JPH0258868A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH0258868A
JPH0258868A JP63210970A JP21097088A JPH0258868A JP H0258868 A JPH0258868 A JP H0258868A JP 63210970 A JP63210970 A JP 63210970A JP 21097088 A JP21097088 A JP 21097088A JP H0258868 A JPH0258868 A JP H0258868A
Authority
JP
Japan
Prior art keywords
resistance
power supply
supply line
load
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63210970A
Other languages
Japanese (ja)
Inventor
Yutaka Okamoto
裕 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63210970A priority Critical patent/JPH0258868A/en
Publication of JPH0258868A publication Critical patent/JPH0258868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form a high resistance layer constituting a resistance load without accompanying the increase of wiring resistance of a power supply line by forming the resistance load of polycrystalline silicon containing a specified amount of oxygen, and forming the power supply line of a wiring layer passing on the resistance load. CONSTITUTION:In a semiconductor storage device, a resistance load film 5 is formed by using polycrystalline silicon containing oxygen of 2-45 atomic percent being called as SIPOS, so that a resistance load having a very high resistance value can be obtained. On the contrary, a power supply line 6a is formed by using a wiring layer composed of polycrystalline silicon whose resistance is made low by impurity doping, so that the wiring resistance of the power supply line 6a can be made very small. Thereby, the wiring resistance of the power supply line can be made extremely small, while the resistance value of the load resistance is extremely increased, so that the resistance load can be very high resistive without accompanying the increase of wiring resistance of the power supply line. Even if the doping impurity diffuses in a part of resistance load, there is no possibility that the resistance load becomes low resistive.

Description

【発明の詳細な説明】 以下の順序に従って本発明を説明する。[Detailed description of the invention] The present invention will be described in the following order.

へ〇産業上の利用分野 B9発明の概要 C1従来技術 り8発明が解決しようとする問題点 E、問題点を解決するための子役 F8作用 G、実施例し第1図乃至第4図] H9発明の効果 (A、産業上の利用分野) 本発明は半導体メモリ、特に一対のMis型トランジス
タを一対の抵抗負荷により構成されたフリップフロップ
と、一対のアクセストランジスタによりメモリセルが構
成された°l!−導体メモリに関する。
〇 Industrial field of application B9 Overview of the invention C1 Prior art 8 Problems to be solved by the invention E, Child actors for solving the problems F8 Actions G, Examples (Figures 1 to 4) H9 Effects of the Invention (A. Field of Industrial Application) The present invention relates to a semiconductor memory, and more particularly to a semiconductor memory in which a memory cell is constructed of a flip-flop composed of a pair of Mis-type transistors and a pair of resistive loads, and a pair of access transistors. ! -Relating to conductive memory.

(B、発明の概要) 本発明は、上記の半導体メモリにおいて、抵抗負荷を成
す高抵抗層を電源線の配線抵抗の増大を伴うことなく形
成できるようにするため抵抗負荷を2〜45at%の酸
素を含有する多結晶シリコン(s r pos>により
形成し、電源線を上記抵抗負荷上を通る配線層により形
成するものである。
(B. Summary of the Invention) The present invention provides a resistive load of 2 to 45 at% in order to form a high-resistance layer forming a resistive load without increasing the wiring resistance of the power supply line in the semiconductor memory described above. It is formed from polycrystalline silicon (s r pos) containing oxygen, and the power supply line is formed by a wiring layer passing over the resistive load.

