JPH0258323B2 - - Google Patents

Info

Publication number
JPH0258323B2
JPH0258323B2 JP56088805A JP8880581A JPH0258323B2 JP H0258323 B2 JPH0258323 B2 JP H0258323B2 JP 56088805 A JP56088805 A JP 56088805A JP 8880581 A JP8880581 A JP 8880581A JP H0258323 B2 JPH0258323 B2 JP H0258323B2
Authority
JP
Japan
Prior art keywords
gas
blowing
seconds
cast iron
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56088805A
Other languages
Japanese (ja)
Other versions
JPS57203708A (en
Inventor
Nobuhisa Tsutsumi
Masato Imamura
Yasuto Hiramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Tec Corp
Original Assignee
Asahi Malleable Iron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Malleable Iron Co Ltd filed Critical Asahi Malleable Iron Co Ltd
Priority to JP56088805A priority Critical patent/JPS57203708A/en
Publication of JPS57203708A publication Critical patent/JPS57203708A/en
Publication of JPH0258323B2 publication Critical patent/JPH0258323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は球状黒鉛鋳鉄の球状黒鉛の結晶形態
が芋虫状に変形したいわゆるコンパクテツドバー
ミキユラ鋳鉄(以下C/V鋳鉄と略記する)の製
造方法に関するものである。 適当な強度と延性を有し、鋳造性と熱伝導性を
失なわないC/V鋳鉄は、その使用目的に応じた
性質を持つように、その化学組成とC/V黒鉛処
理が選定されることにより近時漸く製造が活発と
なりつつある。この鋳鉄の製造方法には種々ある
が現在生産に利用されているものとしては大別し
て次の3種類がある。 (1) 黒鉛球状化剤Mgを球状化より不足気味に添
加する方法。 (2) Fe・Si−Mg合金中に球状化阻害剤を添加す
るか、またはC/V黒鉛化処理時に同時添加す
る方法。 (3) Ca、Ce、Y、希土類元素など完全な球状化
が得難い元素または合金を添加する方法。 しかしながら上記の方法は、黒鉛の形状の安定
化が比較的困難なものもあり、また処理溶湯の化
学処理、微量元素、溶湯温度のほか、鋳型及び鋳
物部品の形状寸法など、その冷却速度に影響する
要因が異なることにより、黒鉛形状の安定化と性
質のばらつき範囲を狭くすることが難かしいとい
う欠点がある。 本発明は上述の欠点を除去するためになされた
もので、黒鉛形状が安定しており、かつ性質のば
らつきが小さいC/V鋳鉄の製造方法を提供する
ことを目的とするものである。 以下本発明の実施例を説明する。 ソーレル銑にフエロマンガンを配合して、700
Kg低周波誘導炉溶解にて溶製した母材(C4.03%、
Si0.96%、Mn0.19%、P0.045%、S0.006%)を用
いて100Kg高周波誘導炉中に10号黒鉛ルツボを挿
入して1500℃で溶解後、炉内にプランジヤ法によ
りOGRC8球状化剤0.20KgMgを添加し、Fe−Si接
種(0.20%Si)を行なつた後、所定のガス吹き込
みを行なつた。 吹き込みガスはAr、CH4及びC2H2とし、それ
ぞれ10/min流量のガスを1500℃の溶湯中に、
石英管(6mmφ)を使用して1号ルツボの底部に
挿入し、60秒間及び90秒間吹き込みを行なつた。 吹き込み後、30mmφ×200mm長さの丸棒のCO2
プロセス横込め鋳型に注湯した。この供試片より
4号試験片を旋削加工して引張試験を行ない、掴
み部について硬さ測定を行なつた。つぎの第1表
はその結果を示すものである。
The present invention relates to a method for manufacturing so-called compacted vermicular cast iron (hereinafter abbreviated as C/V cast iron) in which the crystal form of spheroidal graphite in spheroidal graphite cast iron is deformed into a caterpillar shape. C/V cast iron has appropriate strength and ductility and maintains castability and thermal conductivity, and its chemical composition and C/V graphite treatment are selected so that it has properties appropriate to its intended use. As a result, manufacturing has recently become more active. Although there are various methods for manufacturing cast iron, the following three types are currently used in production. (1) A method in which Mg, a graphite spheroidizing agent, is added in a slightly insufficient amount compared to spheroidizing. (2) A method in which a spheroidization inhibitor is added to the Fe/Si-Mg alloy or simultaneously added during C/V graphitization treatment. (3) A method of adding elements or alloys that are difficult to achieve complete spheroidization, such as Ca, Ce, Y, and rare earth elements. However, with some of the above methods, it is relatively difficult to stabilize the shape of graphite, and the cooling rate is affected by the chemical treatment of the molten metal, trace elements, molten metal temperature, and the shape and dimensions of the mold and cast parts. Due to different factors, it is difficult to stabilize the shape of graphite and narrow the range of variation in properties. The present invention was made in order to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a method for manufacturing C/V cast iron in which the shape of graphite is stable and variation in properties is small. Examples of the present invention will be described below. 700 by adding ferromanganese to Sorel pig
Base material (C4.03%,
After inserting a No. 10 graphite crucible into a 100Kg high-frequency induction furnace and melting at 1500℃, OGRC8 was placed in the furnace using a plunger method. After adding a spheroidizing agent of 0.20 KgMg and performing Fe-Si inoculation (0.20% Si), a predetermined amount of gas was blown. The blown gases were Ar, CH 4 and C 2 H 2 , each at a flow rate of 10/min into the molten metal at 1500℃.
A quartz tube (6 mmφ) was inserted into the bottom of crucible No. 1, and blowing was performed for 60 seconds and 90 seconds. After blowing, CO 2 in a round bar with a length of 30mmφ x 200mm
Process Molten metal was poured into a side-filling mold. From this test piece, a No. 4 test piece was turned and subjected to a tensile test, and the hardness of the grip portion was measured. Table 1 below shows the results.

