長年の知見によれば、第4
図(c)の直線傾向を示す金属帯片10であり、次いで
変形の程度にもよるが、第4図(a)の内方に湾曲変形
する傾向を示す金属帯片10である。そして第4図(b
)の外方に変形する傾向を示す金属帯片10は、前記リ
ードフレームとしての使用は不適である場合が多い。な
おこのフォトエツチング検査は、各製造ロットにおける
金属帯片10のコイル毎に実施されて、ユーザーへの出
荷の可否の決定材料に供されている。
According to users' long-standing knowledge, the most suitable lead frame for integrated circuit devices is the 4th one.
The metal strip 10 exhibits a linear tendency as shown in FIG. 4(c), and then, depending on the degree of deformation, the metal strip 10 exhibits a tendency to curve inward as shown in FIG. 4(a). And Figure 4 (b
) metal strips 10 that exhibit a tendency to deform outwardly are often unsuitable for use as lead frames. Note that this photoetching inspection is carried out for each coil of the metal strip 10 in each production lot, and is used to determine whether or not the coil can be shipped to a user.

このように金属帯片の端縁部に残留する歪が後工程での
製品の仕上加工精度に影響を与える事実に鑑み、前記有
害な歪を除去する手段として、例えば低温焼鈍方法が実
施されている。しかしこの低温焼鈍方法は、還元性また
は非酸化性ガスの気流中で焼き鈍しを行う高価な連続光
輝焼鈍炉を必要とし、設備費が嵩む難点がある。加えて
金属帯片10の母材12に被着しであるアルミニウム1
4の融点は660℃と低く、しかも該素材は、550℃
以上の温度に晒すと、アルミニウムと42%ニッケル鋼
母材との界面にアルミ−鉄の金属間化合物を生じ、その
化合物は著しい脆性を示して、後加工の際にクラックを
生じる難点がある。
In view of the fact that the strain remaining at the edge of the metal strip affects the finishing accuracy of the product in the subsequent process, low-temperature annealing methods, for example, have been implemented as a means to remove the harmful strain. There is. However, this low-temperature annealing method requires an expensive continuous bright annealing furnace for annealing in a stream of reducing or non-oxidizing gas, and has the disadvantage of increasing equipment costs. In addition, aluminum 1 adhered to the base material 12 of the metal strip 10
4 has a low melting point of 660℃, and the material has a melting point of 550℃.
When exposed to temperatures above, an aluminum-iron intermetallic compound is formed at the interface between the aluminum and the 42% nickel steel base material, and this compound exhibits significant brittleness and has the disadvantage of causing cracks during post-processing.

このため焼鈍は550 ’C以下で行なわなければなら
ないが、前記550℃以下の温度では、金属帯片に内在
する残留歪を低減するに充分でない。従って金属帯片を
高温に晒すことなく、室温乃至それに近い温度で残留歪
を低減させる方法の確立が要請されている。
For this reason, annealing must be carried out at a temperature below 550'C, but temperatures below 550'C are not sufficient to reduce the residual strain inherent in the metal strip. Therefore, there is a need to establish a method for reducing residual strain at or near room temperature without exposing the metal strip to high temperatures.

発明の端緒および実施例 そこで本願の発明者は、前記要請に鑑み種々の手段につ
き検討した結果、剪断後の金属帯片に口−ル圧延を施す
ことによって、前記残留歪を追放する方向に成る程度調
整し得ることを突き止めた。
Introduction and Embodiments of the Invention The inventor of the present invention, as a result of considering various means in view of the above-mentioned request, came up with the idea of eliminating the residual strain by subjecting the sheared metal strip to machining rolling. We found that the degree can be adjusted.

そして前記リードフレームの用途としては、前述した第
4図(c)の直線傾向を示す程度の残留歪および第4図
(a)の内方に僅かに変形する程度の残留歪であれば実
用上差支えないことから、更にこのロール圧延を各種の
条件下で実施したところ、圧延後の歪量は、ロール面の
粗さと圧下率との間で有意的に変化する相関関係を有し
ていることが判った。
As for the use of the lead frame, any residual strain that shows the linear trend shown in FIG. 4(c) or the residual strain that slightly deforms inward as shown in FIG. 4(a) is practical. Since there is no problem, when this roll rolling was carried out under various conditions, it was found that the amount of strain after rolling had a significantly changing correlation between the roughness of the roll surface and the rolling reduction ratio. It turns out.

