JPH0258226B2 - - Google Patents

Info

Publication number
JPH0258226B2
JPH0258226B2 JP20236182A JP20236182A JPH0258226B2 JP H0258226 B2 JPH0258226 B2 JP H0258226B2 JP 20236182 A JP20236182 A JP 20236182A JP 20236182 A JP20236182 A JP 20236182A JP H0258226 B2 JPH0258226 B2 JP H0258226B2
Authority
JP
Japan
Prior art keywords
parts
calcium silicate
crystals
silicone oil
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20236182A
Other languages
Japanese (ja)
Other versions
JPS5992963A (en
Inventor
Isamu Hamada
Yonezumi Ichikawa
Tomoshi Shimomura
Toshikazu Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INSHUREESHON KK
Original Assignee
NIPPON INSHUREESHON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INSHUREESHON KK filed Critical NIPPON INSHUREESHON KK
Priority to JP20236182A priority Critical patent/JPS5992963A/en
Publication of JPS5992963A publication Critical patent/JPS5992963A/en
Publication of JPH0258226B2 publication Critical patent/JPH0258226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は珪酸カルシウム成形体及びその製法に
関し、更に詳しくは撥水性を有する珪酸カルシウ
ム成形体及びその製法に関す。 珪酸カルシウム成形体は無機質で耐熱性があ
り、多孔質であるため耐火材、断熱材をはじめ数
多くの用途に使用される。しかし乍ら該成形体は
多孔質であるために吸水し易いという難点があ
り、吸水すると断熱性が低下し、本来の使用目的
が失なわれるという問題を有している。 この難点を解消するために従来から各種の対策
が考えられており、たとえば珪酸カルシウム成形
体の表面に撥水剤を塗布したり吸着せしめる方法
や、金属石けんやパラフイン系物質を含浸せしめ
る方法が知られているが、前者は表面のみであつ
て使用現場で該成形体を切断したり削孔したりす
ると加工面の再処理を行なわないともはや吸水を
防ぐことが出来ず、また後者は充分なる撥水性が
賦与し難く、また含浸量を増加すると珪酸カルシ
ウム成形体の本来の断熱性の低下と特に耐熱性が
極端に損なわれるという欠点がある。 又、従来ALC(軽量気泡コンクリート)におい
てシリコーンオイルを使用し、成形体内部まで撥
水性を有するものも作られているが、ALCは耐
熱度が低くかつ、独立気泡を有するものである。
またパーライトなどのような発泡粒子を接着剤で
成形した撥水性を有する成形断熱材もつくられて
いるが、これも独立気泡で空隙が構成されている
ものである。一方、一般的な断熱保温材などの軽
量な珪酸カルシウム成形体のような空隙率が高
く、またその空隙も連続的であるようなものにつ
いては成形体内部まで撥水処理を行なうことは非
常に困難であつた。 本発明者は上記難点に注目し該難点を解消する
ために従来から鋭意研究を続けて来たが、この研
究に於いて珪酸カルシウム結晶の二次粒子から成
る水性スラリーにシリコーンオイルを添加混合し
これを成形・乾燥することにより撥水性を有する
珪酸カルシウム成形体を製造出来ることを見出
し、この知見に基ずく発明をすでに出願した(特
願昭56―99133号特開昭58―2252号公報)。この方
法は優れた撥水性を有する珪酸カルシウム成形体
を製造出来るものであるが、その製造条件に於い
て制約を受け、製造条件として適当な条件を選択
する必要がありこのためその管理や人員、設備等
が必要となり工業的実施にいまひとつ問題があつ
た。 本発明者は上記発明について更に引き続く研究
を行なつた結果、珪酸カルシウム結晶の二次粒
子、繊維質物質並びにシリコーンオイルを含有す
るスラリーに硫酸アルミニウムを更に含有せしめ
て成形・乾燥するときは、製造条件として特に限
定されることなく広い範囲で実施可能となり、極
めて工業的有利に目的物成形体を製造出来るこ
と、及びかくして得られる成形体はただたんにシ
リコーンオイルを添加して得られる成形体に比し
その撥水性も一段と向上したものとなるという新
しい事実を見出し、茲に本発明を完成するに至つ
た。即ち本発明は珪酸カルシウム結晶、該結晶と
硫酸アルミニウムとの反応により生じた物質、繊
維質物質及びシリコーンオイルを含有する成形体
であつて、上記珪酸カルシウム結晶は二次粒子を
形成して該二次粒子が相互に連結し、且つ上記シ
リコーンオイルは一部珪酸カルシウム結晶と結合
した状態で含有されて成る珪酸カルシウム成形体
及び珪酸カルシウム結晶の二次粒子及び繊維質物
質を含有する水性スラリーにシリコーンオイル及
び硫酸アルミニウムを添加混合した後、成形し乾
燥することを特徴とする珪酸カルシウム成形体の
製法に係るものである。 本発明の成形体は、珪酸カルシウム結晶の二次
粒子が相互に連結して実質的に構成されており、
これに珪酸カルシウム結晶と硫酸アルミニウムと
の反応により生じた物質(以下単に硫酸アルミ反
応物という)、並びにシリコーンオイルが該結晶
と一部結合して含有されて成るものである。この
ように、硫酸アルミ反応物が更に含有されている
ためにシリコーンオイルのみが上記状態で含有さ
れている成形体に比し撥水性が一段と向上する。
撥水性はシリコーンオイルが珪酸カルシウム結晶
と結合することにより発揮されるが、この撥水性
は上記硫酸アルミ反応物の共存により更に一段と
向上する。シリコーンオイルが珪酸カルシウム結
晶と結合していることはn―ヘキサンで抽出した
場合にシリコーンオイルが抽出されないことによ
り容易に確認出来る。シリコーンオイルは少くと
も成形体中に0.5重量%含有されておれば撥水性
を発揮し、必ずしも成形体全体に均一に含有され
ている必要は無い。たとえば成形体の外周部が中
心部に比しシリコーンオイルの含有量が多くても
(中心部に0.5重量%含有されているかぎり)良
い。成形体全体としてのシリコーンオイルの含有
量は珪酸カルシウム結晶と繊維質物質の合計量
100重量部に対し0.5〜7重量部程度好ましくは
1.5〜5重量部最も好ましくは2〜4重量部程度
である。この際0.5重量部よりも極端に少くなる
と充分なる撥水性が期待し難く、また逆に7重量
部よりも極端に多くなると経済的でないばかりか
耐熱性が低下したり強度が小さくなつたりする傾
向がある。 硫酸アルミニウムと珪酸アルミニウム結晶との
反応に依り生じた生成物とは、珪酸カルシウム結
晶の二次粒子から成る水性スラリーに硫酸アルミ
ニウムを添加混合し、これを成形・乾燥した結果
生じた各種物質を指す。従つてその乾燥条件によ
り生成する物質の種類は二水石膏、半水石膏など
若干異なつて来るが、この点は本発明に於いては
二義的なものであつて要は珪酸カルシウムと硫酸
カルシウム結晶とが上記乾燥された結果生成する
ものが含まれておれば良い。該反応で生成する物
質の量は、使用する硫酸アルミニウムの量により
主に左右され、実質的に添加する硫酸アルミニウ
ムの0.5〜10重量部に相当して生成する量が存在
していれば良い。 本発明の成形体を製造するに際しては、珪酸カ
ルシウム結晶の二次粒子が繊維質物質と共にまた
は繊維質物質なしで水に分散した水性スラリーに
シリコーンオイル及び硫酸アルミニウムを必要に
応じ繊維質物質と共に添加混合し成形し乾燥する
ことにより得られる。この際使用される繊維質物
質を含みまたは含まない珪酸カルシウム結晶の二
次粒子から成る水性スラリー自体は従来から知ら
れたものであり、本発明に於いては公知の各種の
水性スラリーがいずれも使用出来、たとえば特公
昭45―25771号、特公昭52―43494号、特公昭55―
29952号公報等に記載されたものを例示すること
が出来る。珪酸カルシウム結晶としては、トベル
モライト族及びワラストナイト族に属する各種の
結晶が含まれる。 繊維質物質としては有機質繊維並びに無機質繊
維の一種または2種以上が使用され、前者として
はパルプ、木綿、麻、羊毛、木質繊維、レーヨ
ン、ポロプロピレン、ポリアクリロニトリル、ポ
リアミド、ポリエステル等が、後者としては石
綿、岩綿、ガラス繊維、セラミツクフアイバー、
炭素繊維、金属繊維等が例示出来る。 繊維質物質は本発明の成形体の使用目的に応じ
てその添加量を適宜変化させることが出来るが通
常上記結晶スラリー中の固形分含有量100重量に
対して1〜30重量部添加する。 また使用するシリコーンオイルとしては、ジメ
チルポリシロキサンおよびそのメチル基の一部を
水素原子、低級アルキル基、フエニル基、アミノ
基、水酸基等で置換したものが使用される。添加
量は珪酸カルシウム結晶及び繊維質物質の合計量
100重量部に対し1.5〜7重量部好ましくは2〜5
重量部である。本発明に於いては硫酸アルミニウ
ムは、珪酸カルシウム結晶及び繊維質物質の合計
量100重量部に対し0.5〜10重量部好ましくは1〜
5重量部である。この際添加量が0.5重量部より
少ないと十分なる効果が得られず、また10重量部
を超えて添加しても、もはやその効果の向上は期
待できず、成形体の曲げ強さが低下する傾向を示
すので好ましくない。 本発明に於いてはかくして調製された水性スラ
リーを成形し乾燥するが、成形に先だちこの種珪
酸カルシウム成形体の製造に使用される各種添加
材が必要に応じ添加される。この際の添加材とし
てはたとえばセメント類、粘土類、水ガラス、雲
母等を例示することが出来る。成形手段としても
従来の各種の手段がいずれも用い得られ、たとえ
ば加圧脱水成形法等の手段を例示出来、乾燥手段
としても通常の手段で良く、たとえば加熱、自然
放置等の手段が採用される。 本発明に於いては、硫酸アルミニウムを珪酸カ
ルシウム結晶の二次粒子のスラリーに添加すると
いう手段を採用することにより何等製造条件に制
限されることなく広い条件下に安定した撥水性を
有する成形体を常時製造することが出来惹いては