(C,従来技術) スターティックRAMは、例えば日経エレクトロニクス
1985年12月30号「消費電力を抑えた最大アクセ
ス時間85nsの256にビットCMOSスタチックR
AMJの図16(135頁)に、あるいは特開昭61〜
53764号公報等に記載されているように、メモリセ
ルが一対のMIS型トランジスタ及び一対の高抵抗負荷
により形成されたフリップフロップと、一対のアクセス
トランジスタにより構成されているのが符通である。ぞ
して、一般に高抵抗負荷は多結晶シリコンにより形成さ
れ、しかも、電源線であるVDDラインも多結晶シリコ
ンにより形成されている。
(C, prior art) Static RAM is, for example, a 256-bit CMOS static RAM with a maximum access time of 85 ns that reduces power consumption and is described in Nikkei Electronics, December 30, 1985.
In Figure 16 (page 135) of AMJ, or in JP-A-61-
As described in Japanese Patent Application No. 53764, etc., a memory cell is generally constituted by a pair of MIS type transistors, a flip-flop formed by a pair of high resistance loads, and a pair of access transistors. Therefore, the high resistance load is generally made of polycrystalline silicon, and moreover, the VDD line, which is a power supply line, is also made of polycrystalline silicon.

(D、発明が解決しようとする問題点)ところで、普通
の多結晶シリコンにより抵抗負荷を形成した場合には多
結晶シリコン膜の膜ATにより抵抗が大きく異なり、所
定の抵抗値を得るためには多結晶シリコン膜の膜Hを非
常に高精度に制御しなければならない。
(D. Problem to be Solved by the Invention) By the way, when a resistive load is formed from ordinary polycrystalline silicon, the resistance varies greatly depending on the polycrystalline silicon film AT, and in order to obtain a predetermined resistance value, The film H of the polycrystalline silicon film must be controlled with extremely high precision.

また、電源線である■。0ラインも多結晶シリコンによ
り形成されているため、多結晶シリ;1ン層の電源線V
Doラインを成す部分は低抵抗化が必要であり、そのた
め、従来においては多結晶シリコン層の抵抗負荷部分を
マスクして多結晶シリコン層に不純物をドープし電源線
部分の低抵抗化を行っていたが、このようにすると不純
物トープ後のアニールにより電源線部分内の不純物が抵
抗負荷部分内に拡散してしまい、抵抗負荷の抵抗値が低
下してしまうという問題があり好ましくなかった。
■It is also a power line. Since the 0 line is also formed of polycrystalline silicon, the power supply line V of the polycrystalline silicon;
It is necessary to lower the resistance of the part that forms the Do line, and for this reason, in the past, the resistance load part of the polycrystalline silicon layer was masked and the polycrystalline silicon layer was doped with impurities to lower the resistance of the power line part. However, this is not preferable because there is a problem that the impurities in the power supply line portion are diffused into the resistive load portion due to the annealing after the impurity topping, resulting in a decrease in the resistance value of the resistive load.

また、多結晶シリコンの抵抗負荷部分のW/L(幅/長
)を小さくすることによって抵抗負荷の抵抗値を所望の
大きさにすることも試みられたが、多結晶シリコン層の
パターンにはデザインルールによる制限があり、デザイ
ンルールを無視したバターニングは実際−トは実現不可
能である。
In addition, attempts have been made to increase the resistance value of the resistive load to a desired value by reducing the W/L (width/length) of the resistive load portion of polycrystalline silicon, but the pattern of the polycrystalline silicon layer There are restrictions due to design rules, and patterning that ignores design rules is actually impossible.

そして、普通の多結晶シリコンではテラオームというよ
うな超高抵抗素子を得るには抵抗率が充分には大きくな
いので実際上抵抗負荷の充分な高抵抗化は不り1能であ
る。
Since the resistivity of ordinary polycrystalline silicon is not large enough to obtain an ultra-high resistance element such as tera ohm, it is practically impossible to increase the resistance of the resistive load to a sufficiently high level.

また、リンP、砒素As等のライトドーピングによる超
高抵抗化技術もあるが、寄生MO5発生、活性化エネル
ギーの増大等の問題がある。
There is also a technique for achieving ultra-high resistance by light doping with phosphorus P, arsenic As, etc., but there are problems such as generation of parasitic MO5 and increase in activation energy.

