JPH0246661A - Stacked fuel cell - Google Patents

Stacked fuel cell

Info

Publication number
JPH0246661A
JPH0246661A JP63195604A JP19560488A JPH0246661A JP H0246661 A JPH0246661 A JP H0246661A JP 63195604 A JP63195604 A JP 63195604A JP 19560488 A JP19560488 A JP 19560488A JP H0246661 A JPH0246661 A JP H0246661A
Authority
JP
Japan
Prior art keywords
bus bar
anode
cathode
fuel cell
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63195604A
Other languages
Japanese (ja)
Inventor
Kazuo Fushimi
伏見 和夫
Tatsuya Hirasawa
平澤 達也
Masaaki Einaga
永長 正顕
Kaoru Kitakizaki
薫 北寄崎
Toshinori Fujii
藤井 利宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63195604A priority Critical patent/JPH0246661A/en
Publication of JPH0246661A publication Critical patent/JPH0246661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make manufacture easy and to make a fuel cell compact by inserting a cathode bus bar made of low temperature solder for connecting cathode plates into a through for the cathode bus bar, and inserting an anode bus bar made of low temperature solder for connecting anode plates into a through hole for the anode bus bar. CONSTITUTION:A through hole for a cathode bus bar 38 and a through hole for an anode bus bar 37 are installed in frames 14 made of heat resistant insulator. A bus bar 38 made of low temperature solder is inserted into the through hole for the cathode bus bar 38 to connect cathode plates 12. An anode bus bar 37 made of low temperature solder is inserted into the through hole for the anode bus bar 37 to connect anode plates 11. A sealing member 32 is arranged between adjacent frames 14 of unit cells. Electric energy is taken out through the bus bars 37, 38. Gas sealing capability is ensured with the sealing member 32. Manufacture of a fuel cell is made easy and its size is made compact.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は積層型の燃料電池に関するものである。[Detailed description of the invention] A. Industrial application field The present invention relates to a stacked fuel cell.

B 発明の概要 本発明は、枠部材に電解質物体とこの電解質物体の両側
に位置する陽極と陰極の電極板を組み込み、この単セル
の複数個を各同極の電極板同志が各々対向すると共に、
各同極の電極板間にそれぞれ燃料用のマニホルドを形成
するように積層したものにおいて、 前記枠部材に陽極導体用および陰極導体用の貫通孔を形
成し、これらの貫通孔内に導体を設け、それぞれ陽極導
体と陽極電極および陰極導体と陰極電極を接続すると共
に隣接する枠部材間にシール部を設けることにより、 製作容易にして小型化でき、かつ安全性に優れた燃料電
池を得る。
B. Summary of the Invention The present invention incorporates an electrolyte object and anode and cathode electrode plates located on both sides of the electrolyte object into a frame member, and a plurality of single cells are arranged so that the electrode plates of the same polarity face each other and ,
In a structure in which electrode plates of the same polarity are stacked to form fuel manifolds, through holes for an anode conductor and a cathode conductor are formed in the frame member, and conductors are provided in these through holes. By connecting the anode conductor and the anode electrode, and the cathode conductor and the cathode electrode, respectively, and providing a sealing portion between adjacent frame members, a fuel cell that is easy to manufacture, miniaturized, and excellent in safety is obtained.

C1従来の技術 燃料電池本体は、固体電解質の両側に陽極と陰極の電極
板を配置して単位電池(単セル)を構成し、この単セル
を複数個直列に積層して構成されている。この単セルを
陽極電極同志と陰極電極板同志が対向するように複数個
配置したセルに対して、陰極板側に燃料として水素ガス
(水素)を供給し、陽極板側に酸化剤として、空気(酸
素)を供給して水素を酸素と反応させて電気を生じさせ
ると共に、水を生成させている。
C1 Prior Art A fuel cell main body is constructed by arranging anode and cathode electrode plates on both sides of a solid electrolyte to constitute a unit cell (single cell), and a plurality of these single cells are stacked in series. A plurality of these single cells are arranged so that the anode electrodes and the cathode electrode plates face each other. Hydrogen gas (hydrogen) is supplied as a fuel to the cathode plate side, and air is supplied as an oxidant to the anode plate side. (oxygen) is supplied to cause hydrogen to react with oxygen to generate electricity and water.

すなわち、燃料電池本体10は、第5図に示すように、
複数個の単位電池(単セルS)と、これらの単セルSを
直列に積層固定する抑え板1aIbと、積層固定した電
池本体lOの各単セルSの陰極板側に水素ガスH,を供
給する水素ガス供給用マニホルド2と、陽極板側に空気
を供給する空気供給用マニホルド3と、各単セルSの陽
極板および陰極板からそれぞれ電気を取り出す集電リー
ド4および5によって構成されている。
That is, the fuel cell main body 10, as shown in FIG.
Hydrogen gas H is supplied to the cathode plate side of each unit cell S of a plurality of unit batteries (single cells S), a restraining plate 1aIb that stacks and fixes these unit cells S in series, and the stacked and fixed battery body lO. It consists of a hydrogen gas supply manifold 2, an air supply manifold 3 that supplies air to the anode plate side, and current collection leads 4 and 5 that extract electricity from the anode plate and cathode plate of each single cell S, respectively. .

