JPH0260062A - Stacked fuel cell - Google Patents

Stacked fuel cell

Info

Publication number
JPH0260062A
JPH0260062A JP63209853A JP20985388A JPH0260062A JP H0260062 A JPH0260062 A JP H0260062A JP 63209853 A JP63209853 A JP 63209853A JP 20985388 A JP20985388 A JP 20985388A JP H0260062 A JPH0260062 A JP H0260062A
Authority
JP
Japan
Prior art keywords
cathode
anode
fuel cell
bus bar
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209853A
Other languages
Japanese (ja)
Inventor
Kazuo Fushimi
伏見 和夫
Kaoru Kitakizaki
薫 北寄崎
Toshinori Fujii
藤井 利宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63209853A priority Critical patent/JPH0260062A/en
Publication of JPH0260062A publication Critical patent/JPH0260062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To make manufacture easy, to make size compact, and to enhance safety by mutually connecting cathodes and anodes respectively with conductors passed through passing through holes of frames, and forming a sealing part between adjacent frames by stacking before-baking alumina, then baking it. CONSTITUTION:A unit cell is formed by assembling a cathode 12 and an anode 11 with an electrolyte material 13 interposed in a frame 14. A plurality of unit cells are stacked so that electrodes having the same polarity are faced and fuel manifolds 45a, 45b are formed between electrode plates. The flame 14 is formed by stacking before-baking alumina, then baking it. Bus bars 37, 38 made of soft conductive material are inserted into through holes for cathode and anode bus bars so as to connect electrode plates to taken out electric energy. A sealing part 32 is arranged between adjacent frames of unit cells to prevent leakage of reaction gases inside and outside a fuel cell. A stacked fuel cell whose safety is enhanced, size is compact, and manufacture is easy is obtained.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は積層型の燃料電池に関するものである。[Detailed description of the invention] A. Industrial application field The present invention relates to a stacked fuel cell.

B9発明の概要 本発明は、枠部材に電解質物体とこの電解質物体の両側
に位置する陽極と陰極の電極板を組み込み、この単セル
の複数個を各同極の電極板同志が各々対向すると共に、
各同極の電極板間にそれぞれ燃料用のマニホルドを形成
するように積層したらのにおいて、 前記枠部材に陽極導体用および陰極導体用の貫通孔を形
成し、これらの貫通孔内に導体を設け、それぞれ陽極導
体と陽極電極および陰極導体と陰極電極を接続し、隣接
する枠部材間にソール部を設けると共に、焼成前のアル
ミナを積層した後に焼成して前記枠部材を形成すること
により、製作容易にして小型化でき、かつ安全性に優れ
た燃料N池を得る。
B9 Summary of the Invention The present invention incorporates an electrolyte object and an anode and a cathode electrode plate located on both sides of the electrolyte object into a frame member, and a plurality of single cells are arranged so that the electrode plates of the same polarity face each other and ,
After laminating the electrode plates of the same electrode so as to form a fuel manifold respectively, through holes for an anode conductor and a cathode conductor are formed in the frame member, and conductors are provided in these through holes. , by connecting the anode conductor to the anode electrode and the cathode conductor to the cathode electrode, providing a sole between adjacent frame members, and laminating unfired alumina and then firing to form the frame member. To obtain a fuel N pond that can be easily miniaturized and has excellent safety.

C1従来の技術 燃料電池本体は、固体電解質の両側に陽極と陰極の電極
板を配置して単位電池(単セル)を構成し、この単セル
を曳数個直列に積層して構成されている。この単セルを
陽極電極同志と陰極電極板同志が対向するように複数個
配置したセルに対して、陰極板側に燃料として水素ガス
(水素)を供給し、陽極板側に酸化剤として、空気(酸
素)を供給して水素を酸素と反応させて電気を生じさせ
ろと共に、水を生成させている。
C1 Conventional technology The main body of a fuel cell consists of a unit cell (single cell) by arranging anode and cathode electrode plates on both sides of a solid electrolyte, and several of these single cells are stacked in series. . A plurality of these single cells are arranged so that the anode electrodes and the cathode electrode plates face each other. Hydrogen gas (hydrogen) is supplied as a fuel to the cathode plate side, and air is supplied as an oxidant to the anode plate side. (oxygen) is supplied to cause hydrogen to react with oxygen to generate electricity and water.

すなわち、燃料電池本体10は、第5図に示すように、
複数個の単位電池(単セルS)と、これらの単セルSを
直列に積層固定する抑え板1a。
That is, the fuel cell main body 10, as shown in FIG.
A plurality of unit batteries (single cells S) and a holding plate 1a that stacks and fixes these single cells S in series.

1bと、積層固定した電池本体lOの各単セルSの陰極
板側に水素ガスH7を供給する水素ガス供給用マニホル
ド2と、陽極板側に空気を供給する空気供給用マニホル
ド3と、各単セルSの陽極板および陰極板からそれぞれ
電気を取り出す集電リード4および5によって構成され
ている。
1b, a hydrogen gas supply manifold 2 that supplies hydrogen gas H7 to the cathode plate side of each unit cell S of the stacked and fixed battery body IO, an air supply manifold 3 that supplies air to the anode plate side, and each unit It is composed of current collecting leads 4 and 5 that take out electricity from the anode plate and cathode plate of the cell S, respectively.