本発明はこのような事情に鑑みて為されたもので、抵抗
負荷を成す晶抵抗層を電源線の配線抵抗の増大を伴うこ
となく形成できるようにすることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to enable formation of a crystal resistive layer forming a resistive load without increasing wiring resistance of a power supply line.

(E、問題点を解決するための手段) 本発明判導体メモリはL記問題点を解決するため、抵抗
負荷を酸素を含有する多結晶シリコン(S I PO3
)により形成し、′Tu源線を上記抵抗負荷上を通る配
線層により形成するようにすることを特徴とする。
(E. Means for Solving the Problems) In order to solve the problems described in L, the conductor memory of the present invention uses oxygen-containing polycrystalline silicon (S I PO3) as a resistive load.
), and the 'Tu source line is formed by a wiring layer passing over the resistive load.

(F、作用) 本発明半導体メモリによれば、抵抗負荷か5IPOSと
称される2〜45at%の酸素を含有する多結晶シリコ
ンにより形成されているので、抵抗負荷を例えばテラオ
ームあるいはそれ以J−の抵抗値に超高抵抗化すること
ができる。そし−C12〜45at%の酸素を含有する
多結晶シリコンは不純物が拡散されてもほとんど抵抗率
が変化しないので、電源線導体化5配線層と抵抗負荷と
のオーミックコンタクトのためにドープした不純物が一
部抵抗負荷中に拡散したとしてもそれによって抵抗負荷
が低抵抗化する虞わもない。
(F. Effect) According to the semiconductor memory of the present invention, since the resistive load is formed of polycrystalline silicon containing 2 to 45 at% oxygen, which is called 5IPOS, the resistive load can be reduced to, for example, tera ohm or more than J- The resistance value can be made extremely high. - Since the resistivity of polycrystalline silicon containing 12 to 45 at% oxygen hardly changes even when impurities are diffused, doped impurities are used for ohmic contact between the power line conductor layer and the resistive load. Even if it partially diffuses into the resistive load, there is no risk that the resistive load will become lower in resistance.

そして、電源線は少なくとも上記抵抗負荷上を通る配線
層により形成したので電源線の配線抵抗の低減を図るこ
とができる。
Since the power supply line is formed of a wiring layer passing at least above the resistive load, the wiring resistance of the power supply line can be reduced.

(G、実施例)[第1図乃至第4図] 以下、本発明半導体メモリを図示実施例に従って詳細に
説明する。
(G. Embodiment) [FIGS. 1 to 4] The semiconductor memory of the present invention will be described in detail below according to the illustrated embodiment.

第1図及び第2図は本発明半導体メモリの一つの実施例
を示すもので、第1図は要部を示す断面図、第2図は抵
抗負荷と電源線の接続部を示す平面図である。
1 and 2 show one embodiment of the semiconductor memory of the present invention. FIG. 1 is a cross-sectional view showing the main parts, and FIG. 2 is a plan view showing the connection between the resistive load and the power supply line. be.

同図において、1は半導体基板(図面に現れない)上の
絶縁膜、2は該絶縁v1):に形成ざわた多結晶シリコ
ンあるいはポリサイドからなる電極膜、3は該電極膜2
上を覆う層間絶縁膜、4は該層間絶縁膜3に形成された
ところの上記電極膜2表面を一部露出させるコンタクト
ホール、5は超高抵抗の抵抗負荷膜で、2〜45at%
の酸素を含有する多結晶シリコンにより構成されている
。6.6aは普通の多結晶シリコンからなる配線層で、
特に6aは電源線(Vooライン)を成す配線層である
。この多結晶シリコンからなる配線層6.6aは不純物
のドープにより低抵抗化されている。
In the figure, 1 is an insulating film on a semiconductor substrate (not shown in the drawing), 2 is an electrode film made of rough polycrystalline silicon or polycide formed on the insulation v1), and 3 is an electrode film 2
An interlayer insulating film covering the top, 4 a contact hole that partially exposes the surface of the electrode film 2 formed in the interlayer insulating film 3, 5 an ultra-high resistance resistance load film of 2 to 45 at%
It is made of polycrystalline silicon containing oxygen. 6.6a is a wiring layer made of ordinary polycrystalline silicon,
In particular, 6a is a wiring layer forming a power supply line (Voo line). The wiring layer 6.6a made of polycrystalline silicon has a low resistance by doping with impurities.

