JPH0257974B2 - - Google Patents

Info

Publication number
JPH0257974B2
JPH0257974B2 JP57011205A JP1120582A JPH0257974B2 JP H0257974 B2 JPH0257974 B2 JP H0257974B2 JP 57011205 A JP57011205 A JP 57011205A JP 1120582 A JP1120582 A JP 1120582A JP H0257974 B2 JPH0257974 B2 JP H0257974B2
Authority
JP
Japan
Prior art keywords
silane
aqueous solution
caustic soda
waste gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57011205A
Other languages
Japanese (ja)
Other versions
JPS58128146A (en
Inventor
Masayasu Kitayama
Yoshiaki Sugimori
Shunichi Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP57011205A priority Critical patent/JPS58128146A/en
Publication of JPS58128146A publication Critical patent/JPS58128146A/en
Publication of JPH0257974B2 publication Critical patent/JPH0257974B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシランを含有する廃ガスの吸収処理方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for absorbing and treating waste gas containing silane.

〔従来の技術〕[Conventional technology]

例えば、半導体工業におけるIC、LSIの製造工
程では気相成長用、エツチング用、ドーピング用
あるいは拡散用としてシラン(SiH4)を使用し
ているが、シランは強い毒性をもつており、また
空気中に微量漏れても空気中の酸素と激しく反応
して燃焼する。従つてその取扱いには細心の注意
を要するが、例えば前記した半導体製造工程から
の廃ガス中にシランが含まれていることより、こ
れを安全に処理することが要求される。そこで、
従来よりシランの除去処理方法として種々提案さ
れているが、一般にはシランを苛性ソーダ
(NaOH)水溶液に吸収させる方法によつてお
り、シランを含む廃ガスを苛性ソーダ水溶液と向
流接触させて加水分解作用により該シランを苛性
ソーダ水溶液に吸収除去する湿式吸収法で処理し
ているのが普通である。
For example, silane (SiH 4 ) is used in the manufacturing process of ICs and LSIs in the semiconductor industry for vapor phase growth, etching, doping, and diffusion, but silane is highly toxic and Even if a small amount leaks, it will react violently with oxygen in the air and burn. Therefore, great care must be taken when handling it, but for example, since silane is contained in the waste gas from the semiconductor manufacturing process described above, it is required to treat it safely. Therefore,
Various methods have been proposed to remove silane, but the most common method is to absorb silane in an aqueous solution of caustic soda (NaOH), in which waste gas containing silane is brought into countercurrent contact with an aqueous solution of caustic soda to produce a hydrolyzing effect. Usually, the silane is treated by a wet absorption method in which the silane is absorbed and removed in an aqueous solution of caustic soda.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この方法によると安価な苛性ソーダで処理でき
る利点はあるが、充分な吸収除去効果を得るため
に装置が大型化したり、大量の苛性ソーダ水溶液
が必要になる不都合があつた。またシラン吸収後
の廃液がアルカリ性水溶液であるため取扱いに不
便なほか、廃棄処理に困難であつたり、またその
運搬輸送費が高くなる等の欠点があり、処理量が
増大する程前記欠点が大きくなつてくる。
Although this method has the advantage of being able to process with inexpensive caustic soda, it has the disadvantages of increasing the size of the equipment and requiring a large amount of aqueous caustic soda solution in order to obtain a sufficient absorption and removal effect. In addition, since the waste liquid after silane absorption is an alkaline aqueous solution, it is inconvenient to handle, difficult to dispose of, and has disadvantages such as high transportation costs. I'm getting old.