例えば金属母材12に幅狭の異種金属14を圧着してな
る金属帯片1oを、ロール式冷間圧延機における上下一
対のワークロール(図示せず)間に通過させて圧延を実
施する。なお前記金属母材12はニッケル系合金であり
、前記異種金属14はアルミニウムであるのが好ましい
。このとき前記ワークロールのロール面粗さを1.1S
〜3.98の範囲で種々変更すると共に、圧下率を13
%〜約30%の範囲で変更させ、各圧延後に金属帯片に
発現する残留歪の傾向を、前述したフォトエツチング法
により判定した。そしてこの結果を、ロール面粗さくS
)をy軸に、圧下率(%)をX軸にとった直交座標系に
座標表示してプロットしたところ、第1図に示す曲線C
を得た。
For example, a metal strip 1o formed by crimping a narrow dissimilar metal 14 onto a metal base material 12 is rolled by passing it between a pair of upper and lower work rolls (not shown) in a roll-type cold rolling mill. Preferably, the metal base material 12 is a nickel-based alloy, and the dissimilar metal 14 is aluminum. At this time, the roll surface roughness of the work roll was set to 1.1S.
Various changes were made within the range of ~3.98, and the rolling reduction was changed to 13.
% to about 30%, and the tendency of residual strain developed in the metal strip after each rolling was determined by the photoetching method described above. Then, calculate this result as the roll surface roughness S
) on the y-axis and the rolling reduction rate (%) on the x-axis and plotted, the curve C shown in Figure 1 was plotted.
I got it.

この曲線Cは、残留歪が零(0)となる境界を示し、こ
れより上方の領域りでは、第4図(b)に示すように細
片20が外開きとなる傾向を有して。
This curve C indicates the boundary where the residual strain becomes zero (0), and in the area above this, the strips 20 tend to open outward as shown in FIG. 4(b).

当該の金属帯片1oは前記リードフレームとしては不適
な場合が多い。
The metal strip 1o is often unsuitable for the lead frame.

また曲線Cより下方の領域Aでは、第4図(a)に示す
ように細片2oが内開きとなる傾向を有し、この場合は
前述の如く、一定の範囲内で金属帯片1oをリードフレ
ームとして使用可能である。但しリードフレーム製品の
面粗さが、規格1.O3以内にあることがユーザー仕様
で要求されているので、これを考慮すると、第1図に示
すグラフの領域Aにおいて、リードフレームとして有効
に使用し得るのは、斜線を施した範囲内に限られる。す
なわち金属帯片10をリードフレームとして使用可能な
範囲は、先ずロール面粗さが0.8〜1.3Sで圧下率
が13〜30%の区画内である。そしてリードフレーム
として使用可能な上限は、前記曲線Cにより画定される
境界であって、この境界線は、以下の各座標をプロット
して得られることが複数に亘る実験により確認されてい
る。
Furthermore, in the area A below the curve C, the strip 2o tends to open inward as shown in FIG. 4(a), and in this case, as described above, the metal strip 1o is Can be used as a lead frame. However, the surface roughness of the lead frame product is within the standard 1. Since the user specifications require that the lead frame be within O3, taking this into consideration, in area A of the graph shown in Figure 1, the area that can be effectively used as a lead frame is limited to the shaded area. It will be done. That is, the range in which the metal strip 10 can be used as a lead frame is within the range where the roll surface roughness is 0.8 to 1.3 S and the rolling reduction is 13 to 30%. The upper limit that can be used as a lead frame is the boundary defined by the curve C, and it has been confirmed through multiple experiments that this boundary line can be obtained by plotting the following coordinates.