この様な積層型燃料電池においては、ガス供給用のマニ
ホルド2.3は、電池本体IOの外側に付設されている
。また、供給された水素ガスと空気が電解質を介して反
応を行うことによって水と電気エネルギーか発生し、こ
の発生した電気エネルギーを外部に取り出す集電リード
(ブスバー)4.5も、セルの外側に付設されている。
In such a stacked fuel cell, the gas supply manifold 2.3 is attached to the outside of the cell main body IO. In addition, water and electrical energy are generated by the reaction between the supplied hydrogen gas and air via the electrolyte, and the current collector lead (busbar) 4.5 that takes out the generated electrical energy is also placed outside the cell. attached to.

D9発明が解決しようとする課題 従来の積層を燃料電池においては、第!の課題として、
マニホルドやブスバーがセルの外側に付設されていたた
め、燃料電池自体の全体構造が大型となり、また複数個
の単セルを積層するときの作業が煩雑であった。
D9 Problems to be solved by the invention In conventional stacked fuel cells, the problem is as follows! As a challenge,
Since the manifold and bus bar were attached to the outside of the cell, the overall structure of the fuel cell itself became large, and the work when stacking a plurality of single cells was complicated.

しかるに、ガス供給用のマニホルドをセル枠内に内設し
、セルの全体構造をその分だけ小型化することは、特開
昭62−17781号公報において退室されている。し
かし、集電体で集電した電気エネルギーを外部に取り出
すブスバーをセルの枠内に内股することは、集電体とブ
スバーとの接続が煩雑になるため、今まで行われていな
かった。
However, Japanese Patent Laid-Open Publication No. 17781/1984 does not incorporate the idea of arranging a gas supply manifold within the cell frame and downsizing the entire structure of the cell accordingly. However, it has not been done up to now to embed a busbar within the frame of the cell for extracting the electrical energy collected by the current collector to the outside because it would make the connection between the current collector and the busbar complicated.

積層型燃料電池における第2の課題として、セル外周部
の絶縁枠板は、(1)熱サイクルに耐えること、(2)
電解質との界面のガスシール性、(3)絶縁性、および
酸化還元反応に強い等の性能を満たす材料にしなければ
ならない。
The second issue with stacked fuel cells is that the insulating frame plate around the cell periphery must (1) withstand thermal cycles; (2)
The material must satisfy properties such as gas sealing properties at the interface with the electrolyte, (3) insulation properties, and resistance to redox reactions.

第3の課題としては、電解質の両側に陰極と陽極の電極
板を配し、陰極側に水素ガスを供給し、陽極側に空気を
供給しているので、電池内外における反応ガスの漏れを
防止することが重要である。
The third issue is that the cathode and anode electrode plates are arranged on both sides of the electrolyte, hydrogen gas is supplied to the cathode side, and air is supplied to the anode side, which prevents leakage of reaction gases inside and outside the battery. It is important to.

すなわち、ガス漏れが起こると、燃料電池の発電効率の
低下を生じさせるばかりでなく、爆発等の大災害につな
がるので、ガス漏れを防止するために、単セル同志の積
層には充分な注意が払わガなければならない。
In other words, if a gas leak occurs, it will not only reduce the power generation efficiency of the fuel cell, but also lead to a major disaster such as an explosion, so to prevent gas leaks, sufficient care must be taken when stacking single cells together. I have to pay it.

本発明は上記従来の問題点に鑑みてなされたものでその
目的は、積層型燃料電池において、焼成前のアルミナを
積層した後に焼成して単セルの枠部材を形成し、この棒
部材内にブスバー用の貫通孔を内設し、単セルを積層し
た後に各セルの集電体と接合するブスバーを挿設すると
共に、隣接する各セルの枠部材間に有効なシール部を形
成することにより、製作容易にして小型化が可能な積層
型燃料電池を提供することである。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to stack unfired alumina and then fire it to form a frame member of a single cell in a stacked fuel cell. By providing a through hole for the bus bar inside, inserting a bus bar that connects to the current collector of each cell after stacking the single cells, and forming an effective seal between the frame members of each adjacent cell. An object of the present invention is to provide a stacked fuel cell that is easy to manufacture and can be miniaturized.