この半導体メモリは、抵抗負荷膜5が S I PO3と称される2〜45at%の酸素を含有
する多結晶シリコンによりされているので、非常に高い
抵抗値の抵抗負荷を得ることができる。
In this semiconductor memory, since the resistive load film 5 is made of polycrystalline silicon containing 2 to 45 at % oxygen called S I PO 3 , a resistive load with a very high resistance value can be obtained.

それに対して電源線6aは不純物のドーピングにより低
抵抗化された多結晶シリコンからなる配線層により形成
されているので、電源線6aの配線抵抗を非常に低くす
ることができる。しかして、抵抗負荷の抵抗値を非常に
高くしつつ′?に源線の配7a抵抗を非常に小さくする
ことができ、電源線の配線抵抗の増加を伴うことなく抵
抗負荷を超高抵抗化することができるのである。
On the other hand, since the power supply line 6a is formed of a wiring layer made of polycrystalline silicon whose resistance has been lowered by doping with impurities, the wiring resistance of the power supply line 6a can be made very low. However, while making the resistance value of the resistive load very high? In addition, the resistance of the wiring 7a of the power supply line can be made very small, and the resistive load can be made to have an extremely high resistance without increasing the wiring resistance of the power supply line.

第3図(A)乃至(D)は第1図及び第2図に示した半
導体メモリの製造方法を工程順に示す断面図である。
FIGS. 3A to 3D are cross-sectional views showing the method for manufacturing the semiconductor memory shown in FIGS. 1 and 2 in order of steps.

(A)絶縁膜1上に形成された電極ff5!2を覆う層
間絶縁膜3にコンタクトホール4を形成した後2〜45
at%の酸素を含有する多結晶シリコンからなる抵抗負
荷膜5を成長させる。抵抗負荷膜5の成長方法及び性質
は特公昭55−13426号公報により非常に詳細に公
表されている。第3図(A)は抵抗負荷膜5形成後の状
態を示す。
(A) After forming a contact hole 4 in the interlayer insulating film 3 covering the electrode ff5!2 formed on the insulating film 1 2 to 45
A resistive load film 5 made of polycrystalline silicon containing at% oxygen is grown. The growth method and properties of the resistive load film 5 are disclosed in detail in Japanese Patent Publication No. 13426/1983. FIG. 3(A) shows the state after the resistance load film 5 is formed.

(B)次に、同図(B)に示すように普通の多結晶シリ
コン(不純物のない)からなる配線層6を抵抗負荷膜5
上に成長させる。この配線層6は抵抗負荷膜5形成後同
一炉内での連続成長により形成しても良い、。
(B) Next, as shown in FIG.
grow on top. The wiring layer 6 may be formed by continuous growth in the same furnace after the resistive load film 5 is formed.

(C)次に、同図(C)に示すように配線層6及び抵抗
負荷膜5をパターニングする。具体的には配線層を形成
する領域及び抵抗負荷を形成すべき部分が残存するよう
にエツチングすることにより行う。
(C) Next, the wiring layer 6 and the resistive load film 5 are patterned as shown in FIG. Specifically, etching is carried out so that the region where the wiring layer is to be formed and the portion where the resistive load is to be formed remain.