本発明者等は上記事情に鑑み主として半導体製
造工程よりの廃ガス中のシランを効率よく除去す
ることを目的として種々考究した結果、5〜50重
量%濃度のアルカリ水溶液を紛状又は粒状のケイ
ソウ土に重量比で0.2〜2倍含浸させた上で接触
させるという簡単な方法を取ることで、優れたシ
ランの吸収除去効果を達成できることを見出し
た。
In view of the above circumstances, the present inventors conducted various studies aimed at efficiently removing silane from waste gas mainly from semiconductor manufacturing processes. It has been found that an excellent silane absorption and removal effect can be achieved by using a simple method of impregnating soil with 0.2 to 2 times the weight ratio and then contacting it.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明はこのような知見に基づいてシラ
ンを含む廃ガスを安全にかつ効率良く処理できる
乾式吸収法による処理方法を提供するもので、そ
の特徴は、5〜50重量%濃度のアルカリ水溶液を
紛状又は粒状のケイソウ土に重量比で0.2〜2倍
含浸させた上でシランを含有する廃ガスに接触す
ることにある。
That is, based on this knowledge, the present invention provides a treatment method using a dry absorption method that can safely and efficiently treat waste gas containing silane. The method involves impregnating powdered or granular diatomaceous earth with a weight ratio of 0.2 to 2 times and then contacting the silane-containing waste gas.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

先ず、本発明に用いるアルカリ水溶液を含浸さ
せる固体担体としては、種々実験を行なつた結
果、粉状や粒状のケイソウ土が好適であつた。
First, as a result of various experiments, powdered or granular diatomaceous earth was found to be suitable as the solid carrier impregnated with the alkaline aqueous solution used in the present invention.

次にアルカリ水溶液としては苛性ソーダ
(NaOH)、苛性カリ(KOH)、水酸化カルシウ
ム(Ca(OH)2)等あるが経済的な点で苛性ソー
ダが好ましい。以上の点から、以下固型担体とし
て粉状又は粒状のケイソウ土を、またアルカリ水
溶液として苛性ソーダ水溶液を選定してシランを
除去処理する場合について説明する。
Next, examples of the aqueous alkali solution include caustic soda (NaOH), caustic potash (KOH), and calcium hydroxide (Ca(OH) 2 ), but caustic soda is preferable from an economic point of view. In view of the above points, the case where silane is removed by selecting powdered or granular diatomaceous earth as the solid carrier and selecting a caustic soda aqueous solution as the alkaline aqueous solution will be described below.

苛性ソーダ水溶液の濃度は低過ぎるとシランと
反応せず、また高過ぎるとケイソウ土が溶解さ
れ、溶けた状態では実際の使用にあたり扱いにく
いので5〜50重量%濃度とした。
If the concentration of the caustic soda aqueous solution is too low, it will not react with the silane, and if it is too high, diatomaceous earth will be dissolved, and the dissolved state is difficult to handle in actual use, so the concentration was set at 5 to 50% by weight.

次にケイソウ土と苛性ソーダ水溶液の混合重量
比についてはシランとの反応性を実験した結果、
ケイソウ土1に対し苛性ソーダ水溶液を0.2〜2
倍(重量比)とするとよいことが確認された。こ
のようにして製造した固型処理剤はシランのほか
ジボラン、セレン化水素を吸収する能力を有して
いる。
Next, as for the mixing weight ratio of diatomaceous earth and caustic soda aqueous solution, as a result of experiments on reactivity with silane,
1 part diatomaceous earth to 0.2 to 2 parts caustic soda aqueous solution
It was confirmed that it is better to double the amount (weight ratio). The solid processing agent thus produced has the ability to absorb diborane and hydrogen selenide in addition to silane.

〔実施例〕〔Example〕

以下、本発明方法を従来方法との比較において
具体的に説明する。尚、第1図は本発明方法の実
施装置の一例、第2図は従来方法の実施装置の一
例であるが、ここに示す第1図及び第2図の装置
の規模等は、両方法を比較する上で比較しやすい
ように設定してあるため、実際の実施に当つて
は、適宜な規模の装置を用いることが望ましい。
Hereinafter, the method of the present invention will be specifically explained in comparison with a conventional method. Note that Fig. 1 is an example of an apparatus for implementing the method of the present invention, and Fig. 2 is an example of an apparatus for implementing the conventional method. Since the settings are made to facilitate comparison, it is desirable to use an apparatus of an appropriate size in actual implementation.

先ず、第1図は本発明方法の実施の一例を示す
2筒切り替え式のシラン除去装置1で、各充填筒
の内径は150mm、全高は1500mmである。
First, FIG. 1 shows a two-cylinder switching type silane removal apparatus 1 showing an example of the implementation of the method of the present invention, and each filling cylinder has an inner diameter of 150 mm and an overall height of 1500 mm.