この様な積層型燃料電池においては、ガス供給用のマニ
ホルド2.3は、電池本体lOの外側に付設されている
。また、供給された水素ガスと空気が電解質を介して反
応を行うことによって水と電気エネルギーが発生し、こ
の発生した電気エネルギーを外部に取り出す集電リード
(ブスバー)4.5も、セルの外側に付設されている。
In such a stacked fuel cell, the gas supply manifold 2.3 is attached to the outside of the cell main body IO. In addition, water and electrical energy are generated by the reaction between the supplied hydrogen gas and air via the electrolyte, and the current collector lead (busbar) 4.5 that takes out the generated electrical energy is also placed outside the cell. attached to.

D1発明が解決しようとする課題 従来の積層型燃料電池においては、第1の課題として、
マニホルドやブスバーがセルの外側に付設されていたた
め、燃料電池自体の全体構造が大型となり、また複数個
の単セルを積層するときの作業か煩雑であった。
D1 Problems to be solved by the invention In the conventional stacked fuel cell, the first problem is as follows.
Because the manifold and bus bar were attached to the outside of the cell, the overall structure of the fuel cell itself became large, and the work required to stack multiple single cells was complicated.

しかるに、ガス供給用のマニホルドをセル枠内に内設し
、セルの全体構造をその分だけ小型化することは、特開
昭62−17781号公報において提案されている。し
かし、集電体で集電した電気エネルギーを外部に取り出
すブスバーをセルの枠内に内設することは、集電体とブ
スバーとの接続が煩雑になるため、今まで行われていな
かった。
However, it has been proposed in Japanese Patent Application Laid-Open No. 17781/1981 to provide a gas supply manifold inside the cell frame and thereby reduce the overall structure of the cell. However, installing a busbar inside the cell frame for extracting the electrical energy collected by the current collector to the outside has not been done until now because the connection between the current collector and the busbar becomes complicated.

積層型燃料電池における第2の課題として、セル外周部
の絶縁枠板は、(1)熱サイクルに耐えること、(2)
電解質との界面のガスシール性、(3)絶縁性、および
酸化還元反応に強い等の性能を満たす材料にしなければ
ならない。
The second issue with stacked fuel cells is that the insulating frame plate around the cell periphery must (1) withstand thermal cycles; (2)
The material must satisfy properties such as gas sealing properties at the interface with the electrolyte, (3) insulation properties, and resistance to redox reactions.

第3の課題としては、電解質の両側に陰極と陽極の電極
板を配し、陰極側に水素ガスを供給し、陽極側に空気を
供給しているので、電池内外における反応ガスの漏れを
防止することが重要である。
The third issue is that the cathode and anode electrode plates are arranged on both sides of the electrolyte, hydrogen gas is supplied to the cathode side, and air is supplied to the anode side, which prevents leakage of reaction gases inside and outside the battery. It is important to.

すなわち、ガス漏れが起こると、燃料電池の発電効率の
低下を生じさせるばかりでなく、爆発等の大災害につな
がるので、ガス漏れを防止するために、単セル同志の積
層には充分な注意が払われなければならない。
In other words, if a gas leak occurs, it will not only reduce the power generation efficiency of the fuel cell, but also lead to a major disaster such as an explosion, so to prevent gas leaks, sufficient care must be taken when stacking single cells together. must be paid.

本発明は上記従来の問題点に鑑みてなされたものでその
目的は、積層型燃料電池において、単セルの枠部社内に
ブスバー用の貫通孔を内設し、単セルを積層した後に各
セルの集電体と接合するブスバーを挿設すると共に、隣
接する各セルの枠部材間に育効なシール部を形成するこ
とにより、製作容易にして小型化が可能な積層型燃料電
池を提供することである。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a through hole for a bus bar inside the frame of a single cell in a stacked fuel cell, and after stacking the single cells, each cell To provide a stacked fuel cell that can be manufactured easily and miniaturized by inserting a bus bar that connects to a current collector and forming an effective seal between frame members of adjacent cells. That's true.

86課題を解決するための手段 本発明は、上記目的を達成するために、枠部材に電解質
物体とこの電解質物体の両側に位置する陽極と陰極の電
極板を組み込んで単セルを構成し、この単セルの複数個
を直列に積層した燃料電池において、前記単セルの枠部
材が耐熱性の絶縁物からなり、該枠部材に陽極ブスバー
用の貫通孔と陰極ブスバー用の貫通孔を形成し、面記陽
極ブスバー用の貫通孔内には前記陽極板と接続するよう
に低温ロー材ブスバーを挿設すると共に、前記陰極ブス
バー用の貫通孔内には前記陰極板と接続する低温ロー材
からなる陰極ブスバーを挿設し、かつ前記単セルの隣接
する枠部材間にシール部を介設して積層型燃料電池を構
成する。
86 Means for Solving the Problems In order to achieve the above object, the present invention incorporates an electrolyte object and anode and cathode electrode plates located on both sides of the electrolyte object into a frame member to constitute a single cell. In a fuel cell in which a plurality of single cells are stacked in series, the frame member of the single cell is made of a heat-resistant insulator, and a through hole for an anode bus bar and a through hole for a cathode bus bar are formed in the frame member, A low-temperature brazing material busbar is inserted into the through-hole for the surface anode busbar so as to connect with the anode plate, and a low-temperature brazing material busbar is inserted into the through-hole for the cathode busbar to connect with the cathode plate. A stacked fuel cell is constructed by inserting a cathode bus bar and interposing a seal portion between adjacent frame members of the single cells.