工業的に極めて有利となるという利点を有すると
共に、得られる目的物成形体は極めて優れた撥水
性を有し特に多量のシリコーンオイルを使用しな
くても、たとえば4重量%以下のシリコーンオイ
ルの使用量でも極めて優れた撥水性を有する成形
体を得ることが出来るという効果がある。また撥
水性が均一な成形体となる効果もある。しかも加
えて珪酸カルシウム成形体本来の優れた各種物性
たとえば耐熱性、断熱性等は殆んど低下しない。 以下に実施例を示して本発明を具体的に説明す
る。但し下記例に於ける物性は夫々次の方法によ
り測定したものである。また部とあるは重量部を
示す。 密度(g/cm3);JIS―A―9510 曲げ強さ(Kg//cm3);同 上 吸 水 率;得られた成形体を厚みの中央部を含
む断面で切断し、水頭下40mmに浸漬し、24時
間軽過後の吸水量を測定し吸水率を算出し
た。但し吸水率は次の式によつた。 吸水率(%)=W―W0/W0×100 但しWは24時間浸漬後の成形体の重量を、また
W0は浸漬前の成形体の重量を示す。(単位g) また成形体のシリコーンの定量は成形体を粉砕
し、エチルシリケート〔Si(OC2H54〕、KOHで
熱分解して、エチルアルコールを溶媒としてガス
クロマトグラフイーにより分析した。 実施例 1 フエロシリコンダスト26.9部、珪石粉末26.9部
及び生石灰46.2部(CaO/SiO2モル比=1)を水
対固形分比が24となるように水に懸濁して原料ス
ラリーを調製し、これを圧力12Kg/cm2、温度191゜
でオートクレープ中撹拌し乍ら8時間水熱反応せ
しめてゾーノトライト結晶から成る直径5〜
50μmのほぼ球状の二次粒子の結晶水性スラリー
を得た。 上記で得た結晶スラリー100部(固形分)にガ
ラス繊維7部及びパルプ2部を水懸濁液として添
加混合し、次いでその固形分100部に対しジメチ
ルポリシロキサン(トーレ・シリコーン(株)製、
「SH200オイル」500cs)、3部、及び硫酸アルミ
ニウム〔Al(SO43・18H2O〕(住友アルミニウム
製鉄所、無鉄硫酸バンド、固形特号)を無水物基
準で第1表に示す所定量添加し良く混合した。次
いで加圧脱水成形し130℃で13時間乾燥して成形
体を得た。これ等の成形体の物性を下記第1表に
示す。また得られた成形体を粉砕しn―ヘキサン
中に浸漬したがシリコーンオイルは全く抽出され
なかつた。
The present invention relates to a calcium silicate molded article and a method for producing the same, and more particularly to a water-repellent calcium silicate molded article and a method for producing the same. Calcium silicate molded bodies are inorganic, heat resistant, and porous, so they are used in many applications including fireproofing and heat insulation. However, since the molded body is porous, it has the disadvantage that it easily absorbs water, and when it absorbs water, its heat insulating properties decrease and its original purpose of use is lost. Various countermeasures have been considered in the past to solve this problem, such as applying or adsorbing a water repellent to the surface of the calcium silicate molded body, and impregnating it with metal soap or paraffin-based substances. However, the former is only for the surface, and if the molded body is cut or drilled at the site of use, it is no longer possible to prevent water absorption unless the machined surface is retreated, and the latter is not sufficient. It is difficult to impart water repellency, and when the amount of impregnation is increased, the inherent heat insulating properties of the calcium silicate molded article are reduced, and in particular, the heat resistance is extremely impaired. In addition, conventional ALC (lightweight cellular concrete) has been made using silicone oil to make the molded body water repellent, but ALC has low heat resistance and has closed cells.
Water-repellent molded heat insulating materials are also made by molding expanded particles such as perlite with adhesive, but these also have voids made of closed cells. On the other hand, for materials with high porosity and continuous voids, such as lightweight calcium silicate moldings used in general heat insulating materials, it is extremely difficult to apply water repellent treatment to the inside of the molded material. It was difficult. The inventors of the present invention have focused on the above-mentioned difficulties and have been conducting intensive research in order to resolve them. It was discovered that a water-repellent calcium silicate molded body could be produced by molding and drying this, and an invention based on this knowledge was already filed (Japanese Patent Application No. 56-99133, JP-A No. 58-2252). . Although this method can produce calcium silicate molded bodies with excellent water repellency, there are restrictions on the manufacturing conditions, and it is necessary to select appropriate manufacturing conditions. There was another problem in industrial implementation as equipment, etc. was required. As a result of further research into the above invention, the present inventor found that when aluminum sulfate is further contained in a slurry containing secondary particles of calcium silicate crystals, a fibrous substance, and silicone oil, and the slurry is molded and dried, The conditions are not particularly limited and can be carried out over a wide range of conditions, and the desired molded product can be manufactured with extremely industrial advantage, and the molded product thus obtained can be easily obtained by simply adding silicone oil. In comparison, we discovered a new fact that the water repellency is further improved, and finally completed the present invention. That is, the present invention provides a molded article containing calcium silicate crystals, a substance produced by the reaction of the crystals with aluminum sulfate, a fibrous substance, and silicone oil, wherein the calcium silicate crystals form secondary particles. Silicone is added to an aqueous slurry containing a calcium silicate molded body in which the secondary particles are interconnected and the silicone oil is partially combined with calcium silicate crystals, and the secondary particles of the calcium silicate crystals and a fibrous material. The present invention relates to a method for producing a calcium silicate molded body, which is characterized in that oil and aluminum sulfate are added and mixed, then molded and dried. The molded article of the present invention is substantially composed of interconnected secondary particles of calcium silicate crystals,