この第1図の装置1の各充填筒2a,2bに
は、粉状のケイソウ土100gに10%苛性ソーダ150
gを含浸させた吸着処理剤3a,3bが各々
12600g充填され、充填高さは1100mmである。従
つて、一筒当りの苛性ソーダ量は750gであり、
両筒では1500g(38モル)である。
Each filling tube 2a, 2b of the apparatus 1 shown in FIG.
The adsorption treatment agents 3a and 3b impregnated with
It is filled with 12600g and the filling height is 1100mm. Therefore, the amount of caustic soda per cylinder is 750g,
The weight for both cylinders is 1500g (38 moles).

そして、一方の充填筒2a下部から試料ガスを
流入させて、吸着処理剤3aを通過させた後、該
充填筒2aの頂部出口からガスを抜き出し、出口
付近の管路に設けたガス検出計Aにより、シラン
濃度を検出し、シラン濃度が500ppmに達した時
点で他方の充填筒2bに試料ガスの流入を切替
え、試料ガスを他方の充填筒2b内に充填した吸
着処理剤3b内を通過させて、該充填筒2bの頂
部出口からガスを抜き出す。この間、一方の充填
筒2a内の吸着処理剤3aは交換しておく。そし
て、充填筒2aを頂部出口付近の管路に設けた前
記ガス検出計Aにより、前記充填筒2bから抜き
出したガス中のシラン濃度を検出し、シラン濃度
が500ppmに達した時点で再び同様の切替え作業
を行うものである。
After the sample gas is introduced from the lower part of one of the filling cylinders 2a and passed through the adsorption treatment agent 3a, the gas is extracted from the top outlet of the filling cylinder 2a, and a gas detection meter A is installed in the pipe near the outlet. , the silane concentration is detected, and when the silane concentration reaches 500 ppm, the inflow of the sample gas is switched to the other filling cylinder 2b, and the sample gas is passed through the adsorption treatment agent 3b filled in the other filling cylinder 2b. Then, gas is extracted from the top outlet of the filling cylinder 2b. During this time, the adsorption treatment agent 3a in one filling cylinder 2a is replaced. Then, the gas detector A installed in the pipe near the top outlet of the filling cylinder 2a detects the silane concentration in the gas extracted from the filling cylinder 2b, and when the silane concentration reaches 500 ppm, the same process is carried out again. This is to perform the switching work.

一方、第2図は従来方法の実施の一例を示す湿
式のシラン除去装置10で、上部の充填筒部11
と下部の缶液部12とから構成される。充填筒部
11の内径は150mm、高さは1700mm、缶液部12
の内径は400mm、高さは400mmで、全高は2100mmで
ある。
On the other hand, FIG. 2 shows a wet silane removal apparatus 10 showing an example of implementation of a conventional method, in which an upper filling cylinder part 11
and a lower can liquid section 12. The inner diameter of the filling cylinder part 11 is 150 mm, the height is 1700 mm, and the liquid can part 12
The inner diameter is 400mm, the height is 400mm, and the total height is 2100mm.

この第2図の装置10の充填筒部11には、充
填材(ラシヒリング)13が1100mmの高さで充填
されている。また、缶液部12内には10%の苛性
ソーダ水溶液Wが15貯液されており、この苛性
ソーダ水溶液Wを水ポンプPにより管路14から
抜き出し、管路15を経て充填筒部11の頂部か
ら充填材(ラシヒリング)13に向けて降らせ、
充填材13を伝わらせて再び缶液部12に戻して
循環させる。試料ガスは、充填筒部11の下部、
即ち充填材13の下から流入させ、充填筒部11
内を経てその頂部出口からガスを抜き出す。そし
て、該頂部出口付近の管路に設けたガス検出計A
により、該抜き出したガス中のシラン濃度を検出
し、シラン濃度が500ppmに達した時点で苛性ソ
ーダ水溶液Wの交換を行うものである。
The filling tube portion 11 of the apparatus 10 shown in FIG. 2 is filled with a filling material (Raschig ring) 13 to a height of 1100 mm. In addition, 15 volumes of 10% caustic soda aqueous solution W are stored in the can liquid section 12, and this caustic soda aqueous solution W is extracted from the pipe line 14 by the water pump P, and is passed through the pipe line 15 from the top of the filling cylinder part 11. Rain toward the filling material (Raschig ring) 13,
The filler 13 is transmitted and returned to the can liquid section 12 again for circulation. The sample gas is supplied to the lower part of the filling cylinder part 11,
That is, the filling material 13 is introduced from below, and the filling material 11 is
The gas is extracted from the top outlet through the inside. Then, a gas detection meter A installed in the pipe near the top outlet
The silane concentration in the extracted gas is detected, and the caustic soda aqueous solution W is replaced when the silane concentration reaches 500 ppm.