F1作用 枠部材に形成された陽極ブスバー用貫通孔に陽極ブスバ
ーを挿設すると該陽極ブスバーは陽極板と接続されると
共に、同じく前記枠部材に形成された陰極ブスバー用貫
通孔に陰極ブスバーを挿設すると該陰極ブスバーは陰極
板と接続される。したがって枠部社内に設けられた各ブ
スバーを通して電気エネルギーが取り出される。また、
隣接する枠部材間に配設されたシール部材によりガスシ
ール性が確保される。
When the anode busbar is inserted into the anode busbar through-hole formed in the F1 action frame member, the anode busbar is connected to the anode plate, and the cathode busbar is also inserted into the cathode busbar through-hole formed in the frame member. When installed, the cathode bus bar is connected to the cathode plate. Therefore, electrical energy is taken out through each busbar provided within the frame. Also,
Gas sealing performance is ensured by the seal member disposed between adjacent frame members.

G、実施例 以下に本発明の実施例を第1図〜第4図を参照しながら
説明する。
G. Examples Examples of the present invention will be described below with reference to FIGS. 1 to 4.

第3図は本発明の各実施例に係る燃料電池本体10の平
面図、第1図は第3図のI−I線断面図、第2図は第3
図の■−■線断面図であって、第5図に本発明の実施例
による燃料電池本体を構成するセルを分解したものを示
す。
3 is a plan view of the fuel cell main body 10 according to each embodiment of the present invention, FIG. 1 is a sectional view taken along line I-I in FIG. 3, and FIG.
FIG. 5 is a sectional view taken along the line ■-■ in the figure, and shows an exploded view of a cell constituting a fuel cell main body according to an embodiment of the present invention.

[第1実施例] 第1図〜第5図において11は白金等からなる陰極板(
電極板)、!2は同じく白金等からなる陽極板(電極板
)、13は例えば、イツトリウムカルシウム等の酸化物
をジルコニアに固溶させた安定化ジルコニアやフッ化ラ
ンタン等からなる固体電解質物体である。これらの陰極
板11.陽極板12.固体電解質物体13は枠部材14
内に組み込まれた状態で単セルSを構成している。陰極
板11および陽極板12には各々金属メツシュ例えばニ
ッケルメツシュ等からなる陰極側集電体15および陽極
側集電体16が設置されている。
[First Example] In FIGS. 1 to 5, 11 is a cathode plate (made of platinum, etc.).
electrode plate),! 2 is an anode plate (electrode plate) also made of platinum or the like, and 13 is a solid electrolyte object made of, for example, stabilized zirconia in which an oxide such as yttrium calcium is dissolved in zirconia, lanthanum fluoride, or the like. These cathode plates 11. Anode plate 12. The solid electrolyte object 13 is a frame member 14
A single cell S is configured by being incorporated into the inside. A cathode-side current collector 15 and an anode-side current collector 16 made of metal mesh, such as nickel mesh, are installed on the cathode plate 11 and anode plate 12, respectively.

陰極板11.陽極板12.固体電解質13.陰極側集電
体15.陽極側集電体16を組み込んだ枠部材14の互
いに対向する隅部17,18には、第4図に示すように
、水素ガス流路用のマニホルド19.20を設け、かつ
それぞれに溝状のチャンネル21.22が設けられ、陰
極板!■とマニホルド19.20が連通されている。枠
部材14の残りの互いに対向する隅部23,24には空
気流路用のマニホルド25.26が設けられ、かつそれ
ぞれに溝状のチャンネル27.28が設けられ、陽極板
12とマニホルド25.26が連通している。
Cathode plate 11. Anode plate 12. Solid electrolyte 13. Cathode side current collector 15. As shown in FIG. 4, manifolds 19 and 20 for hydrogen gas flow paths are provided at mutually opposing corners 17 and 18 of the frame member 14 incorporating the anode side current collector 16, and groove-shaped grooves are provided in each of the manifolds 19 and 20 for hydrogen gas flow paths. Channels 21 and 22 are provided, and the cathode plate! ■ and manifolds 19 and 20 are in communication. The remaining mutually opposite corners 23, 24 of the frame member 14 are provided with manifolds 25, 26 for air flow paths, and groove-like channels 27, 28 are provided in each case, and the anode plate 12 and the manifold 25, 24 are provided with groove-like channels 27, 28. 26 are in communication.

さらに、枠部材14の一方の辺部14aには、陰極側ブ
スバー用の貫通孔29が設けられ、このブスバー用貫通
孔29には陰極側集電体重5の一部が突出している。ま
た、枠部材14の他方の辺部14bには陽極側ブスバー
用貫通孔30が設けられ、この陽極側ブスバー用貫通孔
30には陽極側集電体16の一部が突出している。
Furthermore, a through hole 29 for a cathode bus bar is provided in one side 14a of the frame member 14, and a part of the cathode current collector weight 5 projects into this bus bar through hole 29. Further, the other side 14b of the frame member 14 is provided with an anode side bus bar through hole 30, and a part of the anode side current collector 16 protrudes into this anode side bus bar through hole 30.