This contains a substance produced by the reaction between calcium silicate crystals and aluminum sulfate (hereinafter simply referred to as aluminum sulfate reactant) and silicone oil partially bound to the crystals. In this way, since the aluminum sulfate reactant is further contained, the water repellency is further improved compared to a molded article containing only silicone oil in the above state.
Water repellency is exhibited by the silicone oil bonding with calcium silicate crystals, and this water repellency is further improved by the coexistence of the aluminum sulfate reactant. The fact that silicone oil is bound to calcium silicate crystals can be easily confirmed by the fact that silicone oil is not extracted when extracted with n-hexane. Silicone oil exhibits water repellency if it is contained in the molded article in an amount of at least 0.5% by weight, and it does not necessarily have to be contained uniformly throughout the molded article. For example, the content of silicone oil in the outer periphery of the molded body may be greater than that in the center (as long as the content is 0.5% by weight in the center). The silicone oil content of the entire molded product is the total amount of calcium silicate crystals and fibrous material.
Preferably about 0.5 to 7 parts by weight per 100 parts by weight
The amount is about 1.5 to 5 parts by weight, most preferably about 2 to 4 parts by weight. In this case, if the amount is extremely less than 0.5 parts by weight, it is difficult to expect sufficient water repellency, and conversely, if the amount is extremely less than 7 parts by weight, it is not only uneconomical but also tends to lower heat resistance and strength. There is. The products produced by the reaction between aluminum sulfate and aluminum silicate crystals refer to various substances produced as a result of adding and mixing aluminum sulfate to an aqueous slurry consisting of secondary particles of calcium silicate crystals, shaping and drying this. . Therefore, the types of substances produced differ slightly depending on the drying conditions, such as dihydrate gypsum and hemihydrate gypsum, but this point is secondary to the present invention, and the important point is that calcium silicate and calcium sulfate are produced. It suffices if it contains those produced as a result of the drying of the crystals. The amount of the substance produced in the reaction mainly depends on the amount of aluminum sulfate used, and it is sufficient that the amount produced substantially corresponds to 0.5 to 10 parts by weight of the aluminum sulfate added. When producing the molded article of the present invention, silicone oil and aluminum sulfate are added to an aqueous slurry in which secondary particles of calcium silicate crystals are dispersed in water with or without a fibrous material, along with a fibrous material as necessary. Obtained by mixing, shaping and drying. The aqueous slurry itself consisting of secondary particles of calcium silicate crystals, which may or may not contain fibrous substances, used in this case has been known for a long time, and in the present invention, any of the various known aqueous slurries may be used. Can be used, for example, Special Publication No. 45-25771, Special Publication No. 43494, Special Publication No. 52-43494, Special Publication No. 55-
Examples include those described in Publication No. 29952 and the like. Calcium silicate crystals include various crystals belonging to the tobermolite group and the wollastonite group. As the fibrous material, one or more types of organic fibers and inorganic fibers are used, and the former includes pulp, cotton, linen, wool, wood fiber, rayon, polypropylene, polyacrylonitrile, polyamide, polyester, etc. are asbestos, rock wool, glass fiber, ceramic fiber,
Examples include carbon fiber and metal fiber. The amount of the fibrous material added can be changed depending on the purpose of use of the molded article of the present invention, but it is usually added in an amount of 1 to 30 parts by weight per 100 parts by weight of the solid content in the crystal slurry. As the silicone oil used, dimethylpolysiloxane and its methyl groups are partially substituted with hydrogen atoms, lower alkyl groups, phenyl groups, amino groups, hydroxyl groups, etc. are used. The amount added is the total amount of calcium silicate crystals and fibrous substances.