【表】 第1図はガス吹き込みを行なう前のMg含有量
と、60秒間及び90秒間ガス吹き込み後のMg含有
量を示すものである。60秒間及び90秒間のガス吹
き込みは同一溶湯についての連続吹き込みでない
ため、正確なMgの減量を知ることは出来なかつ
たが、ガス吹き込みにより可成りのMgが減少す
ること、CH4ガス及びC2H2ガス吹き込みの場合
には、Arガス吹き込みに比較してMg減少量が多
いこと、また吹き込みガスがCH4及びArの場合
に第1図に示されているようにガス吹き込み時間
によりMg減少量が大きくなる傾向が認められ
た。これに反して吹き込みガスがC2H2の場合は、
90秒間ガス吹き込み後のMgの残量が、60秒間ガ
ス吹き込み後のMgの残量より大きいが、これは
60秒間ガスを吹き込んだ溶湯の吹き込み前のMg
量が、90秒間ガスを吹き込んだ溶湯の吹き込み前
のMg量より著しく少なかつたためである。 また第2図は上記試料の引張強さ及び伸びの関
係を示すものである。これによれば実験数は少な
いが、CH4やC2H2ガス吹き込みによるものはほ
ぼ同一レベルの引張強さに対してArガス吹き込
みによるものより伸びが大きいことが認められ
る。 また第3図〜第8図は上記ガス吹き込みによつ
て得られたC/V鋳鉄の各試料の顕微鏡写真であ
り、各図においてaは50倍、bは100倍、cは400
倍である。また第3図および第6図は吹き込みガ
スがCH4のものであり、第4図および第7図は吹
き込みガスがC2H2のものであり、第5図および
第8図は吹き込みガスがArのものである。また
第3図〜第5図はガス吹き込み時間が60秒のもの
を示し、第6図〜第8図はガス吹き込み時間が90
秒のものである。 また第9図〜第14図は上記各試料の黒鉛形状
分布を示すもので、各図とも横座標に形状係数SI
をとり、縦座標に偏倚度ERと頻度(%)をとつ
てある。なお、形状係数SI=面積/(周長)2×4π である。 また第9図および第10図は吹き込みガスが
CH4のもので、第9図はガス吹き込み時間が60秒
の場合であり、第10図は90秒の場合である。 第11図および第12図は吹き込みガスが
C2H2のもので、第11図はガス吹き込み時間が
60秒の場合であり、第12図は90秒の場合であ
る。 さらに第13図および第14図は吹き込みガス
がArのもので、第13図はガス吹き込み時間が
60秒の場合であり、第14図は90秒の場合であ
る。 これから本発明によるC/V鋳鉄の黒鉛組織
は、CH4及びC2H2ガス吹き込みの場合と、Arガ
ス吹き込みの場合には、その黒鉛組織の形成に差
が認められる。すなわち、前者の場合にはC/V
黒鉛に対する球状黒鉛の混合率が小さいのに対
し、後者のAr吹き込みのものでは、50倍の組織
で明らかなように球状黒鉛の混合率も比較的高
く、また集団的な偏在も認められる。これはMg
含有量が前者に比較して高いことも原因すると思
われるが、Ar90秒間吹き込みと、C2H290秒間吹
き込みとでは、Mg含有量が97ppmと109ppmで
あつてもこの傾向が認められる。これはAr吹き
込みの場合はそのバブリング効果によるMg逸脱
の促進作用があるのに対し、CH4及びC2H2の場
合には、C/V黒鉛の生成に直接的効果がMgフ
エイデイング効果と共存して作り出されるためと
考えられる。 以上のことから、C/V鋳鉄の製造法としての
本発明のガス吹き込み法が比較的安定化したもの
であることがわかる。 上述の通りであるから本発明方法によれば、黒
鉛形状が安定し、かつ性質のばらつきが小さい
C/V鋳鉄を比較的容易に製造できるというすぐ
れた効果が得られる。
[Table] Figure 1 shows the Mg content before gas blowing and the Mg content after gas blowing for 60 seconds and 90 seconds. Since gas blowing for 60 seconds and 90 seconds was not continuous blowing for the same molten metal, it was not possible to know the exact loss of Mg, but it was found that Mg was considerably reduced by gas blowing, CH 4 gas and C 2 In the case of H 2 gas blowing, the amount of Mg reduced is larger compared to Ar gas blowing, and when the blown gas is CH 4 and Ar, as shown in Figure 1, Mg decreases depending on the gas blowing time. A tendency for the amount to increase was observed. On the other hand, if the blowing gas is C 2 H 2 ,
The amount of Mg remaining after blowing gas for 90 seconds is greater than the amount remaining after blowing gas for 60 seconds.
Mg of molten metal before blowing gas into it for 60 seconds
This is because the amount of Mg was significantly lower than the amount of Mg before blowing into the molten metal into which gas was blown for 90 seconds. Moreover, FIG. 2 shows the relationship between the tensile strength and elongation of the above sample. According to this, although the number of experiments is small, it is recognized that those using CH 4 or C 2 H 2 gas injection have greater elongation than those using Ar gas injection for almost the same level of tensile strength. In addition, Figures 3 to 8 are micrographs of each C/V cast iron sample obtained by the above gas injection, and in each figure, a is 50 times, b is 100 times, and c is 400 times.
It's double. Furthermore, in Figures 3 and 6, the blowing gas is CH 4 , in Figures 4 and 7 the blowing gas is C 2 H 2 , and in Figures 5 and 8 the blowing gas is C 2 H 2 . It is of Ar. Also, Figures 3 to 5 show cases where the gas blowing time is 60 seconds, and Figures 6 to 8 show cases where the gas blowing time is 90 seconds.
It is of seconds. In addition, Figures 9 to 14 show the graphite shape distribution of each of the above samples, and in each figure, the abscissa shows the shape coefficient S I