E9課題を解決するための手段 本発明は、上記目的を達成するために、枠部材に電解質
物体とこの電解質物体の両側に位置する陽極と陰極の電
極板を組み込んで単セルを構成し、この単セルの複数個
を陽極の電極板同志および陰極の電極板同志が各々対向
すると共に、これらの各同極の電極板間にそれぞれ燃料
用マニホルドを形成するように積層した燃料電池におい
て、焼成前のアルミナを積層した後に焼成したものによ
り前記枠部材形成し、この枠部材に陽極ブスバー用の貫
通孔と陰極ブスバー用の貫通孔を形成し、前記陽極ブス
バー用の貫通孔内には前記陽極板と接続するように軟質
導電材をもとに形成した陽極ブスバーを設けると共に、
前記陰極ブスバー用の貫通孔内には前記陰題板と接続す
るように軟質導電材をもとに形成した陰極ブスバーを設
け、前記単セルの隣接する枠部材間にシール部を介設し
て燃料電池を構成する。
E9 Means for Solving the Problems In order to achieve the above object, the present invention incorporates an electrolyte object and anode and cathode electrode plates located on both sides of the electrolyte object into a frame member to form a single cell. In a fuel cell in which a plurality of single cells are stacked so that the anode electrode plates and the cathode electrode plates face each other, and a fuel manifold is formed between each of the same electrode plates, The frame member is formed by laminating and firing alumina, and a through hole for an anode bus bar and a through hole for a cathode bus bar are formed in this frame member, and the anode plate is formed in the through hole for the anode bus bar. An anode bus bar made of a soft conductive material is provided to connect with the
A cathode busbar formed from a soft conductive material is provided in the through hole for the cathode busbar so as to be connected to the cathode plate, and a seal portion is interposed between adjacent frame members of the single cell. Configure a fuel cell.

F、作用 枠部材に形成された陽極ブスバー用貫通孔に陽極ブスバ
ーを挿設すると該陽極ブスバーは陽極板と接続されると
共に、同じく前記枠部材に形成された陰極ブスバー用貫
通孔に陰極ブスバーを挿設すると該陰極ブスバーは陰極
板と接続される。したがって棒部材内に設けられた各ブ
スバーを通して電気エネルギーが取り出される。また、
隣接する枠部材間に配設されたシール部材によりガスシ
ール性が確保される。
F. When the anode busbar is inserted into the anode busbar through hole formed in the working frame member, the anode busbar is connected to the anode plate, and the cathode busbar is inserted into the cathode busbar through hole also formed in the frame member. When inserted, the cathode bus bar is connected to the cathode plate. Therefore, electrical energy is extracted through each busbar provided within the rod member. Also,
Gas sealing performance is ensured by the seal member disposed between adjacent frame members.

G、実施例 以下に本発明の実施例を第1図〜第5図を参照しながら
説明する。
G. Examples Examples of the present invention will be described below with reference to FIGS. 1 to 5.

第3図は本発明の各実施例に係る燃料電池本体10の平
面図、第1図は第3図のI−I線断面図、第2図は第3
図の■−■線断面図であって、第4図に本発明の実施例
による燃料電池本体を構成するセルを分解したしのを示
す。
3 is a plan view of the fuel cell main body 10 according to each embodiment of the present invention, FIG. 1 is a sectional view taken along line I-I in FIG. 3, and FIG.
FIG. 4 is a sectional view taken along the line ■-■ in the figure, and shows an exploded view of a cell constituting a fuel cell main body according to an embodiment of the present invention.

第1図〜第5図において11は白金等からなる陰極板(
TL電極板、12は同じく白金等からなる陽極板(電極
板)、13は例えば、イツトリウム。
In FIGS. 1 to 5, 11 is a cathode plate made of platinum or the like (
TL electrode plate, 12 is an anode plate (electrode plate) also made of platinum or the like, and 13 is, for example, yttrium.

カル7ウム等の酸化物をジルコニアに固溶させた安定化
ジルコニアやフッ化ランタン等からなる固体電解質物体
である。これらの陰極板11.陽極板12.固体電解質
物体13は枠部材14内に組み込まれた状態で単セルS
を構成している。陰極板11および陽極板12には各々
金属メツシュ例えばニッケルメツシュ等からなる陰極側
集電体15および陽極側集電体16が設置されている。
It is a solid electrolyte object made of stabilized zirconia, lanthanum fluoride, etc. in which oxides such as calcium 7ium are dissolved in zirconia. These cathode plates 11. Anode plate 12. The solid electrolyte object 13 is assembled into the frame member 14 and the single cell S
It consists of A cathode-side current collector 15 and an anode-side current collector 16 made of metal mesh, such as nickel mesh, are installed on the cathode plate 11 and anode plate 12, respectively.

陰極板11.陽極板12.固体電解質物体13陰極側集
電体15.陽極側集電体16を組み込んだ枠部材14の
互いに対向する隅部17.+8には、第4図に示すよう
に、水素ガス流路用のマニホルド19.20を設け、か
つそれぞれに溝状のチャンネル21.22が設けられ、
陰極板11とマニホルド19.20が連通されている。
Cathode plate 11. Anode plate 12. Solid electrolyte object 13 cathode side current collector 15. Corners 17 facing each other of the frame member 14 incorporating the anode side current collector 16. +8, as shown in FIG. 4, is provided with a manifold 19.20 for a hydrogen gas flow path, and groove-shaped channels 21.22 are provided in each of the manifolds 19.20,
The cathode plate 11 and the manifold 19.20 are in communication.