1.5 to 7 parts by weight, preferably 2 to 5 parts by weight per 100 parts by weight
Parts by weight. In the present invention, aluminum sulfate is used in an amount of 0.5 to 10 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the total amount of calcium silicate crystals and fibrous material.
It is 5 parts by weight. In this case, if the amount added is less than 0.5 parts by weight, a sufficient effect will not be obtained, and if it is added in excess of 10 parts by weight, no improvement in the effect can be expected, and the bending strength of the molded product will decrease. This is not desirable because it shows a tendency. In the present invention, the aqueous slurry thus prepared is molded and dried, but prior to molding, various additives used in the production of this type of calcium silicate molded body are added as necessary. Examples of additives in this case include cements, clays, water glass, and mica. Any of various conventional means can be used as the molding means, such as pressure dehydration molding, and the drying means can be any conventional means, such as heating, leaving to stand, etc. Ru. In the present invention, by adopting a method of adding aluminum sulfate to a slurry of secondary particles of calcium silicate crystals, a molded article having stable water repellency under a wide range of conditions without being restricted by any manufacturing conditions can be obtained. It has the advantage that it can be produced constantly, which is very industrially advantageous, and the obtained molded object has extremely excellent water repellency, without using a particularly large amount of silicone oil. For example, even if the amount of silicone oil used is 4% by weight or less, it is possible to obtain a molded article having extremely excellent water repellency. It also has the effect of forming a molded product with uniform water repellency. In addition, the various excellent physical properties inherent to the calcium silicate molded body, such as heat resistance and heat insulation properties, hardly deteriorate. EXAMPLES The present invention will be specifically described below with reference to Examples. However, the physical properties in the following examples were measured by the following methods. In addition, parts indicate parts by weight. Density (g/cm 3 ): JIS-A-9510 Bending strength (Kg//cm 3 ): Same as above Water absorption: The obtained molded body was cut in a cross section including the center of the thickness, and the water head was 40mm below. The water absorption rate was calculated by measuring the amount of water absorbed after soaking in water for 24 hours. However, the water absorption rate was determined by the following formula. Water absorption rate (%) = W - W 0 / W 0 × 100 where W is the weight of the molded product after 24-hour immersion, and
W 0 indicates the weight of the molded body before immersion. (Unit: g) The amount of silicone in the molded product was determined by crushing the molded product, thermally decomposing it with ethyl silicate [Si(OC 2 H 5 ) 4 ] and KOH, and analyzing it by gas chromatography using ethyl alcohol as a solvent. Example 1 A raw material slurry was prepared by suspending 26.9 parts of ferrosilicon dust, 26.9 parts of silica powder, and 46.2 parts of quicklime (CaO/SiO 2 molar ratio = 1) in water such that the water-to-solids ratio was 24. This was subjected to a hydrothermal reaction for 8 hours while stirring in an autoclave at a pressure of 12 kg/cm 2 and a temperature of 191°, resulting in crystals of zonotrite crystals with diameters of 5 to 50 mm.
A crystalline aqueous slurry of approximately spherical secondary particles of 50 μm was obtained. To 100 parts (solid content) of the crystal slurry obtained above, 7 parts of glass fiber and 2 parts of pulp were added and mixed as an aqueous suspension, and then dimethylpolysiloxane (manufactured by Toray Silicone Co., Ltd.) was added to 100 parts of the solid content. ,
"SH200 oil" 500 cs), 3 parts, and aluminum sulfate [Al(SO 4 ) 3.18H 2 O] (Sumitomo Aluminum Works, iron-free sulfate band, solid special issue) are shown in Table 1 on an anhydride basis. A predetermined amount was added and mixed well. Next, it was subjected to pressure dehydration molding and dried at 130°C for 13 hours to obtain a molded product. The physical properties of these molded bodies are shown in Table 1 below. Further, the obtained molded body was crushed and immersed in n-hexane, but no silicone oil was extracted.