The deviation E R and the frequency (%) are plotted on the ordinate. In addition, shape factor S I = area / (perimeter) 2 × 4π It is. Also, Figures 9 and 10 show that the blown gas is
For CH 4 , FIG. 9 shows the case when the gas blowing time is 60 seconds, and FIG. 10 shows the case when the gas blowing time is 90 seconds. Figures 11 and 12 show that the blowing gas
For C 2 H 2 , Figure 11 shows the gas injection time.
This is the case of 60 seconds, and FIG. 12 is the case of 90 seconds. Furthermore, in Figures 13 and 14, the blown gas is Ar, and in Figure 13, the gas blowing time is
This is the case of 60 seconds, and FIG. 14 is the case of 90 seconds. From this, it can be seen that there is a difference in the formation of the graphite structure of the C/V cast iron according to the present invention between the case of CH 4 and C 2 H 2 gas injection and the case of Ar gas injection. That is, in the former case, C/V
While the mixing ratio of spheroidal graphite to graphite is small, in the latter Ar-injected specimen, the mixing ratio of spheroidal graphite is relatively high, as is clear from the 50x structure, and its collective uneven distribution is also observed. This is Mg
This tendency is likely to be caused by the higher Mg content compared to the former, but this tendency is observed even when the Mg content is 97 ppm and 109 ppm when Ar is blown for 90 seconds and when C 2 H 2 is blown for 90 seconds. This is because in the case of Ar blowing, the bubbling effect promotes Mg deviation, whereas in the case of CH 4 and C 2 H 2 , the direct effect on the generation of C/V graphite coexists with the Mg fading effect. This is thought to be because it is produced by From the above, it can be seen that the gas blowing method of the present invention as a manufacturing method for C/V cast iron is relatively stable. As described above, according to the method of the present invention, an excellent effect can be obtained in that C/V cast iron having a stable graphite shape and small variations in properties can be produced relatively easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガス吹き込み前後におけ
るMg含有量を示すグラフ、第2図は本発明によ
るC/V鋳鉄の引張強さと伸びを示すグラフ、第
3〜第8図は本発明によるC/V鋳鉄の各試料の
顕微鏡写真、第9図〜第14図は本発明による
C/V鋳鉄の各試料の黒鉛形状分布を示すグラフ
である。
FIG. 1 is a graph showing the Mg content before and after gas injection according to the present invention, FIG. 2 is a graph showing the tensile strength and elongation of C/V cast iron according to the present invention, and FIGS. 3 to 8 are graphs showing the C/V cast iron according to the present invention. The micrographs of each sample of V cast iron and FIGS. 9 to 14 are graphs showing the graphite shape distribution of each sample of C/V cast iron according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 黒鉛球状化剤としてMgを含む鋳鉄の溶湯中
にCH4ガス、C2H2ガス、Arガスのいずれかを吹
き込むことによつて球状黒鉛の結晶形態をコンパ
クテツドバーミキユラ鋳鉄の黒鉛の結晶形態に積
極的に変形させることを特徴とするコンパクテツ
ドバーミキユラ鋳鉄の製造方法。
1. The crystal form of spheroidal graphite is compacted by blowing CH 4 gas, C 2 H 2 gas, or Ar gas into molten cast iron containing Mg as a graphite spheroidizing agent. A method for manufacturing compacted vermicular cast iron characterized by actively deforming it into a crystalline form.
JP56088805A 1981-06-11 1981-06-11 Production of compacted vermicular cast iron Granted JPS57203708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56088805A JPS57203708A (en) 1981-06-11 1981-06-11 Production of compacted vermicular cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56088805A JPS57203708A (en) 1981-06-11 1981-06-11 Production of compacted vermicular cast iron