さらに詳しくは、第1図に示すように、枠部材14は中
空円板状のにして円環状の突出部を有する枠板14a、
14bと中空枠板14cをガラスシール43を介して重
ね合わせて形成したもので、枠板14aと14cの間に
は負電極板11と集電板15を配設し、枠板14bと1
4c間には正電極板12と集電板16を配設すると共に
、電極板11と12間には固体電解質物体13を介設し
て単セルSを構成する。
More specifically, as shown in FIG. 1, the frame member 14 includes a frame plate 14a having a hollow disc shape and an annular protrusion;
14b and a hollow frame plate 14c are stacked together with a glass seal 43 interposed therebetween.A negative electrode plate 11 and a current collector plate 15 are arranged between the frame plates 14a and 14c, and the frame plates 14b and 14c are stacked together.
A positive electrode plate 12 and a current collector plate 16 are disposed between the electrode plates 11 and 12, and a solid electrolyte body 13 is interposed between the electrode plates 11 and 12 to form a single cell S.

複数個の単セルSを積層し、これらを端板33a、33
bと、抑え板34a、34bと、ボルト35およびナツ
ト36によって積層固定する。これらの単セルSを積層
固定すると、陰電極板11側同志間に水素ガス用のマニ
ホルド45aが形成され、陽電極板12側同志には空気
用のマニホルド45bが形成されると共に、陰極ブスバ
ー用の貫通孔39と陽極ブスバー用の貫通孔40が形成
され、これらの貫通孔39.40に導電ペーストを圧入
し、陰極ブスバー37と陽極ブスバー38を形成する。
A plurality of single cells S are stacked and these are connected to end plates 33a, 33.
b, holding plates 34a and 34b, bolts 35 and nuts 36 to stack and fix. When these single cells S are stacked and fixed, a manifold 45a for hydrogen gas is formed between the cells on the negative electrode plate 11 side, and a manifold 45b for air is formed on the side of the positive electrode plate 12. A through hole 39 and a through hole 40 for an anode bus bar are formed, and conductive paste is press-fitted into these through holes 39 and 40 to form a cathode bus bar 37 and an anode bus bar 38.

低温ロー材(たとえばりん銅ろう。Low-temperature brazing materials (e.g. phosphorous brazing).

黄銅ろう等)をブスバー用貫通孔39.40に圧入して
ブスバー37.38とする場合、低温ロー材を圧入する
。また、圧入時にブスバー用貫通孔39.40以外の部
分に低温ロー材が漏れないように単セル同志をシールし
なければならない。
When press-fitting brass solder etc.) into the busbar through-hole 39.40 to form the busbar 37.38, a low-temperature brazing material is press-fitted. Furthermore, the single cells must be sealed to prevent the low-temperature brazing material from leaking to areas other than the busbar through holes 39 and 40 during press-fitting.

これらの性能を満足する枠材としては、アルミナ(AI
2tOs)、ジルコニア、ムライト、マグネシア等の酸
化物系のセラミックスを用いる。また、セルを積層する
場合のシール手段としては枠部材に形成された凹部31
aと凸部31bを嵌め合わせてシール部32を形成する
Alumina (AI) is a frame material that satisfies these performances.
2tOs), zirconia, mullite, magnesia, or other oxide-based ceramics. In addition, a recess 31 formed in the frame member is used as a sealing means when stacking cells.
A and the convex portion 31b are fitted together to form a seal portion 32.

さらに、単セルS同志を積層固定すると、第2図に示す
ように、水素ガス流通路41と空気(0,)流通路42
が形成される。水素ガス流通路41はチャンネル21と
連通し、空気流通路42はチャンネル22と連通してい
る。
Furthermore, when the single cells S are stacked and fixed together, a hydrogen gas flow path 41 and an air (0,) flow path 42 are formed as shown in FIG.
is formed. The hydrogen gas flow path 41 communicates with the channel 21, and the air flow path 42 communicates with the channel 22.

単セル同志のシール本来の目的は、燃料、酸化剤等のガ
スリークを防止するためのガスシールであり、このシー
ルにより導電ペースト圧入時にも漏れの心配がない。
The original purpose of the seal between single cells is to prevent gas leaks such as fuel and oxidizer, and this seal eliminates the risk of leakage even when the conductive paste is press-fitted.

上述のように構成された燃料電池本体IOにおいて、単
セルSは枠部材14に形成されている四部31aと、こ
の単セルSに隣接するセルに形成された凸部31bを嵌
め合わせることによってシール部32が形成され、ガス
シール性を保持している。単セルSを複数個積層した燃
料電池本体IOにおいて、水素ガス(H2)は矢印Aの
ように互いに通じ合っている水素ガス流路用マニホルド
19.20へ供給され、チャンネル21.22を経て陽
極板Ifへ供給される。また、供給された水素ガスは固
体電解質物体13を通して酸素と反応し、反応物である
水は水素ガス流通路41を通して外部へ排出される。空
気は矢印Bのように互いに通じ合っている空気流路用マ
ニホルド25゜26へ供給され、チャンネル27.28
を経て陽極板12に供給される。この場合の反応生成式
と陽極反応はHz+ 2 e −→H*0 + 2 e
−である。
In the fuel cell main body IO configured as described above, the single cell S is sealed by fitting the four parts 31a formed on the frame member 14 and the convex part 31b formed on the cell adjacent to this single cell S. A portion 32 is formed to maintain gas sealing properties. In the fuel cell main body IO in which a plurality of single cells S are stacked, hydrogen gas (H2) is supplied to hydrogen gas flow path manifolds 19.20 that communicate with each other as shown by arrow A, and passes through channels 21.22 to the anode. It is supplied to the plate If. Further, the supplied hydrogen gas reacts with oxygen through the solid electrolyte body 13, and water, which is a reactant, is discharged to the outside through the hydrogen gas flow path 41. Air is supplied to the air flow manifolds 25° 26 which communicate with each other as shown by arrow B, and through the channels 27, 28.
It is supplied to the anode plate 12 through. The reaction formation formula and anode reaction in this case are Hz+ 2 e −→H*0 + 2 e
− is.