【表】 また上記で得られた成形体を粉砕して得た粉末
2gをとりこれをエタノール20ml、塩酸(1+
1)20ml、蒸留水60mlを加え、70〜80℃の湯浴中
で30分間溶出し、アルミニウムは原子吸光法で、
硫酸イオンはJIS―K―0101の42.3の重量法で定
量した結果を第2表に示す。
[Table] Also, take 2g of powder obtained by crushing the molded body obtained above, mix it with 20ml of ethanol, hydrochloric acid (1+
1) Add 20ml and 60ml of distilled water and elute in a water bath at 70-80℃ for 30 minutes.
Table 2 shows the results of quantification of sulfate ions using the gravimetric method of JIS-K-0101 42.3.

【表】 実施例 2 実施例1と同様にして得た結晶スラリー(固形
分含有量100部)にガラス繊維7部、およびパル
プ2部を水懸濁液として添加混合して得られた水
性スラリーに、該水性スラリーの固形分含有量
100部に対し、実施例1と同様の硫酸アルミニウ
ムを無水物基準で1.5部、および実施例1と同様
のシリコーンオイルを第3表に示す量添加混合し
た後、加圧脱水成形し130℃で13時間乾燥して成
形体を得た。 これらの成形体の物性を測定した結果を第3表
に併せて示す。
[Table] Example 2 Aqueous slurry obtained by adding and mixing 7 parts of glass fiber and 2 parts of pulp as an aqueous suspension to the crystal slurry (solid content 100 parts) obtained in the same manner as in Example 1. , the solids content of the aqueous slurry
To 100 parts, 1.5 parts of the same aluminum sulfate as in Example 1 on an anhydride basis and the same amount of silicone oil as in Example 1 as shown in Table 3 were added and mixed, followed by pressure dehydration molding at 130°C. A molded article was obtained by drying for 13 hours. The results of measuring the physical properties of these molded bodies are also shown in Table 3.