枠部材14の残りの互いに対向する隅部23,24には
空気流路用のマニホルド25.26が設けられ、かつそ
れぞれに溝状のチャンネル27.28が設けられ、陽極
板12とマニホルド25.26が連通している。
The remaining mutually opposite corners 23, 24 of the frame member 14 are provided with manifolds 25, 26 for air flow paths, and groove-like channels 27, 28 are provided in each case, and the anode plate 12 and the manifold 25, 24 are provided with groove-like channels 27, 28. 26 are in communication.

さらに、枠部材14の一方の辺部14aには、陰極側ブ
スバー用の貫通孔29が設けられ、このブスバー用貫通
孔29には陰極側集電体」5の一部が突出している。ま
た、枠部材14の他方の辺部14bには陽極側ブスバー
用貫通孔30が設けられ、この陽極側ブスバー用貫通孔
30には陽極側集電体16の一部が突出している。
Furthermore, a through hole 29 for a cathode bus bar is provided in one side 14a of the frame member 14, and a part of the cathode current collector 5 projects into this bus bar through hole 29. Further, the other side 14b of the frame member 14 is provided with an anode side bus bar through hole 30, and a part of the anode side current collector 16 protrudes into this anode side bus bar through hole 30.

さらに詳しくは、第1図に示すように、枠部材14は中
空板状のにして円環状の突出部を有する焼成前のアルミ
ナからなる枠板14a、14bと中空枠板14cをガラ
スシール43を介して積層した後に焼成して形成したも
ので、枠板14aと14cの間には負電極板11と集電
板15を配設し、枠板14bと14c間には正電極板1
2と集電板16を配設すると共に、電極板11と12間
には固体電解質物体13を介設して単セルSを構成する
More specifically, as shown in FIG. 1, the frame member 14 is a hollow plate-shaped frame plate 14a, 14b made of unfired alumina having an annular protrusion, and a hollow frame plate 14c is sealed with a glass seal 43. The negative electrode plate 11 and the current collector plate 15 are arranged between the frame plates 14a and 14c, and the positive electrode plate 1 is arranged between the frame plates 14b and 14c.
2 and a current collector plate 16, and a solid electrolyte body 13 is interposed between the electrode plates 11 and 12 to constitute a single cell S.

複数個の単セルSを積層し、これらを端板33a、33
bと、抑え板34a、34bと、ボルト35およびナツ
ト36によって積層固定する。これらの単セルSを積層
固定すると、陰電極板II側同志間に水素ガス用のマニ
ホルド45aか形成され、陽電極板I2側同志には空気
用のマニホルド45bが形成されると共に、陰極ブスバ
ー用の貫通孔39と陽極ブスバー用の貫通孔40が形成
され、これらの貫通孔39.40に導電ペースト。
A plurality of single cells S are stacked and these are connected to end plates 33a, 33.
b, holding plates 34a and 34b, bolts 35 and nuts 36 to stack and fix. When these single cells S are stacked and fixed, a hydrogen gas manifold 45a is formed between the negative electrode plate II side, an air manifold 45b is formed between the positive electrode plate I2 side, and a cathode busbar A through hole 39 and a through hole 40 for an anode bus bar are formed, and conductive paste is applied to these through holes 39 and 40.

アルミダイキャストおよび低温ローH(、例えぼりん銅
ろう、黄銅ろう)等の軟質導電材を圧入し、陰極ブスバ
ー37と陽極ブスバー38を形成する。
A soft conductive material such as aluminum die-casting and low-temperature Ro-H (e.g., phosphorized copper solder, brass solder) is press-fitted to form the cathode bus bar 37 and the anode bus bar 38.

導電ペーストをブスバー用貫通孔39.40に圧入して
ブスバー37.38とする場合、導電ペーストはその融
点以上に温度を上げて液状にして圧入する。そのため、
セルの枠材としては導電ペーストの融点以上の温度及び
圧入時の圧力に対して何ら変形等のない材料が要求され
る。また、圧入時にブスバー用貫通孔39.40以外の
部分に導電ペーストが漏れないように単セル同志をシー
ルしなければならない。
When the conductive paste is press-fitted into the busbar through-holes 39.40 to form the busbars 37.38, the conductive paste is heated to a temperature higher than its melting point and liquefied before being press-fitted. Therefore,
The frame material of the cell is required to be a material that does not undergo any deformation at a temperature higher than the melting point of the conductive paste and under pressure during press-fitting. In addition, the single cells must be sealed together so that the conductive paste does not leak into areas other than the busbar through holes 39 and 40 during press-fitting.

これらの性能を満足する枠材としては、アルミナ(AQ
zOs)、ジルコニア、ムライト、マグネシア等の酸化
物系のセラミックスを用いる。また、セルを積層する場
合のシール手段としては枠部材に形成された凹部3 ]
、 aと凸部31bを嵌め合わせてシール部32を形成
する。
Alumina (AQ) is a frame material that satisfies these performances.
Oxide ceramics such as zOs), zirconia, mullite, and magnesia are used. In addition, the recess 3 formed in the frame member is used as a sealing means when stacking cells.
, a and the convex portion 31b are fitted together to form a seal portion 32.