低温ロー材は第1図、第4図に示す矢印Cのように各々
互いに通じ合っている陰極側ブスバー用マニホルド29
に圧入され、各セルの陰極側集電体15と接合される。
The low-temperature brazing materials are connected to the cathode-side busbar manifold 29, which communicate with each other as shown by arrows C in FIGS. 1 and 4.
It is press-fitted into the cell and joined to the cathode side current collector 15 of each cell.

同様に低温ロー材は矢印りのように各々通じ合っている
陽極側ブスバー用マニホルド30に圧入され、各セルの
陽極側集電体16と接合されると共に、それぞれ接続端
子44a、44bに接続される。
Similarly, the low-temperature brazing material is press-fitted into the anode-side busbar manifolds 30 that communicate with each other as shown by the arrows, and is joined to the anode-side current collector 16 of each cell, and connected to the connection terminals 44a and 44b, respectively. Ru.

このような構成で積層されたモジュール電池は、電気的
には単セルを並列接続した構成となっている。このよう
なモジュールを電気的に直列に接続することによって所
定の電圧を発生させることができる。
A module battery stacked in such a configuration has a configuration in which unit cells are electrically connected in parallel. A predetermined voltage can be generated by electrically connecting such modules in series.

上述の如き本発明の第1実施例に係る燃料電池によれば
、次の如き利点がある。
The fuel cell according to the first embodiment of the present invention as described above has the following advantages.

(a)単セルを複数個直列に積層した燃料電池において
、ガス供給用マニホルドばかりでなく、集電体で集電さ
れた電気エネルギーを取り出すブスバーをセルの枠内に
内設したので燃料電池全体をコンパクトにできる。
(a) In a fuel cell in which multiple single cells are stacked in series, not only the gas supply manifold but also a busbar for taking out the electrical energy collected by the current collector is installed inside the cell frame, so the whole fuel cell can be made compact.

(b)枠板をアルミナ材、ジルコニア、ムライトマグネ
シア等の酸化物系のセラミックスとしたので、耐熱サイ
クル性、耐絶縁性、耐酸化還元性を満足する枠材とする
ことができる。
(b) Since the frame plate is made of oxide-based ceramics such as alumina material, zirconia, and mullite-magnesia, it is possible to obtain a frame material that satisfies heat cycle resistance, insulation resistance, and oxidation-reduction resistance.

(c)単セル同志の積層は、枠材の凹部とこれに隣接す
るセル上の凸部で嵌め合わせガスシール性が向上した。
(c) When the single cells are stacked together, the concave portion of the frame material and the convex portion on the adjacent cell fit together, resulting in improved gas sealing properties.

(d)ブスバーは低温ロー材を圧入して形成しているた
め、セルの枠内に内設することができる。
(d) Since the bus bar is formed by press-fitting low-temperature brazing material, it can be installed inside the cell frame.

(e)ブスバーを単セル内に形成しているため、複数個
の単セルをスタックするときの組み付は作業が簡単にで
きる。
(e) Since the bus bar is formed within the single cell, assembly work when stacking a plurality of single cells can be done easily.

上記第1実施例では枠部材14の材質をアルミナCAQ
t03)とし、ブスバー37.38の材質を低温ロー材
とし、シール部32を凹凸嵌合としたものであるが、本
発明においては、これらの材質又はシール部32として
以下に述べる様な種々の組み合わせによる他の種々な変
形例が考えられる。
In the first embodiment, the material of the frame member 14 is alumina CAQ.
t03), the material of the busbars 37 and 38 is a low-temperature brazing material, and the seal portion 32 has a concave-convex fit, but in the present invention, these materials or the seal portion 32 may be made of various materials as described below. Various other combinations can be considered.

[第2実施例] 第2実施例においては、上述の第1実施例におけるシー
ル部32を、第5図(B)に示すように、枠部材14の
枠板14aと14bに凹部31a又は凸部31bを形成
し、これらの凹部31aと凸部31bをグリーンシート
31c状態、すなわち焼成前の状態で嵌め合わせ、その
後焼成することによってシール部32を構成し、ガスシ
ール性を保持している。したがって、単セル同志の積層
は、グリーンシート状態31cの枠部材の凹部とこれに
隣接する単セル上の凸部で嵌め合わせその後焼成するの
でガスリークのない緻密なシール性が得られる。
[Second Embodiment] In the second embodiment, the seal portion 32 in the first embodiment described above is replaced with a concave portion 31a or a convex portion in the frame plates 14a and 14b of the frame member 14, as shown in FIG. 5(B). The concave portion 31a and the convex portion 31b are fitted together in the state of the green sheet 31c, that is, in the state before firing, and then fired to form the seal portion 32 and maintain gas sealing properties. Therefore, since the single cells are stacked together by fitting the concave portion of the frame member in the green sheet state 31c with the convex portion on the adjacent single cell and then firing, a precise sealing property without gas leakage can be obtained.