【表】 また上記の実施例の成形体を粉砕してn―ヘキ
サンを添加したが、シリコーンは抽出されなかつ
た。 さらにNo.4〜9の成形体を室温下(25〜30℃)
で13日間静置した後吸水率を測定した結果を第4
表に示す。
[Table] Furthermore, although the molded product of the above example was crushed and n-hexane was added, silicone was not extracted. Furthermore, molded bodies No. 4 to 9 were prepared at room temperature (25 to 30℃).
The results of measuring the water absorption rate after leaving it for 13 days are shown in the fourth column.
Shown in the table.

【表】 実施例 3 実施例1と同様にして得た結晶スラリー(固形
分含有量100部)にガラス繊維7部、およびパル
プ2部を水懸濁液として添加混合して得られた水
性スラリーに、該水性スラリーの固形分含有量
100部に対し、実施例1と同様の硫酸アルミニウ
ムを無水物基準で1.5部、およびジメチルポリシ
ロキサン〔トーレ・シリコーン(株)製、SH200オイ
ル〕の第5表に示す各種粘度(25℃)のものを3
部添加混合した後、加圧脱水成形し、130℃で13
時間乾燥して成形体を得た。 また上記シリコーンオイルにかえて、ジメチル
ポリシロキサン630csのメチル基を1分子中に2
〜3個H基で置換したシリコーンオイル、および
ジメチルポリシロキサン380csのメチル基を極微
量アミノ基に置換したシリコーンオイルを使用す
る以外は上記と同様にして成形体を得た。 これらの成形体の物性を測定した結果を第5表
に併せて示す。
[Table] Example 3 Aqueous slurry obtained by adding and mixing 7 parts of glass fiber and 2 parts of pulp as an aqueous suspension to the crystal slurry (solid content 100 parts) obtained in the same manner as in Example 1. , the solids content of the aqueous slurry
To 100 parts, 1.5 parts of the same aluminum sulfate as in Example 1 on an anhydride basis and dimethylpolysiloxane (manufactured by Toray Silicone Co., Ltd., SH200 oil) with various viscosities (at 25°C) shown in Table 5 were added. 3 things
After addition and mixing, pressurized and dehydrated molding was carried out at 130℃ for 13 minutes.
A molded article was obtained by drying for a period of time. Also, instead of the silicone oil mentioned above, 2 methyl groups of dimethylpolysiloxane 630cs are added in one molecule.
A molded article was obtained in the same manner as above except that a silicone oil substituted with ~3 H groups and a silicone oil in which a trace amount of the methyl group of dimethylpolysiloxane 380cs was substituted with an amino group were used. The results of measuring the physical properties of these molded bodies are also shown in Table 5.

【表】 また上記の成形体を粉砕してn―ヘキサンを添
加したが、シリコーンは抽出されなかつた。 実施例 4 珪石粉末52部及び沈降容積46mlの石灰乳をCaO
として45.6部(CaO/SuO2モル比=1)を水対
固形分比が24倍となるように混合し、これを圧力
12Kg/cm2、温度191℃でオートクレーブ中撹拌下
に8時間反応せしめてゾーノトライト結晶から成
る直径10〜80μmのほぼ球状の二次粒子の水性ス
ラリーを得た。 上記で得られた結晶スラリー100部(固形分)
にガラス繊維7部、パルプ2部を添加混合して得
られた水性スラリーに該水性スラリーの固形分含
有量100部に対し実施例1と同様の硫酸アルミニ
ウムを無水物基準で第6表に示す量および実施例
1と同様のシリコーンオイルを2部添加混合した
後、加圧脱水成形し130℃で13時間乾燥して成形
体を得た。 得られた成形体の物性を測定した結果を第6表
に併せて示す。尚成形体を粉砕してn―ヘキサン
中に浸漬したがシリコーンオイルは抽出されなか
つた。
[Table] Furthermore, although the above molded body was crushed and n-hexane was added, silicone was not extracted. Example 4 52 parts of silica powder and milk of lime with a settling volume of 46 ml were mixed with CaO
45.6 parts (CaO/SuO 2 molar ratio = 1) were mixed so that the water to solid content ratio was 24 times, and the mixture was heated under pressure.
The reaction was carried out at 12 kg/cm 2 and a temperature of 191° C. for 8 hours with stirring in an autoclave to obtain an aqueous slurry of approximately spherical secondary particles of zonotrite crystals with a diameter of 10 to 80 μm. 100 parts of the crystal slurry obtained above (solid content)
To the aqueous slurry obtained by adding and mixing 7 parts of glass fiber and 2 parts of pulp, the same aluminum sulfate as in Example 1 was added to the solid content of the aqueous slurry (100 parts) as shown in Table 6 on an anhydride basis. Two parts of silicone oil in the same amount as in Example 1 were added and mixed, followed by pressure dehydration molding and drying at 130° C. for 13 hours to obtain a molded product. Table 6 also shows the results of measuring the physical properties of the obtained molded product. Although the molded body was crushed and immersed in n-hexane, no silicone oil was extracted.