さらに、単セルS同志を積層固定すると、第2図に示す
ように、水素ガス流通路41と空気(02)流通路42
が形成される。水素ガス流通路4!はチャンネル2Iと
連通し、空気流通路42はチャンネル22と連通してい
る。
Furthermore, when the single cells S are stacked and fixed together, as shown in FIG.
is formed. Hydrogen gas flow path 4! communicates with channel 2I, and air flow passage 42 communicates with channel 22.

単セル同志のシール本来の目的は、燃料、酸化剤等のガ
スリークを防止するためのガスシールであり、このシー
ルにより導電ペースト圧入時にも漏れの心配がない。
The original purpose of the seal between single cells is to prevent gas leaks such as fuel and oxidizer, and this seal eliminates the risk of leakage even when the conductive paste is press-fitted.

上述のように構成された燃料電池本体10において、単
セルSは枠部材14に形成されている凹部31aと、こ
の単セルSに隣接するセルに形成された凸部31bを嵌
め合わせることによってシール部32が形成され、ガス
シール性を保持している。単セルSを複数個積層した燃
料電池本体IOにおいて、水素ガス(H7)は矢印Aの
ように互いに通じ合っている水素ガス流路用マニホルド
19.20へ供給され、チャンネル21.22を経て陽
極板11へ供給される。また、供給された水素ガスは固
体電解質物体13を通して酸素と反応し、反応物である
水は水素ガス流通路41を通して外部へ排出される。空
気は矢印Bのように互いに通じ合っている空気流路用マ
ニホルド25゜26へ供給され、チャンネル27.28
を経て陽極板12に供給される。この場合の反応生成式
と陽極反応はL(t+ 2 e −→HzO+ 2 e
−である。
In the fuel cell main body 10 configured as described above, the single cell S is sealed by fitting the recess 31a formed in the frame member 14 with the protrusion 31b formed on the cell adjacent to the single cell S. A portion 32 is formed to maintain gas sealing properties. In the fuel cell main body IO in which a plurality of single cells S are stacked, hydrogen gas (H7) is supplied to manifolds 19.20 for hydrogen gas flow paths that communicate with each other as shown by arrow A, and passes through channels 21.22 to the anode. It is supplied to the plate 11. Further, the supplied hydrogen gas reacts with oxygen through the solid electrolyte body 13, and water, which is a reactant, is discharged to the outside through the hydrogen gas flow path 41. Air is supplied to the air flow manifolds 25° 26 which communicate with each other as shown by arrow B, and through the channels 27, 28.
It is supplied to the anode plate 12 through. The reaction formation formula and anode reaction in this case are L(t+ 2 e −→HzO+ 2 e
− is.

導電ペースト、アルミダイキャストおよび低温ロー材等
の軟質導電材は第1図、第4図に示す矢印Cのように各
々互いに通じ合っている陰極側ブスバー用マニホルド2
9に圧入され、各セルの陰極側集電体15と接合される
。同様に軟質導電参オは矢印りのように各々通じ合って
いる陽極側ブスバー用マニホルド30に圧入され、各セ
ルの陽極側集電体16と接合されると共に、それぞれ接
続端子44a、44bに接続される。
Soft conductive materials such as conductive paste, aluminum die-casting, and low-temperature brazing materials are connected to the cathode-side busbar manifold 2, which communicate with each other as shown by arrows C in FIGS. 1 and 4.
9 and joined to the cathode side current collector 15 of each cell. Similarly, the soft conductive wires are press-fitted into the anode-side busbar manifolds 30 that communicate with each other as shown by the arrows, and are joined to the anode-side current collectors 16 of each cell, and connected to the connection terminals 44a and 44b, respectively. be done.

このような構成で積層されたモノニール電池は、電気的
には単セルを並列接続した構成となっている。このよう
なモジュールを電気的に直列に接続することによって所
定の電圧を発生させることができる。
A monoyl battery stacked in such a configuration has a configuration in which single cells are electrically connected in parallel. A predetermined voltage can be generated by electrically connecting such modules in series.

上述の如き本発明の第1実施例に係る燃料電池によれば
、次の如き利点がある。
The fuel cell according to the first embodiment of the present invention as described above has the following advantages.

(a)単セルを複数個直列に積層した燃料電池において
、ガス供給用マニホルドばかりでなく、集電体で集電さ
れた電気エネルギーを取り出すブスバーをセルの枠内に
内設したので燃料電池全体をコンパクトにできる。
(a) In a fuel cell in which multiple single cells are stacked in series, not only the gas supply manifold but also a busbar for taking out the electrical energy collected by the current collector is installed inside the cell frame, so the whole fuel cell can be made compact.

(b)枠板をアルミナ材等の酸化物系のセラミックスと
したので、耐熱サイクル性、耐絶縁性、耐酸化還元性を
満足する枠材とすることができる。
(b) Since the frame plate is made of oxide-based ceramics such as alumina material, it is possible to obtain a frame material that satisfies heat cycle resistance, insulation resistance, and oxidation-reduction resistance.

(c)単セル同志の積層は、枠(オの四部とこれに隣接
するセル上の凸部で嵌め合わ仕ガスノール性が向上した
(c) When the single cells are stacked together, the four parts of the frame (E) and the convex parts on the adjacent cells fit together, resulting in improved gas flow properties.