[第3実施例] 第3実施例においては、上述の第1実施例のものにおい
て、第5図(C)に示すように枠部材14の枠板14a
と14bに夫々対向する凹部を形成し、枠板14aと1
4°bを重ね合わせて形成される溝内に銅製パツキン3
1dを挿入してシール部32が構成されている。したが
って、第3実施例のものにおいては、単セル同志の積層
は、枠部材の凹部31aとこれに隣接するセル上の凹部
31aとを銅製パツキン31dを介してシールしている
ので、ガスシール性が向上する。
[Third Embodiment] In the third embodiment, in the first embodiment described above, the frame plate 14a of the frame member 14 is changed as shown in FIG. 5(C).
and 14b are formed with opposing recesses, respectively, and frame plates 14a and 14b are formed with opposing recesses.
Copper gasket 3 is placed in the groove formed by overlapping 4°b.
1d is inserted to form the seal portion 32. Therefore, in the third embodiment, since the stacking of single cells is performed by sealing the recess 31a of the frame member and the recess 31a on the adjacent cell through the copper packing 31d, the gas sealing property is improved. will improve.

[第4実施例] 第4実施例においては、第1実施例のものにおいてシー
ル部32を、第5図(D)に示すように、接合材として
のガラスセメント31eを粘液状で塗布、あるいはスク
リーン印刷し、ガラスセメント31eが固化する温度ま
で昇温しで接合する手段によって構成する。
[Fourth Embodiment] In the fourth embodiment, as shown in FIG. 5(D), the seal portion 32 of the first embodiment is coated with glass cement 31e as a bonding material in the form of a slime, or It is constructed by screen printing and bonding by raising the temperature to a temperature at which the glass cement 31e solidifies.

この場合、例えば100°C/h (時間)の昇温スピ
ードで600℃まで温度を上げ、この温度で1時間保持
した後、50℃/hのスピードで室温まで降温すること
によって得られる。また、シール部32は枠板14a、
14bのうち一方に凹部を、他方の凸部を形成し、これ
らを嵌合し、かつガラスセメントで接合するようにして
も良い。このように、第4実施例においては、ガラスセ
メントを枠板の接合面に塗布あるいはスクリーン印刷し
、ガラスセメントを接合材として接合するので、ガスシ
ール性が向上する。
In this case, the temperature can be obtained by raising the temperature to 600°C at a heating rate of 100°C/h (hour), maintaining this temperature for 1 hour, and then lowering the temperature to room temperature at a rate of 50°C/h. Further, the seal portion 32 includes the frame plate 14a,
A concave portion and a convex portion may be formed on one side of 14b, and these may be fitted and bonded with glass cement. As described above, in the fourth embodiment, glass cement is applied or screen printed on the joint surfaces of the frame plates, and the glass cement is used as the jointing material, so that the gas sealing property is improved.

[第5実施例] 第5実施例においては、枠部材14の材質をジルコニア
とし、ブスバー37.38の材質を低温ロー材とし、シ
ール部32を四部31aと凸部31bの嵌合とする。こ
の第5実施例のものは枠部材14の材質をジルコニアと
したから、耐熱サイクル性、耐絶縁性、耐酸化還元性を
満足する枠部材とすることができる。
[Fifth Embodiment] In the fifth embodiment, the frame member 14 is made of zirconia, the bus bars 37 and 38 are made of low-temperature brazing material, and the seal portion 32 is formed by fitting the four portions 31a and the convex portions 31b. In this fifth embodiment, since the material of the frame member 14 is zirconia, it is possible to obtain a frame member that satisfies heat cycle resistance, insulation resistance, and oxidation-reduction resistance.

[第6実施例] 第6実施例においては、枠部材14の材質をジルコニア
材とし、ブスバー37.38の材質を低温ロー材とし、
シール部32を凹部31aと凸部31bをグリーンシー
ト状態、すなわち焼成前の状態で嵌め合わせて積層し、
その後焼成したものとする。
[Sixth Example] In the sixth example, the material of the frame member 14 is zirconia material, the material of the bus bars 37 and 38 is low temperature brazing material,
The seal portion 32 is laminated by fitting the concave portion 31a and the convex portion 31b in a green sheet state, that is, in a state before firing,
It is then fired.

[第7実施例コ 第7実施例のものは、枠部材14の材質をジルコニア(
ZrOt)とし、ブスバー37.38の材質を低温ロー
材とし、シール部32を枠部材14における枠板14a
に形成した凹部31aと枠板14bに形成した凹部31
aと銅製パツキン31dとする。
[Seventh Example] In the seventh example, the material of the frame member 14 is zirconia (
ZrOt), the material of the bus bars 37 and 38 is low-temperature brazing material, and the seal portion 32 is the frame plate 14a of the frame member 14.
A recess 31a formed in the frame plate 14b and a recess 31 formed in the frame plate 14b.
a and a copper gasket 31d.

[第8実施例コ 第8実施例のものでは、枠部材14の材質をジルコニア
(ZrOt)材とし、ブスバー37.$8の材質を低温
ロー材とし、シール部32を枠板14aと14bの接合
面にガラスセメントを塗布、あるいはスクリーン印刷し
、ガラスセメントを接合材として接合する手段によって
構成する。
[Eighth Embodiment] In the eighth embodiment, the frame member 14 is made of zirconia (ZrOt), and the bus bar 37. The material of $8 is a low-temperature brazing material, and the sealing portion 32 is constructed by coating or screen printing glass cement on the joining surfaces of the frame plates 14a and 14b, and joining them using glass cement as a joining material.