【表】 No.1は比較例を示す。
実施例 5 珪石粉末52.6部と生石灰47.4部(CaO/SiO2
ル比=0.975)を水対固形分比が12倍となるよう
に水と混合して原料スラリーを調製した。該スラ
リーを圧力12Kg/cm2、温度191℃でオートクレー
ブ中撹拌下に8時間反応せしめてゾーノトライト
結晶を主成分とする直径10〜150μmのほぼ球状の
二次粒子から成る水性スラリーを得た。 上記方法で得られた結晶スラリー(固形分含有
量100部)にガラス繊維5部、およびパルプ3部
を水懸濁液として添加混合して得られた水性スラ
リーに、該水性スラリーの固形分含有量100部に
対し、ポルトランドセメント5部、ベントナイト
10部を水懸濁液として加え、実施例1と同様の硫
酸アルミニウムを無水物基準で第7表に示す量、
および実施例1と同様のシリコーンオイルを45部
添加混合した後、加圧脱水成形し130℃で13時間
乾燥して成形体を得た。 これらの成形体の物性を測定した結果を第7表
に併せて示す。
[Table] No. 1 shows a comparative example.
Example 5 A raw material slurry was prepared by mixing 52.6 parts of silica powder and 47.4 parts of quicklime (CaO/SiO 2 molar ratio = 0.975) with water such that the water to solid content ratio was 12 times. The slurry was reacted for 8 hours with stirring in an autoclave at a pressure of 12 Kg/cm 2 and a temperature of 191° C. to obtain an aqueous slurry consisting of approximately spherical secondary particles with a diameter of 10 to 150 μm and mainly composed of zonotrite crystals. 5 parts of glass fiber and 3 parts of pulp are added and mixed as an aqueous suspension to the crystal slurry obtained by the above method (solid content 100 parts), and the solid content of the aqueous slurry is mixed. For every 100 parts, 5 parts of Portland cement, bentonite
10 parts of aluminum sulfate as in Example 1 were added as an aqueous suspension in the amounts shown in Table 7 on an anhydrous basis;
Then, 45 parts of the same silicone oil as in Example 1 was added and mixed, followed by pressure dehydration molding and drying at 130° C. for 13 hours to obtain a molded product. The results of measuring the physical properties of these molded bodies are also shown in Table 7.

【表】 また実施例の成形体を粉砕してn―ヘキサンを
添加したがシリコーンは抽出されなかつた。 さらに実施例1と同様にしてアルミニウム、お
よび硫酸イオンの定量分析を行なつた結果を第8
表に示す。
[Table] Furthermore, although the molded bodies of Examples were crushed and n-hexane was added, silicone was not extracted. Furthermore, the results of quantitative analysis of aluminum and sulfate ions in the same manner as in Example 1 are presented in the eighth example.
Shown in the table.

【表】 なお、比較例とあるのは、硫酸アルミニウム無
添加の成形体の分析結果を示す。 実施例 6 珪石粉末56.6部及び無石灰43.4部(CaO/CiO2
モル比=6.83)を水対固形分比が12倍となるよう
に水と混合して原料スラリーを調製した。これを
圧力8Kg/cm2、温度175℃でオートクレーブ中で
5時間反応せしめてトベルモライト結晶から成る
直径10〜150μmのほぼ球状の二次粒子の結晶スラ
リーを得た。 上記で得た結晶スラリー(固形分含有量100部)
にガラス繊維5部、およびパルプ3部を水懸濁液
として添加混合して得られた水性スラリーに、該
水性スラリーの固形分含有量100部に対し、ポル
トランドセメント5部、ベントナイト10部を水懸
濁液として加え、実施例1と同様の硫酸アルミニ
ウムを無水物基準で1.5部および実施例1と同様
のシリコーンオイルを4.5部添加混合した後、加
圧脱水成形し130℃で13時間乾燥して成形体を得
た。 得られた成形体の物性を測定した結果を第9表
に示す。
[Table] Note that Comparative Examples indicate the analysis results of molded bodies to which no aluminum sulfate was added. Example 6 56.6 parts of silica powder and 43.4 parts of lime-free (CaO/CiO 2
A raw material slurry was prepared by mixing the raw material slurry (mole ratio = 6.83) with water such that the water to solid content ratio was 12 times. This was reacted in an autoclave at a pressure of 8 kg/cm 2 and a temperature of 175° C. for 5 hours to obtain a crystal slurry of approximately spherical secondary particles consisting of tobermolite crystals and having a diameter of 10 to 150 μm. Crystal slurry obtained above (solid content 100 parts)
To the aqueous slurry obtained by adding and mixing 5 parts of glass fiber and 3 parts of pulp as an aqueous suspension, 5 parts of Portland cement and 10 parts of bentonite were added in water per 100 parts of the solid content of the aqueous slurry. After adding as a suspension, 1.5 parts of aluminum sulfate similar to Example 1 on an anhydride basis and 4.5 parts of silicone oil similar to Example 1 were added and mixed, followed by pressure dehydration molding and drying at 130°C for 13 hours. A molded body was obtained. Table 9 shows the results of measuring the physical properties of the obtained molded product.