ロール面粗さ1.IS→圧下率13% ロール面粗さ1.12S→圧下率16%ロール面粗さ1
.18S→圧下率22%ロール面粗さ1.23 S→圧
下率25%およびロール面粗さ1.3S→圧下率27% しかしこの場合においても、前記曲線Cに近づく程、残
留歪が少なくなって、リードフレームとして好適に使用
し得ることは勿論である。
Roll surface roughness 1. IS→Reduction rate 13% Roll surface roughness 1.12S→Reduction rate 16% Roll surface roughness 1
.. 18S→Reduction rate 22% Roll surface roughness 1.23S→Reduction rate 25% and Roll surface roughness 1.3S→Reduction rate 27% However, even in this case, the closer to the curve C, the smaller the residual strain. Therefore, it goes without saying that it can be suitably used as a lead frame.

発明の効果 このように本発明に係る金属帯片の残留歪調整方法によ
れば、帯状金属薄板の母材に幅狭の異種金属を圧着して
なる金属帯片(例えば集積回路素子用リードフレームに
使用されるアルミニウム圧着金属帯片)を所要のロール
面粗さと圧下率との相関関係においてロール圧延するこ
とことにより、該帯片の製造工程で付加されて金属組織
中に残留している歪を調整し、加工上殆んど無視し得る
程度にまで低減させることができる。従って、例えば集
積回路素子のリードフレームをプレス成形する後工程で
、前記残留歪の解放によりリード端部が撓曲して仕上精
度が損われたり、自動ボンディング作業が不可能になる
如き不都合は未然に回避される等、多くの有益な利点を
有するものである。
Effects of the Invention As described above, according to the method for adjusting the residual strain of a metal strip according to the present invention, a metal strip formed by crimping a narrow dissimilar metal onto a base material of a strip-shaped thin metal plate (for example, a lead frame for an integrated circuit element) By rolling an aluminum crimped metal strip (used in aluminum crimped metal strips) with the required correlation between roll surface roughness and rolling reduction, the strain added during the manufacturing process and remaining in the metal structure of the strip can be reduced. can be reduced to an almost negligible level in processing. Therefore, for example, in the post-process of press-molding a lead frame of an integrated circuit element, the release of the residual strain causes the lead end to bend, resulting in a loss of finishing accuracy, and inconveniences such as making automatic bonding impossible. It has many beneficial advantages, such as being avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はロール面粗さくS)をy軸にとり圧下率(%)
をX軸にとった直交座標系からなるグラフ図であって、
ロール面粗さと圧下率との相関関係を示し、第2図はア
ルミニウムを圧着した金属帯片の斜視図、第3図は集積
回路素子用リードフレームの斜視図、第4図(a)〜第
4図(c)は剪断加工された金属帯片にフォトエツチン
グを施して短冊状の細片を加工し、この細片の外端部に
生じる伸び変形を示す夫々概略説明図である。 10・・・金属帯片    12・・・母材14・・・
アルミニウム圧着部 16・・・リードフレーム 18・・・リード片20・
・・短冊状細片 FIG、2 FIG、3 、   FIG、4 +01              [bl(C1
Figure 1 shows the roll surface roughness (S) on the y-axis and the rolling reduction rate (%).
It is a graph diagram consisting of a rectangular coordinate system with the X axis taken as
The correlation between roll surface roughness and rolling reduction rate is shown. Figure 2 is a perspective view of a metal strip crimped with aluminum, Figure 3 is a perspective view of a lead frame for integrated circuit elements, and Figures 4 (a) to 4. FIG. 4(c) is a schematic explanatory diagram showing elongation deformation occurring at the outer end of a strip-shaped strip obtained by photo-etching a sheared metal strip. 10...Metal strip 12...Base material 14...
Aluminum crimp part 16...Lead frame 18...Lead piece 20.
...Strip-shaped strip FIG, 2 FIG, 3, FIG, 4 +01 [bl(C1

Claims (2)