(d)ブスバーは導電ペースト1アルミナダイカスト、
低温ロー材等を圧入して形成しているため、セルの枠内
に内設することができる。
(d) Busbar is conductive paste 1 alumina die-casting,
Since it is formed by press-fitting low-temperature brazing material or the like, it can be installed inside the cell frame.

(e)ブスバーを単セル内に形成しているため、複数個
の単セルをスタックするときの組み付は作業が簡単にで
きる。
(e) Since the bus bar is formed within the single cell, assembly work when stacking a plurality of single cells can be done easily.

上記実施例では枠部材!4の材質をアルミナ(All!
203)とし、ブスバー37.38の材質を導電ペース
トとし、シール部32を凹凸嵌合としたものであるが、
本発明においては、これらの材質又はシール部32とし
て以下に述べる様な種々の組み合わせによる他の種々な
変形例か考えられる。
In the above example, the frame member! The material of step 4 is alumina (All!
203), the material of the busbars 37 and 38 is conductive paste, and the seal portion 32 is a convex-concave fitting.
In the present invention, various other modifications can be considered using various combinations of these materials or the seal portion 32 as described below.

すなわちシール部32を、第5図(B)に示すように、
枠部材14の枠板14aと14bに凹部31a又は凸部
31bを形成し、これらの四部3Iaと凸部31bをグ
リーンソート31c状態、すなわち焼成曲の状態で嵌め
合わせ、その後焼成することによってノール部32を構
成し、ガスシール性を保持している。したがって、単セ
ル同志の積層は、グリーンシート状態31(?の枠部材
の凹部とこれに隣接する単セル上の凸部で嵌め合わせそ
の後焼成するのでガスリークのない緻密なシール性が得
られる。
That is, as shown in FIG. 5(B), the seal portion 32 is
A concave portion 31a or a convex portion 31b is formed in the frame plates 14a and 14b of the frame member 14, and these four portions 3Ia and convex portions 31b are fitted in a green sort 31c state, that is, a firing curved state, and then fired to form a knoll portion. 32 and maintains gas sealing properties. Therefore, since the single cells are stacked together by fitting the concave part of the frame member in the green sheet state 31 (?) with the convex part on the adjacent single cell and then firing, a precise sealing property without gas leakage can be obtained.

第5図(C)に示すように枠部材14の枠板14aと1
4bに夫々対向する凹部を形成し、枠板142Lと14
bを重ね合わせて形成される溝内に銅製パツキン31d
を挿入してシール部32が構成する。したがって、単セ
ル同志の積層は、枠部材の凹部31aとこれに隣接する
セル上の凹部31aとを銅製パツキン31clを介して
シールしているので、ガスシール性が向上する。
As shown in FIG. 5(C), the frame plates 14a and 1 of the frame member 14 are
4b are formed with opposing recesses, and the frame plates 142L and 14
A copper gasket 31d is placed in the groove formed by overlapping b.
The seal portion 32 is formed by inserting the . Therefore, since the stacking of single cells seals the recess 31a of the frame member and the recess 31a on the adjacent cell through the copper packing 31cl, gas sealing performance is improved.

また、第5図(D)に示すように、接合材としてのガラ
スセメント31eを粘液状で塗布、あるいはスクリーン
印すリし、ガラスセメント31eが固化する温度まで昇
温しで接合する手段によって構成する。
Further, as shown in FIG. 5(D), the glass cement 31e as a bonding material is applied in the form of a slimy liquid or is printed on a screen, and the bonding is performed by raising the temperature to a temperature at which the glass cement 31e solidifies. do.

この場合、例えば100°C/h (時間)の昇温スピ
ードで600℃まで温度を上げ、この温度で1時間保持
した後、50°C/hのスピードで室温まで降温するこ
とによって得られる。また、ノール部32は枠板14a
、14bのうち一方に凹部を、他方の凸部を形成し、こ
れらを嵌合し、かつガラスセメントで接合するようにし
ても良い。このように、ガラスセメントを枠板の接合面
に塗布あるいはスクリーン印刷し、ガラスセメントを接
合材として接合するので、ガスシール性が向上する。
In this case, the temperature can be obtained by raising the temperature to 600°C at a heating rate of 100°C/h (hour), maintaining this temperature for 1 hour, and then lowering the temperature to room temperature at a rate of 50°C/h. Further, the knoll portion 32 is connected to the frame plate 14a.
, 14b, a concave portion may be formed on one side, and a convex portion may be formed on the other side, and these may be fitted and bonded with glass cement. In this way, glass cement is coated or screen printed on the joining surfaces of the frame plates, and the glass cement is used as a joining material, so that gas sealing properties are improved.

さらに、枠部材14の材質をジルコニア材とし、ブスバ
ー37.38の材質を導電ペーストとし、シール部32
を凹部31aと凸部31bをグリーンシート状態、すな
わち焼成前の状態で嵌め合わせて積層し、その後焼成し
たものとする。
Further, the frame member 14 is made of zirconia material, the bus bars 37 and 38 are made of conductive paste, and the seal portion 32 is made of a conductive paste.
The concave portion 31a and the convex portion 31b are fitted and laminated in a green sheet state, that is, in a state before firing, and then fired.