【表】 また成形体を粉砕してn―ヘキサンを添加した
がシリコーンは抽出されなかつた。
[Table] Furthermore, although the molded body was crushed and n-hexane was added, silicone was not extracted.

Claims (1)

【特許請求の範囲】 1 珪酸カルシウム結晶、該結晶と硫酸アルミニ
ウムとの反応により生じた物質、繊維質物質及び
シリコーンオイルを含有する成形体であつて、上
記珪酸カルシウム結晶は二次粒子を形成して該二
次粒子が相互に連結し、且つ上記シリコーンオイ
ルは一部珪酸カルシウム結晶と結合した状態で含
有されて成る珪酸カルシウム成形体。 2 珪酸カルシウム結晶の二次粒子、繊維質物
質、シリコーンオイル及び硫酸アルミニウムと上
記結晶との反応により生じた物質を含有する水性
スラリーが成形・乾燥されて成る特許請求の範囲
第1項の珪酸カルシウム成形体。 3 珪酸カルシウム結晶の二次粒子及び繊維質物
質を含有する水性スラリーにシリコーンオイル及
び硫酸アルミニウムを添加混合した後、成形し乾
燥することを特徴とする珪酸カルシウム成形体の
製法。 4 上記シリコーンオイル及び硫酸アルミニウム
(但し無水物基準)の添加量の夫々が上記水性ス
ラリー中の珪酸カルシウム結晶及び繊維質物質の
合計量100重量部に対し1.5〜7重量部及び0.5〜
10重量部である特許請求の範囲第3項の製法。
[Scope of Claims] 1. A molded article containing calcium silicate crystals, a substance produced by the reaction of the crystals with aluminum sulfate, a fibrous substance, and silicone oil, wherein the calcium silicate crystals form secondary particles. A calcium silicate molded article, wherein the secondary particles are interconnected, and the silicone oil is partially contained in a state bonded to calcium silicate crystals. 2. Calcium silicate according to claim 1, which is obtained by molding and drying an aqueous slurry containing secondary particles of calcium silicate crystals, a fibrous substance, silicone oil, and a substance produced by the reaction of aluminum sulfate with the crystals. Molded object. 3. A method for producing a calcium silicate molded article, which comprises adding and mixing silicone oil and aluminum sulfate to an aqueous slurry containing secondary particles of calcium silicate crystals and a fibrous substance, followed by molding and drying. 4 The amount of the silicone oil and aluminum sulfate (anhydrous basis) added is 1.5 to 7 parts by weight and 0.5 to 7 parts by weight, respectively, based on 100 parts by weight of the total amount of calcium silicate crystals and fibrous material in the aqueous slurry.
10 parts by weight of the method according to claim 3.
JP20236182A 1982-11-17 1982-11-17 Calcium silicate formed body and manufacture Granted JPS5992963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20236182A JPS5992963A (en) 1982-11-17 1982-11-17 Calcium silicate formed body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20236182A JPS5992963A (en) 1982-11-17 1982-11-17 Calcium silicate formed body and manufacture

Publications (2)

Publication Number Publication Date
JPS5992963A JPS5992963A (en) 1984-05-29
JPH0258226B2 true JPH0258226B2 (en) 1990-12-07

Family

ID=16456229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20236182A Granted JPS5992963A (en) 1982-11-17 1982-11-17 Calcium silicate formed body and manufacture

Country Status (1)

Country Link
JP (1) JPS5992963A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971240B2 (en) * 1992-03-24 1999-11-02 東レ・ダウコーニング・シリコーン株式会社 Method for producing water-repellent molded body

Also Published As

Publication number Publication date
JPS5992963A (en) 1984-05-29

Similar Documents

Publication Publication Date Title
JPH0258226B2 (en)
JPH0215511B2 (en)
JPS58176159A (en) Manufacture of amorphous calcium silicate formed body
JPS5992962A (en) Water-repellent calcium silicate formed body
JPS6247808B2 (en)
JP5000902B2 (en) Lightweight inorganic plate and method for producing the same
JPH0627022B2 (en) Method for producing calcium silicate-based compact
JP2019151521A (en) Calcium silicate plate and method for producing the same
JPH0258227B2 (en)
JP2631304B2 (en) Method for manufacturing calcium silicate compact
JPH0234900B2 (en)
RU1807036C (en) Composition for heat-insulating material manufacturing
SU1359271A1 (en) Compozition for manufacturing heat-insulating articles
SU1204594A1 (en) Raw mixture for porous aggregate
RU2104252C1 (en) Composition for manufacturing heat insulating products
JPS61251554A (en) Manufacture of water-repellant calcium silicate formed body
SU1143728A1 (en) Raw material for manufatcuring heat-insulating material
JP4027081B2 (en) Composition for building materials
SU773035A1 (en) Composition for making construction material
KR960006224B1 (en) Process for producing mould of calcium silicate
JPH0522664B2 (en)
JPH09328374A (en) Perlite hardened form and its production
JPH0158147B2 (en)
JPH04170375A (en) Ceramics porous body
SU1616882A1 (en) Method of heat-insulating material