Publications (2)

Publication Number Publication Date
JPS57203708A JPS57203708A (en) 1982-12-14
JPH0258323B2 true JPH0258323B2 (en) 1990-12-07

Family

ID=13953091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56088805A Granted JPS57203708A (en) 1981-06-11 1981-06-11 Production of compacted vermicular cast iron

Country Status (1)

Country Link
JP (1) JPS57203708A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2127041B (en) * 1979-10-24 1986-12-17 William H Moore Controlled graphite formation in cast iron
CN106021860A (en) * 2016-05-09 2016-10-12 哈尔滨理工大学 A nodular cast iron base iron metallurgical state comprehensive evaluation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655512A (en) * 1979-10-11 1981-05-16 Yahagi Seitetsu Kk Method and apparatus for rapid decision of graphite vermiculation degree of molten cast iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655512A (en) * 1979-10-11 1981-05-16 Yahagi Seitetsu Kk Method and apparatus for rapid decision of graphite vermiculation degree of molten cast iron

Also Published As

Publication number Publication date
JPS57203708A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
US4086086A (en) Cast iron
JPS6349723B2 (en)
US4246026A (en) Manufacturing process of vermicular graphic cast-irons through double modification
GB2043696A (en) Adjusting carbon contents of steel melts
EP0317366B1 (en) Process for producing nodular cast iron
US3459541A (en) Process for making nodular iron
JPH0258323B2 (en)
US3619172A (en) Process for forming spheroidal graphite in hypereutectoid steels
JP3735318B2 (en) High silicon cast iron excellent in acid resistance and method for producing the same
US3615278A (en) Enameling grade steel and method of producing the same
JP4126801B2 (en) Method for processing molten metal of spheroidal graphite cast iron
US4684403A (en) Dephosphorization process for manganese-containing alloys
US2826497A (en) Addition agent and method for making ferrous products
US3445223A (en) Alloy for addition of columbium to steel
RU2177041C1 (en) Method of gray cast iron production
SU1659513A1 (en) Method of producing complex titanium and magnesium alloying additives
JPH0357163B2 (en)
RU2139941C1 (en) Method of production of gray iron
SU1081230A1 (en) Master alloy
SU1275056A1 (en) Inoculating additive for cast iron
JP2002206144A (en) Fe-Ni BASED ALLOY HAVING EXCELLENT SURFACE PROPERTY AND PRODUCTION METHOD THEREFOR
SU1708909A1 (en) Cast iron modifier
JPS594484B2 (en) Goukintetsunodatsurin Datsutanhouhou
JPS58104108A (en) Production of additive molten metal for improving structure of gray cast iron
JPS5956944A (en) Production of cast iron casting