H1発明の効果 本発明は以上の如くであって、枠部材に陽極側ブスバー
用の貫通孔と陰極ブスバー用の貫通孔を形成し、陽極側
ブスバー用の貫通孔内には陽極板と接合する低温ロー材
からなるブスバーを挿設すると共に、陰極側ブスバー用
の貫通孔内には陰極板と接合する低温ロー材からなるブ
スバーを挿設したから、ブスバーが積層体の外側でスペ
ースを取ることがなく、全体をコンパクトにすることが
できる。しかも、複数の単セルをスタックするとき、集
電体とブスバーとの煩雑な接続作業が不要であり、製作
容易にして小型化が可能な燃料電池を得ることができる
H1 Effects of the Invention The present invention is as described above, in which a through hole for an anode bus bar and a through hole for a cathode bus bar are formed in a frame member, and the through hole for an anode bus bar is connected to an anode plate. In addition to inserting a bus bar made of low-temperature brazed material, we also inserted a bus bar made of low-temperature brazed material to be bonded to the cathode plate into the through hole for the cathode side bus bar, so that the bus bar does not take up space on the outside of the laminate. This makes the whole structure more compact. Furthermore, when stacking a plurality of single cells, there is no need for complicated connection work between the current collector and the bus bar, and a fuel cell that is easy to manufacture and can be miniaturized can be obtained.

さらに本発明によれば、単セルの枠部材の材質をアルミ
ナやジルコニウムとし、ブスバーの材質を低温ロー材と
し、シール部として凹凸嵌合、グリーンシート焼成、銅
製パツキンおよびカラスセメントを用いたから、燃料電
池における諸要件を充分に満たす高信頼性の積層型燃料
電池を得ることができるものである。
Furthermore, according to the present invention, the material of the frame member of the single cell is alumina or zirconium, the material of the bus bar is low-temperature brazing material, and the seal part is made of uneven fitting, green sheet firing, copper packing, and crow cement. It is possible to obtain a highly reliable stacked fuel cell that fully satisfies various requirements for batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による積層型燃料電池を示した
もので第3図のI−1線断面図、第2図は第3図の■−
■線断面図、第3図は本発明の実施例による燃料電池の
平面図、第4図は単セル群の斜視図、第5図(A)〜(
D)はシール部の変形例を示す拡大図、第6図は燃料電
池の構成原理図である。 11・・・陰電極、12・・・陽電極、13・・・電解
質物体、l 4 ・・・枠部材、14a−14cm枠板
、15゜16・・・集電板、19.20・・・水素ガス
流路用のマニホルド、25.26・・・空気流路用の貫
通孔、29.30・・・ブスバー用の貫通孔、31a・
・・凸部、31b・・・凹部、31c・・・グリーンシ
ート、31d・・・銅製パツキン、31e・・・ガラス
セメント、37・・・低温ロー材からなる陰極側のブス
バー 38・・・低温ロー材からなる陽極側のブスバー
 40゜41・・・ブスバー挿設用孔、42.43・・
・ガス流通路。 11 ・陰電極 12・・陽電極 13・・電解質物体 14 枠物材 1411A+l 4 c・枠板 15.16  集ii板 19.20  ・水素ガス用貫通孔 25.26・・空気通路用貫通孔 29.30・−・ブスバー用貫通孔 31a・・凸部 31b・・凹部 32・・ンール部 37 ・陰極ブスバー 38・陽極ブスバー 45a、45b  燃料用マニホールド第3図 +面凹 (A) (C) 第5図 (B) (D) 第6図
FIG. 1 shows a stacked fuel cell according to an embodiment of the present invention, and is a sectional view taken along line I-1 in FIG. 3, and FIG.
3 is a plan view of a fuel cell according to an embodiment of the present invention, FIG. 4 is a perspective view of a single cell group, and FIGS.
D) is an enlarged view showing a modified example of the seal portion, and FIG. 6 is a diagram showing the basic structure of the fuel cell. 11... Negative electrode, 12... Positive electrode, 13... Electrolyte object, l 4... Frame member, 14a-14cm frame plate, 15° 16... Current collector plate, 19.20...・Manifold for hydrogen gas flow path, 25.26... Through hole for air flow path, 29.30... Through hole for bus bar, 31a・
...Convex portion, 31b...Concave portion, 31c...Green sheet, 31d...Copper packing, 31e...Glass cement, 37...Cathode side bus bar made of low temperature brazing material 38...Low temperature Busbar on the anode side made of brazing material 40° 41...Busbar insertion hole, 42.43...
・Gas flow passage. 11 ・Cathode electrode 12・・Positive electrode 13・・Electrolyte object 14 Frame material 1411A+l 4 c・Frame plate 15.16 Collection ii board 19.20 ・Through hole for hydrogen gas 25.26・・Through hole for air passage 29 .30... Bus bar through hole 31a... Convex part 31b... Concave part 32... Nuru part 37 - Cathode bus bar 38 - Anode bus bar 45a, 45b Fuel manifold Figure 3 + Concave surface (A) (C) No. Figure 5 (B) (D) Figure 6

Claims (6)

【特許請求の範囲】[Claims] (1)枠部材に電解質物体とこの電解質物体の両側に位
置する陽極と陰極の電極板を組み込んで単セルを構成し
、この単セルの複数個を陽極の電極板同志および陰極の
電極板同志が各々対向すると共に、これらの各同極の電
極板間にそれぞれ燃料用マニホルドを形成するように積
層した燃料電池において、前記枠部材に陽極ブスバー用
の貫通孔と陰極ブスバー用の貫通孔を形成し、前記陽極
ブスバー用の貫通孔内には前記陽極板と接続するように
低温ロー材からなる陽極ブスバーを設けると共に、前記
陰極ブスバー用の貫通孔内には前記陰極板と接続するよ
うに低温ロー材からなる陰極ブスバーを設け、前記単セ
ルの隣接する枠部材間にシール部を介設して構成したこ
とを特徴とする積層型燃料電池。
(1) A single cell is constructed by incorporating an electrolyte object and anode and cathode electrode plates located on both sides of the electrolyte object into a frame member, and a plurality of these single cells are connected to each other between the anode electrode plates and the cathode electrode plates. In a fuel cell stacked such that the electrode plates of the same electrode face each other and form fuel manifolds between the same electrode plates, a through hole for an anode bus bar and a through hole for a cathode bus bar are formed in the frame member. An anode bus bar made of a low temperature brazing material is provided in the through hole for the anode bus bar so as to be connected to the anode plate, and an anode bus bar made of low temperature brazing material is provided in the through hole for the cathode bus bar so as to connect to the cathode plate. 1. A stacked fuel cell characterized in that a cathode bus bar made of brazing material is provided, and a seal portion is interposed between adjacent frame members of the single cell.
(2)前記耐熱性絶縁物を酸化性セラミックス材とした
ことを特徴とする請求項第1項の積層型燃料電池。
(2) The stacked fuel cell according to claim 1, wherein the heat-resistant insulator is an oxidizing ceramic material.
(3)前記シール部を、前記複数個の単セルの互いに隣
接する枠部材に形成した凹部と凸部を嵌合させて構成し
たことを特徴とする請求項第1項又は第2項の積層型燃
料電池。
(3) The laminated layer according to claim 1 or 2, wherein the seal portion is formed by fitting recesses and projections formed on mutually adjacent frame members of the plurality of unit cells. type fuel cell.
(4)前記シール部を、前記複数個の単セルの互いに隣
接する枠部材に形成した凹部と凸部を枠部材の焼成前に
嵌合させ、その後焼成して形成したことを特徴とする請
求項第1項又は第2項の積層型燃料電池。
(4) A claim characterized in that the seal portion is formed by fitting concave portions and convex portions formed in mutually adjacent frame members of the plurality of unit cells before firing the frame members, and then firing the same. Stacked fuel cell according to item 1 or 2.
(5)前記シール部を、前記複数個の単セルの互いに隣
接する枠部材に形成した凹部と凹間に銅製パッキンを介
挿して構成したことを特徴とする請求項第1項又は第2
項の積層型燃料電池。
(5) The sealing portion is constructed by inserting a copper packing between recesses formed in the frame members adjacent to each other of the plurality of unit cells.
Stacked fuel cell.
(6)前記シール部を、前記複数個の単セルの互いに隣
接する枠部材間に介挿したガラスセメントによって構成
したことを特徴とする請求項第1項又は第2項の積層型
燃料電池。
(6) The stacked fuel cell according to claim 1 or 2, wherein the seal portion is formed of glass cement inserted between adjacent frame members of the plurality of unit cells.
JP63195604A 1988-08-05 1988-08-05 Stacked fuel cell Pending JPH0246661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63195604A JPH0246661A (en) 1988-08-05 1988-08-05 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63195604A JPH0246661A (en) 1988-08-05 1988-08-05 Stacked fuel cell

Publications (1)

Publication Number Publication Date
JPH0246661A true JPH0246661A (en) 1990-02-16

Family

ID=16343922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63195604A Pending JPH0246661A (en) 1988-08-05 1988-08-05 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JPH0246661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501371A (en) * 2007-10-24 2011-01-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Integrated fuel cell structure without fittings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501371A (en) * 2007-10-24 2011-01-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Integrated fuel cell structure without fittings
US8778555B2 (en) 2007-10-24 2014-07-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Joint-free integrated fuel cell architecture

Similar Documents

Publication Publication Date Title
RU2415498C2 (en) Configurations of batteries of tubular solid-oxide fuel elements
US4510212A (en) Solid oxide fuel cell having compound cross flow gas patterns
US4476196A (en) Solid oxide fuel cell having monolithic cross flow core and manifolding
US4761349A (en) Solid oxide fuel cell with monolithic core
GB2175736A (en) Serially connected solid oxide fuel cells having a monolithic cores
EP1966850A2 (en) Solid oxide fuel cell and stack configuration
JP2009520315A (en) Electrochemical battery holder and stack
KR20170103006A (en) Fuel cell stack
JP5101775B2 (en) Unit solid oxide fuel cell
JPH0260063A (en) Stacked fuel cell
JP2002270200A (en) Gas separator for solid electrolyte type fuel cell, members thereof, and stack unit using the same, and solid electrolyte type fuel cell stack
JPS62200666A (en) Fuel cell
CN115799574A (en) Electrochemical reaction cell stack
JPH0246661A (en) Stacked fuel cell
JPH0260062A (en) Stacked fuel cell
JPH0246659A (en) Stacked fuel cell
JPH0246660A (en) Stacked fuel cell
JPS5998473A (en) Molten carbonate type fuel cell
JP5125376B2 (en) Fuel cell
JPH0246658A (en) Fuel cell
JPH0412468A (en) High-temperature fuel cell
JPH0850911A (en) Platelike solid electrolytic fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
JP2000306590A (en) Solid electrolyte fuel cell