【特許請求の範囲】[Claims] (1)ロール面粗さをy軸にとり圧下率をx軸にとった
直交座標系において、帯状金属薄板の母材に幅狭の異種
金属を圧着してなる金属帯片を、前記ロール面粗さが0
.8〜1.3Sで圧下率が13〜30%の範囲で、かつ
前記ロール面粗さ1.1Sのとき圧下率13%、ロール
面粗さ1.12Sのとき圧下率16%、ロール面粗さ1
.18Sのとき圧下率22%、ロール面粗さ1.23S
のとき圧下率25%およびロール面粗さ1.3Sのとき
圧下率27%の各座標をプロットして得られる曲線より
下の範囲内でロール圧延することを特徴とする金属帯片
の残留歪調整方法。
(1) In an orthogonal coordinate system in which the roll surface roughness is taken as the y-axis and the rolling reduction is taken as the Saga 0
.. When the roll surface roughness is 1.1S, the rolling reduction is 13%, and when the roll surface roughness is 1.12S, the rolling reduction is 16%, and the roll surface roughness is in the range of 13 to 30% at 8 to 1.3S. Sa1
.. At 18S, rolling reduction rate is 22%, roll surface roughness is 1.23S
Residual strain of a metal strip characterized in that it is rolled within a range below the curve obtained by plotting the respective coordinates of a rolling reduction of 25% and a roll surface roughness of 1.3S and a rolling reduction of 27%. Adjustment method.
(2)前記母材はニッケル系合金であり、前記異種金属
はアルミニウムである特許請求の範囲第1項記載の金属
帯片の残留歪調整方法。
(2) The method for adjusting residual strain in a metal strip according to claim 1, wherein the base material is a nickel-based alloy and the dissimilar metal is aluminum.
JP29741985A 1985-12-28 1985-12-28 Residual deflection adjusting method for metal strip piece Pending JPS62158525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29741985A JPS62158525A (en) 1985-12-28 1985-12-28 Residual deflection adjusting method for metal strip piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29741985A JPS62158525A (en) 1985-12-28 1985-12-28 Residual deflection adjusting method for metal strip piece

Publications (1)

Publication Number Publication Date
JPS62158525A true JPS62158525A (en) 1987-07-14

Family

ID=17846262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29741985A Pending JPS62158525A (en) 1985-12-28 1985-12-28 Residual deflection adjusting method for metal strip piece

Country Status (1)

Country Link
JP (1) JPS62158525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215828A (en) * 2005-02-03 2006-08-17 Yanmar Co Ltd Controller for work vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215828A (en) * 2005-02-03 2006-08-17 Yanmar Co Ltd Controller for work vehicle

Similar Documents

Publication Publication Date Title
JP5442119B2 (en) Fastener element and fastener element manufacturing method
KR100699424B1 (en) A method for manufacturing an iron-nickel-based alloy thin strip
EP1114871B1 (en) Process for the production of material of metals and alloys having fine microstructure or fine nonmetallic inclusions and having less segregation of alloying elements.
EP2971215B1 (en) Process for improving formability of wrought copper-nickel-tin alloys
JPS62158525A (en) Residual deflection adjusting method for metal strip piece
KR102244229B1 (en) Manufacturing method of Fe-Ni alloy thin plate and Fe-Ni alloy thin plate
WO2013069602A1 (en) Rolled copper foil
JPH0234289A (en) Manufacture of metal clad plate by rolling
JP2921121B2 (en) Manufacturing method of IC lead frame material
JP2008223146A (en) METHOD FOR PRODUCING Fe-Ni BASED ALLOY THIN SHEET
CN110177633B (en) Component of surface-treated steel sheet having cut end faces and method for producing same
JPH06260587A (en) Manufacture of lead frame material of small heating contraction
CN1125888C (en) Processes for producing articles with stress-free slit edges
JP2788244B2 (en) Mask support member and method of manufacturing the same
JPS63273518A (en) Reducing method for residual stress in metal strip
JPS59189016A (en) Method for reducing residual strain of metallic strip
US3874954A (en) Method of preparing iron silicon alloys with high silicon content for cold working requiring ductility
JPH06100982A (en) Production of lead frame material and lead frame using the same
JPS6024585B2 (en) Manufacturing method of cladding material
JPH0142799B2 (en)
JPH06154802A (en) Manufacture of angle bar
JP3379153B2 (en) Fe-Ni alloy for lead frame and strip for lead frame
JPH0510826B2 (en)
JP2002043498A (en) Copper-based lead material for semiconductor and its manufacturing method
JP2812879B2 (en) Plate material for electric and electronic parts and method for producing the same