(D)次に、第3図(D)に示すように、2〜45at
%の酸素を含有する多結晶シリコン5(及び層間絶縁膜
3)に選択比を持たせて配線層6を選択的にエツチング
してパターニングする。6aはそのパターニングにより
形成された電源線である。尚、第3図(D)における右
側の配線層6は抵抗負荷5と電極膜2とのコンタクト部
(接続点)を覆うものであるが、必ずしも必要とはしな
い。
(D) Next, as shown in FIG. 3 (D), 2 to 45at
The wiring layer 6 is selectively etched and patterned by giving a selectivity to the polycrystalline silicon 5 (and the interlayer insulating film 3) containing 50% of oxygen. 6a is a power supply line formed by the patterning. Although the wiring layer 6 on the right side in FIG. 3(D) covers the contact portion (connection point) between the resistive load 5 and the electrode film 2, it is not necessarily necessary.

その後、上記配線層6.6aに不純物、例えばAsをイ
オン打込みして配線層6.6aの低抵抗化及びコンタク
ト抵抗の低減化を図る。
Thereafter, an impurity, for example, As, is ion-implanted into the wiring layer 6.6a to lower the resistance of the wiring layer 6.6a and the contact resistance.

第4図は本発明半導体メモリの変形例を示す平面図であ
る。この半導体メモリは、抵抗負荷膜5のパターニング
後多結晶シリコンからなる配線層である電源線6aが各
抵抗負荷膜5.5、・−・の端部トを通るように形成し
たものである。本発明はこのような態様でも実施するこ
とかできる。
FIG. 4 is a plan view showing a modification of the semiconductor memory of the present invention. In this semiconductor memory, after patterning the resistive load film 5, a power supply line 6a, which is a wiring layer made of polycrystalline silicon, is formed so as to pass through the end portions of the resistive load films 5, 5, . The present invention can also be implemented in such an embodiment.

(H,発明の効果) 以−にに述べたように、本発明半導体メモリは、抵抗負
荷が2〜45at%の酸素を含有する多結晶シリコンに
より形成され、電源線が上記抵抗負荷の少なくとも一部
分上を通る配線層により形成されてなることを特徴とす
るものである。
(H, Effect of the Invention) As described above, in the semiconductor memory of the present invention, the resistive load is formed of polycrystalline silicon containing 2 to 45 at% oxygen, and the power supply line is connected to at least a portion of the resistive load. It is characterized in that it is formed by a wiring layer passing above.

従っ°C1本発明手導体メモリによれば、抵抗負荷がS
 I PO5と称される2〜45at%の酸素を含有す
る多結晶シリコンにより形成されているので、抵抗負荷
を例えばテラオウムあるいはそれ以上に超高抵抗化する
ことができる。そして、2〜45at%の酸素を含有す
る多結晶シリコンは不純物が拡散されてもほとんど抵抗
率が変化しないので、電源線導体化、配線層と抵抗負荷
とのオーミックコンタクト・のために配線層をドープし
、そし/てドープした不純物が一部抵抗負荷中に拡散し
たとしても抵抗負荷か低抵抗化する虞れもない。
According to the hand conductor memory of the present invention, the resistive load is S.
Since it is made of polycrystalline silicon containing 2 to 45 at% oxygen called IPO5, the resistance load can be made to have an extremely high resistance of, for example, Tera Oum or more. Polycrystalline silicon containing 2 to 45 at% oxygen has almost no change in resistivity even when impurities are diffused, so wiring layers are used to make power line conductors and to make ohmic contact between wiring layers and resistive loads. Even if some of the doped impurities diffuse into the resistive load, there is no possibility that the resistive load will become low in resistance.