また、第5図(C)に示すようにシール部32を枠部材
14における枠板14aに形成した凹部31aと枠板1
4bに形成した凹部31aと銅製パツキン31dとする
Further, as shown in FIG. 5(C), a seal portion 32 is formed in a recess 31a in a frame plate 14a of a frame member 14 and a frame plate 1.
4b and a copper gasket 31d.

さらにまた、第5図(D)に示すように、ノール部32
を枠板14aと14bの接合面にガラスセメント31e
を塗布、あるいはスクリーン印刷し、ガラスセメントを
接合材として接合する手段によってシール部32を構成
する。
Furthermore, as shown in FIG. 5(D), the knoll portion 32
Glass cement 31e is applied to the joint surface of frame plates 14a and 14b.
The seal portion 32 is formed by coating or screen printing and bonding using glass cement as a bonding material.

H、発明の効果 本発明は以上の如くであって、枠部(オに陽極側ブスバ
ー用の貫通孔と陰極ブスバー用の貫通孔を形成し、陽極
側ブスバー用の貫通孔内には陽極板と接合するブスバー
を挿設すると共に、陰極側ブスバー用の貫通孔内には陰
極板と接合するブスバーを挿設したから、ブスバーが積
層体の外側でスペースを取ることがなく、全体をコンパ
クトにすることができる。しかも、複数の単セルをスタ
ックするとき、集電体とブスバーとの煩雑な接続作業が
不要であり、製作容易にして小型化が可能な燃料電池を
得ることができる。
H. Effects of the Invention The present invention is as described above, and a through hole for an anode side bus bar and a through hole for a cathode bus bar are formed in the frame part (O), and an anode plate is formed in the through hole for an anode side bus bar. In addition to inserting a bus bar that connects to the cathode plate, we also inserted a bus bar that connects to the cathode plate into the through hole for the cathode side bus bar, so the bus bar does not take up space outside the laminate, making the overall structure compact. Furthermore, when stacking a plurality of single cells, there is no need for complicated connection work between the current collector and the bus bar, and a fuel cell that is easy to manufacture and can be miniaturized can be obtained.

さらに本発明によれば、単セルの枠部材の材質を焼成前
のアルミナを積層した後に焼成して枠部材を形成し、ブ
スバーの材質を軟質導電材とし、シール部として凹凸嵌
合、グリーンシート焼成銅製パツキンおよびカラスセメ
ントを用いたから、燃料電池における諸要件を充分に満
たす高信頼性の積層型燃料電池を得ることができるもの
である。
Further, according to the present invention, the frame member of the single cell is formed by laminating unfired alumina and then firing to form the frame member, the bus bar is made of a soft conductive material, and the sealing part is formed by using a green sheet with uneven fitting. Since the fired copper packing and crow cement are used, a highly reliable stacked fuel cell that fully satisfies various requirements for fuel cells can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による積層型燃料電池を示した
もので第3図のI−1線断面図、第2図は第3図の■−
■線断面図、第3図は本発明の実施例による燃料電池の
平面図、第4図は単セル群の斜視図、第5図(A)〜(
D)はシール部の変形例を示す拡大図、第6図は燃料電
池の構成原理図である。 11・・・陰電極、12・・陽電極、13・・・電解質
物体、+ 4 ・=枠部材、l 4 a〜l 4 c−
枠板、15゜16・・・集電板、19.20・・・水素
ガス流路用のマニホルド、25.26・・・空気流路用
の貫通孔、29.30・・・ブスバー用の貫通孔、31
a・・・凸部、31b・凹部、31c=グリーンノート
、31d銅製パツキン、31e・・・ガラスセメント、
37・・・陰極側のブスバー 38・・・陽極側のブス
バー40.41・・・ブスバー挿設用孔、42.43・
・・ガス流通路。 第1図 実施例の燃料電池 第3図 平面図 +1−陰電極 12−陰電極 3 電解質物体 14 枠部材 43〜+4b  枠板 5.16・集電板 19.20・・水素ガス用貫通孔 25.26  ・空気通路用貫通孔 29.30・・ブスバー用貫通孔 31a−凸部 31b・・凹部 32− ノール部 37・陰極ブスバー 38・・陽極ブスバー 5a、45b・燃料用マニホールド 第5図 (A) (B) (C) (D) 第6図 積層型燃料電池の原理図
FIG. 1 shows a stacked fuel cell according to an embodiment of the present invention, and is a sectional view taken along line I-1 in FIG. 3, and FIG.
3 is a plan view of a fuel cell according to an embodiment of the present invention, FIG. 4 is a perspective view of a single cell group, and FIGS.
D) is an enlarged view showing a modified example of the seal portion, and FIG. 6 is a diagram showing the basic structure of the fuel cell. DESCRIPTION OF SYMBOLS 11... Negative electrode, 12... Positive electrode, 13... Electrolyte object, +4 .=Frame member, l4a-l4c-
Frame plate, 15° 16...Current plate, 19.20...Manifold for hydrogen gas flow path, 25.26...Through hole for air flow path, 29.30...For bus bar Through hole, 31
a...Convex portion, 31b/Concave portion, 31c=Green notebook, 31d Copper packing, 31e...Glass cement,
37...Busbar on cathode side 38...Busbar on anode side 40.41...Busbar insertion hole, 42.43.
...Gas flow path. FIG. 1 Fuel cell according to the embodiment FIG. 3 Plan view +1 - cathode 12 - cathode 3 Electrolyte body 14 Frame members 43 to +4b Frame plate 5.16, current collector plate 19.20, hydrogen gas through hole 25 .26 - Air passage through hole 29.30...Busbar penetration hole 31a - Convex part 31b - Concave part 32- Knoll part 37 - Cathode busbar 38 - Anode busbar 5a, 45b - Fuel manifold Fig. 5 (A ) (B) (C) (D) Figure 6 Principle diagram of stacked fuel cell