したがつて、この場合の苛性ソーダの量は1500
g(38モル)であり、前記第1図の場合と同量の
苛性ソーダが使用される。
Therefore, the amount of caustic soda in this case is 1500
g (38 mol), and the same amount of caustic soda as in the case of FIG. 1 above is used.

試料ガスは、不活性ガスとシランとの混合ガス
とし、シランの濃度は10.5%とした。
The sample gas was a mixed gas of an inert gas and silane, and the concentration of silane was 10.5%.

上記第1図及び第2図の各装置に、この試料ガ
スを2.9/minの割合で流した。このときの空
筒速度は両装置とも0.27cm/secである。
This sample gas was flowed through each of the apparatuses shown in FIGS. 1 and 2 above at a rate of 2.9/min. The cylinder velocity at this time was 0.27 cm/sec for both devices.

このようにして、出口のシラン濃度が500ppm
に達した状態を破過状態として処理時間を測定し
た結果、第1図の装置(2筒使用)では2100分後
に破過し、第2図の装置では1700分後に破過し
た。
In this way, the silane concentration at the outlet is 500ppm
As a result of measuring the processing time with the state in which the temperature reached as a breakthrough state, the device shown in FIG. 1 (using two cylinders) achieved a breakthrough after 2100 minutes, and the device shown in FIG. 2 achieved a breakthrough after 1700 minutes.

この結果から、第1図の装置では630(28モ
ル)のシランが処理でき、第2図の装置では520
(23モル)のシランが処理できたことになる。
したがつて、シランに対する苛性ソーダの比(シ
ラン:苛性ソーダ)は、第1図の装置では1:
1.4、第2図の装置では1:1.7となり、第1図の
装置の方が吸収効率が高いことが分かる。
From this result, the apparatus shown in Figure 1 can process 630 (28 moles) of silane, and the apparatus shown in Figure 2 can process 520 (28 moles) of silane.
(23 moles) of silane was processed.
Therefore, the ratio of caustic soda to silane (silane:caustic soda) is 1: in the apparatus of FIG.
1.4, and 1:1.7 for the device shown in Figure 2, indicating that the absorption efficiency of the device shown in Figure 1 is higher.

また、第2図の装置では空筒速度を0.27cm/
sec以上、例えば0.5cm/secにすると、苛性ソー
ダ水溶液は未だ吸収処理可能であるにもかかわら
ず、30秒程度の極めて短時間で破過した。
In addition, in the device shown in Figure 2, the cylinder velocity is 0.27cm/
sec or more, for example 0.5 cm/sec, the caustic soda aqueous solution broke through in an extremely short time of about 30 seconds, although it could still be treated by absorption.

これに対し、第1図の装置では空筒速度を0.65
cm/secにしても、短時間で破過することなく、
前記同様の2100分で破過した。これも、本発明方
法が従来方法より吸収効率が高いことを示してい
る。
On the other hand, in the device shown in Figure 1, the cylinder velocity is 0.65
cm/sec, without breaking through in a short time,
It broke through at 2100 minutes as above. This also shows that the method of the present invention has higher absorption efficiency than the conventional method.

尚、第1図の装置においては、第2図の従来装
置と苛性ソーダ量、試料ガス中のシラン濃度、試
料ガスの流量及び空筒速度を同一にした関係で、
2筒切り替え式としたが、本発明方法の実施装置
としては1筒式のものでもよいことは勿論であ
る。また、ケイソウ土は粉状のものに限らず、粒
状のものでも同様の効果が得られ、良好である。
In addition, in the apparatus shown in FIG. 1, the amount of caustic soda, the silane concentration in the sample gas, the flow rate of the sample gas, and the cylinder speed are the same as in the conventional apparatus shown in FIG.
Although a two-tube switching type is used, it goes without saying that a single-tube type may be used as the apparatus for carrying out the method of the present invention. In addition, diatomaceous earth is not limited to powder form, and granular forms can also provide similar effects and are good.

〔発明の効果〕〔Effect of the invention〕

以上述べた通り、本発明は廃ガス中のシランを
加水分解作用によりアルカリ水溶液に吸収処理す
るに当り、5〜50重量%濃度のアルカリ水溶液を
粉状又は粒状のケイソウ土に重量比で0.2〜2倍
含浸させた上で接触するようにしたので、アルカ
リ水溶液を単独で前記廃ガスに接触させる従来方
法に比べアルカリ水溶液の吸収効率を高めること
ができる。また、本発明方法は乾式吸収法なので
特に半導体製造工程の廃ガスを処理する場合、従
来はアルシン、ホスフインを乾式で、シラン、シ
ボランを湿式で処理せざるを得なかつたが、本発
明の提供により処理系を乾式で統一でき、装置の
簡略化、小形化をもたらし、運搬、取扱いも容易
で、作業の省力化も期待できる。
As described above, in the present invention, in absorbing silane in waste gas into an alkaline aqueous solution by hydrolysis, an alkaline aqueous solution with a concentration of 5 to 50% by weight is added to powdered or granular diatomaceous earth at a weight ratio of 0.2 to 50% by weight. Since the waste gas is impregnated twice and then contacted, the absorption efficiency of the alkaline aqueous solution can be increased compared to the conventional method in which the aqueous alkaline solution is brought into contact with the waste gas alone. Furthermore, since the method of the present invention is a dry absorption method, particularly when treating waste gas from semiconductor manufacturing processes, conventionally arsine and phosphine had to be treated dryly, and silane and siborane had to be treated wetly. This allows the processing system to be unified to a dry type, which simplifies and downsizes the equipment, makes it easy to transport and handle, and can also be expected to save labor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した2筒切り替え式のシ
ラン除去装置の説明図、第2図は従来方法による
湿式のシラン除去装置の説明図である。 1……2筒切り替え式のシラン除去装置、2
a,2b……充填筒、3a,3b……吸着処理
剤、10……湿式のシラン除去装置、11……充
填筒部、12……缶液部、13……充填材(ラシ
ヒリング)、A……ガス検出計、W……苛性ソー
ダ水溶液、P……水ポンプ。
FIG. 1 is an explanatory diagram of a two-cylinder switching type silane removing apparatus to which the present invention is applied, and FIG. 2 is an explanatory diagram of a wet type silane removing apparatus according to a conventional method. 1...Two-cylinder switching type silane removal device, 2
a, 2b...Filling cylinder, 3a, 3b...Adsorption treatment agent, 10...Wet silane removal device, 11...Filling cylinder part, 12...Can liquid part, 13...Filling material (Raschig ring), A ...Gas detection meter, W...Caustic soda aqueous solution, P...Water pump.

Claims (1)

【特許請求の範囲】[Claims] 1 シランを含有する廃ガスとアルカリ水溶液と
を接触させて、加水分解作用により該廃ガス中の
シランを前記アルカリ水溶液に吸収処理する方法
において、5〜50重量%濃度のアルカリ水溶液を
粉状又は粒状のケイソウ土に重量比で0.2〜2倍
含浸させた上で前記廃ガスに接触させることを特
徴とするシランを含有する廃ガスの吸収処理方
法。
1. In a method in which a waste gas containing silane is brought into contact with an alkaline aqueous solution and the silane in the waste gas is absorbed into the alkali aqueous solution by hydrolysis, the alkaline aqueous solution with a concentration of 5 to 50% by weight is powdered or A method for absorbing and treating waste gas containing silane, which comprises impregnating granular diatomaceous earth with a weight ratio of 0.2 to 2 times and then contacting the impregnated with the waste gas.
JP57011205A 1982-01-27 1982-01-27 Absorbing agent Granted JPS58128146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011205A JPS58128146A (en) 1982-01-27 1982-01-27 Absorbing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011205A JPS58128146A (en) 1982-01-27 1982-01-27 Absorbing agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62293194A Division JPS63156537A (en) 1987-11-20 1987-11-20 Absorbent for waste gas containing harmful component

Publications (2)

Publication Number Publication Date
JPS58128146A JPS58128146A (en) 1983-07-30
JPH0257974B2 true JPH0257974B2 (en) 1990-12-06

Family

ID=11771510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011205A Granted JPS58128146A (en) 1982-01-27 1982-01-27 Absorbing agent

Country Status (1)

Country Link
JP (1) JPS58128146A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949822A (en) * 1982-09-14 1984-03-22 Nippon Sanso Kk Treatment of gas comtaining volatile inorganic hydride or the like
JPS60125233A (en) * 1983-12-08 1985-07-04 Mitsui Toatsu Chem Inc High degree treatment of exhaust gas
JPS60175522A (en) * 1984-02-23 1985-09-09 World Giken:Kk Composition for treating waste gas during semiconductor manufacturing process
JPS60187335A (en) * 1984-03-07 1985-09-24 Nippon Sanso Kk Granular absorbent
JPS6190726A (en) * 1984-10-12 1986-05-08 Nippon Paionikusu Kk Removing agent
JPS61129026A (en) * 1984-11-27 1986-06-17 Nippon Paionikusu Kk Purification of exhaust gas
JPS6372338A (en) * 1986-09-16 1988-04-02 Sadaka Sonobe Adsorbent for harmful gas
JPH0749093B2 (en) * 1987-02-28 1995-05-31 高純度シリコン株式会社 Method for treating gas containing silicon compound
JPS63156537A (en) * 1987-11-20 1988-06-29 Nippon Sanso Kk Absorbent for waste gas containing harmful component
DE4243389A1 (en) * 1992-12-21 1994-06-23 Sued Chemie Ag Process for the production of sorbents for the absorption of liquids
US5858909A (en) * 1996-09-27 1999-01-12 W. R. Grace & Co.-Conn. Siliceous oxide comprising an alkaline constituent
PL343430A1 (en) * 1998-04-09 2001-08-13 Uhp Materials Preparation and purification of diborane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067784A (en) * 1973-10-23 1975-06-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067784A (en) * 1973-10-23 1975-06-06

Also Published As

Publication number Publication date
JPS58128146A (en) 1983-07-30

Similar Documents

Publication Publication Date Title
JPH0257974B2 (en)
JPS6151935B2 (en)
JPS6161619A (en) Treatment of waste gas
KR20010086217A (en) Purifying agent and purification method for halogen-containing exhaust gas
JPS6215246B2 (en)
KR960010382B1 (en) Treating waste gas
JP3129945B2 (en) Semiconductor manufacturing exhaust gas treatment method
TWI329530B (en)
JPS61101231A (en) Removal of fluorine gas
JP4979160B2 (en) Reprocessing method of desulfurization agent
JP3260825B2 (en) How to purify harmful gases
CN106943864A (en) A kind of method that carbon material selective absorbing purifies acetylene
JPH0378132B2 (en)
JPS60175522A (en) Composition for treating waste gas during semiconductor manufacturing process
JPH07213862A (en) Treatment of chlorine-containing gas
JP2005169370A (en) Dehydrosulfurization treatment agent of gas containing hydrogen sulfide, treatment method and treatment apparatus
JP2004181299A (en) Method for detoxifying vent gas
JP3265589B2 (en) How to remove carbon disulfide
JPH04210236A (en) Treating agent for dry etching exhaust gas
JP2013138097A (en) Acid mixture liquid recovery system, acid mixture liquid recovery method, and silicon material cleaning method
JPS54127871A (en) Recovery of chemicals used in regeneration in purified water manufacturing apparatus
JPS62176592A (en) Apparatus for treating waste liquid containing sodium hypochlorite
JP4245262B2 (en) Method and device for removing nitrogen trifluoride gas
JPS5781818A (en) Method and equipment for semi-dry waste gas desulfurization and denitration
JPH05154333A (en) Method for purifying harmful gas