そして、電源線は上記抵抗り荷の少なくとも一部分七を
通る配線層により形成したので?jt源線の配線抵抗の
低減を図ることができる。
And since the power supply line is formed by a wiring layer that passes through at least a portion of the resistive load,? The wiring resistance of the jt source line can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃び第2図は本発明半導体メモリの−・つの実施
例を示すもので、第1図は要部を示す断面図、第2図は
抵抗負荷と電源線との接続部を示す平面図、第3図(A
)乃至(D)は′fJ1図及び第2図に示した半導体メ
モリの製造方法を工程順に示す断面図、第4図は本発明
半導体メモリの変形例を示すところの抵抗負荷と電源線
との接続部を示す−p−面図である。 符号の説明 5・・・抵抗負荷、6a・・・電源線。 C’J 第3図 第4図
Figures 1 and 2 show two embodiments of the semiconductor memory of the present invention, with Figure 1 being a sectional view showing the main parts, and Figure 2 showing the connection between the resistive load and the power supply line. Plan view, Figure 3 (A
) to (D) are cross-sectional views showing the manufacturing method of the semiconductor memory shown in Fig. It is a -p-plane view which shows a connection part. Explanation of symbols 5...Resistive load, 6a...Power line. C'J Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)一対のMIS型トランジスタを一対の抵抗負荷に
より構成されたフリップフロップと、一対のアクセスト
ランジスタによりメモリセルが構成された半導体メモリ
において、 上記抵抗負荷が2〜45at%の酸素を含有する多結晶
シリコンにより形成され、 電源線が上記抵抗負荷の少なくとも一部分上を通る配線
層により形成され てなることを特徴とする半導体メモリ
(1) In a semiconductor memory in which a memory cell is constituted by a flip-flop in which a pair of MIS type transistors is constituted by a pair of resistive loads, and a pair of access transistors, the resistive load is a multilayer film containing 2 to 45 at% oxygen. A semiconductor memory formed of crystalline silicon, characterized in that the power supply line is formed of a wiring layer passing over at least a portion of the resistive load.
JP63210970A 1988-08-24 1988-08-24 Semiconductor memory Pending JPH0258868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63210970A JPH0258868A (en) 1988-08-24 1988-08-24 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210970A JPH0258868A (en) 1988-08-24 1988-08-24 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH0258868A true JPH0258868A (en) 1990-02-28

Family

ID=16598142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210970A Pending JPH0258868A (en) 1988-08-24 1988-08-24 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH0258868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122713A (en) * 1993-10-26 1995-05-12 Nec Corp Semiconductor device
US5515313A (en) * 1993-01-20 1996-05-07 Nec Corporation Static-type semiconductor memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515313A (en) * 1993-01-20 1996-05-07 Nec Corporation Static-type semiconductor memory device
JPH07122713A (en) * 1993-10-26 1995-05-12 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4406051A (en) Method for manufacturing a semiconductor device
EP0095411B1 (en) Bipolar memory cell
US4769687A (en) Lateral bipolar transistor and method of producing the same
JP2755597B2 (en) Method of manufacturing polycide semiconductor device and semiconductor device
JPH0951072A (en) Semiconductor device and its manufacture
JPS5910581B2 (en) Manufacturing method of semiconductor device
US4673969A (en) Semiconductor device having multiple conductive layers and the method of manufacturing the semiconductor device
US5594269A (en) Resistive load for integrated circuit devices
US4785342A (en) Static random access memory having structure of first-, second- and third-level conductive films
JP2710197B2 (en) Method for manufacturing semiconductor device
US4617071A (en) Method of fabricating electrically connected regions of opposite conductivity type in a semiconductor structure
US5068201A (en) Method for forming a high valued resistive load element and low resistance interconnect for integrated circuits
US4544937A (en) Formation of normal resistors by degenerate doping of substrates
JPH0258868A (en) Semiconductor memory
JPS6381984A (en) Polycrystal semiconductor diode
US5268325A (en) Method for fabricating a polycrystalline silicon resistive load element in an integrated circuit
JP2867934B2 (en) Semiconductor device and manufacturing method thereof
JPH10242301A (en) Semiconductor memory and manufacture thereof
KR0129127B1 (en) Semiconductor device
JPH0360068A (en) Semiconductor memory device
US5317168A (en) Superconducting field effect transistor
JP3160954B2 (en) Semiconductor device
JPS63258062A (en) Semiconductor memory device
JPS627151A (en) Semiconductor device
JPS6157709B2 (en)