Claims (1)

【特許請求の範囲】[Claims] (1)枠部材に電解質物体とこの電解質物体の両側に位
置する陽極と陰極の電極板を組み込んで単セルを構成し
、この単セルの複数個を陽極の電極板同志および陰極の
電極板同志が各々対向すると共に、これらの各同極の電
極板間にそれぞれ燃料用マニホルドを形成するように積
層した燃料電池において、焼成前のアルミナを積層した
後に焼成したものにより前記枠部材形成し、この枠部材
に陽極ブスバー用の貫通孔と陰極ブスバー用の貫通孔を
形成し、前記陽極ブスバー用の貫通孔内には前記陽極板
と接続するように軟質導電材をもとに形成した陽極ブス
バーを設けると共に、前記陰極ブスバー用の貫通孔内に
は前記陰極板と接続するように軟質導電材をもとに形成
した陰極ブスバーを設け、前記単セルの隣接する枠部材
間にシール部を介設して構成したことを特徴とする積層
型燃料電池。
(1) A single cell is constructed by incorporating an electrolyte object and anode and cathode electrode plates located on both sides of the electrolyte object into a frame member, and a plurality of these single cells are connected to each other between the anode electrode plates and the cathode electrode plates. In a fuel cell stacked so as to face each other and to form fuel manifolds between electrode plates of the same polarity, the frame member is formed by laminating unfired alumina and then firing it. A through hole for an anode bus bar and a through hole for a cathode bus bar are formed in the frame member, and an anode bus bar formed from a soft conductive material is formed in the through hole for the anode bus bar so as to be connected to the anode plate. At the same time, a cathode busbar formed from a soft conductive material is provided in the through hole for the cathode busbar so as to be connected to the cathode plate, and a seal portion is interposed between adjacent frame members of the single cell. A stacked fuel cell characterized by being configured as follows.
JP63209853A 1988-08-24 1988-08-24 Stacked fuel cell Pending JPH0260062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209853A JPH0260062A (en) 1988-08-24 1988-08-24 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209853A JPH0260062A (en) 1988-08-24 1988-08-24 Stacked fuel cell

Publications (1)

Publication Number Publication Date
JPH0260062A true JPH0260062A (en) 1990-02-28

Family

ID=16579705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209853A Pending JPH0260062A (en) 1988-08-24 1988-08-24 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JPH0260062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122268B2 (en) 2001-04-23 2006-10-17 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
JP2010257779A (en) * 2009-04-24 2010-11-11 Ngk Spark Plug Co Ltd Solid oxide fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122268B2 (en) 2001-04-23 2006-10-17 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
US8323845B2 (en) 2001-04-23 2012-12-04 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
JP2010257779A (en) * 2009-04-24 2010-11-11 Ngk Spark Plug Co Ltd Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US4476196A (en) Solid oxide fuel cell having monolithic cross flow core and manifolding
US4761349A (en) Solid oxide fuel cell with monolithic core
US4510212A (en) Solid oxide fuel cell having compound cross flow gas patterns
EP1966850A2 (en) Solid oxide fuel cell and stack configuration
US20080286630A1 (en) Electrochemical Cell Holder and Stack
CA2618131A1 (en) Solid oxide fuel cell stack for portable power generation
KR20170103006A (en) Fuel cell stack
JP5101775B2 (en) Unit solid oxide fuel cell
JPH0260063A (en) Stacked fuel cell
JPH0260062A (en) Stacked fuel cell
JP2002270200A (en) Gas separator for solid electrolyte type fuel cell, members thereof, and stack unit using the same, and solid electrolyte type fuel cell stack
JPH0246661A (en) Stacked fuel cell
JPH0246659A (en) Stacked fuel cell
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPS5998473A (en) Molten carbonate type fuel cell
JPH0246660A (en) Stacked fuel cell
JPH0412468A (en) High-temperature fuel cell
JPH0246658A (en) Fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JPH09147884A (en) Flat solid electrolyte fuel cell
JPH0850911A (en) Platelike solid electrolytic fuel cell
JPH056774A (en) Solid electrolyte type fuel cell
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell