JP4979160B2 - Reprocessing method of desulfurization agent - Google Patents

Reprocessing method of desulfurization agent Download PDF

Info

Publication number
JP4979160B2
JP4979160B2 JP2001108012A JP2001108012A JP4979160B2 JP 4979160 B2 JP4979160 B2 JP 4979160B2 JP 2001108012 A JP2001108012 A JP 2001108012A JP 2001108012 A JP2001108012 A JP 2001108012A JP 4979160 B2 JP4979160 B2 JP 4979160B2
Authority
JP
Japan
Prior art keywords
agent
desulfurization
regenerating
hydrogen sulfide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001108012A
Other languages
Japanese (ja)
Other versions
JP2002253963A (en
Inventor
知子 末永
文男 林
三修 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto Prefecture
Original Assignee
Kumamoto Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto Prefecture filed Critical Kumamoto Prefecture
Priority to JP2001108012A priority Critical patent/JP4979160B2/en
Publication of JP2002253963A publication Critical patent/JP2002253963A/en
Application granted granted Critical
Publication of JP4979160B2 publication Critical patent/JP4979160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for treating a hydrogen sulfide removing agent consisting essentially of iron oxide into safe waste or recovering the hydrogen sulfide adsorbing function thereof after being used for removing hydro gen sulfide generated in a sewage treatment site. SOLUTION: A treating agent 8 for regenerating the hydrogen sulfide removing agent 1 consisting essentially of iron oxide by dipping or the like consists of a hydroxide of an alkali metal or alkaline earth metal and an oxidizing agent. Further, a surfactant can be added, sometimes aeration into the regenerating treating agent is carried out. At least 2 desulfurization columns 2 and 3 are mounted as a hydrogen sulfide removing apparatus. While the hydrogen sulfide removing treatment is performed in one of the desulfurization columns, the regenerating treatment can be performed in another column.

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理場、し尿処理場、食品工業排水処理場、埋め立て処分場などにおいて発生する硫化水素を除去するために使用する酸化鉄を主成分とする脱硫化水素剤の使用後に安全な廃棄物に処理、又はその硫化水素吸着機能を回復させる再生処理剤及びその再生処理剤を使用した再生処理方法並びにその再生処理方法を使用した再生処理装置に関する。
【0002】
【従来の技術】
従来、下水処理場等においては、その処理過程において有毒な硫化水素が発生するため、酸化鉄又は水酸化鉄を主成分とするペレット状の脱硫化水素剤を充填した処理等を設け、その発生ガスを処理塔の脱硫化水素剤の内部を通過させることによって硫化水素を除去している。
この方式では、塔内の脱硫化水素剤が漸次劣化していくから、概ね半年〜1年周期で新しい脱硫化水素剤と取り替えられている。
ところで、この使用済み脱硫化水素剤の主成分は硫化鉄となっており、極めて反応性に富んでいることから、空気中に放置すると空気中の酸素と激しく反応して燃焼し、亜硫酸ガスを発生する。
このため、従来では、この硫化水素で飽和された使用済み脱硫化水素剤に水分を添加させてから、産業廃棄物として湿潤状態で処理場などに埋めて処分するようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記埋め立て処分された使用済み脱硫化水素剤は、その主要成分が硫化鉄であることから、長期に亘っては硫化水素又は亜硫酸ガスを発生し、その埋立地などにおいて新たな災害を発生する危険性がある。
また、使用後の脱硫化水素剤は上述のように埋め立て廃棄されていることから、新しく製造された脱硫化水素剤を次々と消費し、資源保護の観点からも好ましくない。
【0004】
本発明は、上記した従来の処理における問題点を解決するためになされたものであって、硫化水素によって飽和された使用済み脱硫化水素剤から硫化水素や亜硫化酸ガス等の有毒ガスを発生させない安定した化合物に変成し、更に使用前の脱硫化水素剤と同等の脱硫効果を有して再利用できる省資源に役立つ再生処理方法を提供することを目的とする。
本発明者らは、使用済み脱硫化水素剤が前記のように硫化鉄であることから、これを酸化鉄又は水酸化鉄に変成する手段として過酸化水素をはじめ種々の酸化剤を利用して鋭意研究した結果、次亜塩素酸ナトリウム、または、過酸化水素水とアルカリを共有する液で処理することによって有毒ガスを発生させることなく酸化鉄、又は水酸化鉄に変成できることを見出した。
【0005】
【課題を解決するための手段】
本発明請求項1記載の脱硫水素剤の再生処理方法では、アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩、及びアンモニア水と、次亜塩素酸ナトリウム又は過酸化水素から選ばれる酸化剤よりなる再生処理剤を脱硫化水素剤に接触させる脱硫化水素剤の再生処理方法であって、酸化鉄を主成分とするペレット状の脱硫化水素剤を充填した脱硫化水素装置を少なくとも2基設置し、その一方で脱硫化水素処理を行っている間、残余の装置では脱硫化水素剤の再生処理を行う方法とし、前記再生処理は脱硫化水素装置中に再生処理剤を導入することによって行う方法とした。
【0006】
請求項2記載の脱硫水素剤の再生処理方法では、請求項1に記載の脱硫水素剤の再生処理方法において、脱硫化水素剤の再生処理を脱硫化水素装置中で行う際、再生処理剤の中にエアレーションを行う。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態1を説明する。
図1は本実施の形態による脱硫反応と再生反応を同時に行うシステムを示している。
脱硫化水素剤1は、酸化鉄を主成分としてペレット状に形成されており、本実施の形態では図1の示すように、このペレット状の脱硫化水素剤1を2基の脱硫塔2、3に充填させている。
前記脱硫塔2、3は、下水処理塔の工程で硫化水素を含んで排水される排ガス4を配管5、6で導入するが、この配管5、6は切替弁7で何れかの方にのみ流通可能となっている。つまり脱硫塔2、3は何れか一方のみが脱硫作用を行い、他方は休止状態となるように形成されている。
また、前記脱硫塔2、3には、何れも脱硫化水素剤1の再生処理液8を導入する配管9、10が設けられており、制御により前記排ガス4が導入されていない方のみ再生処理液8を導入させるようになっている。
本図では脱硫塔2に配管5から排ガス4が導入され、この排ガス4が多数の脱硫化水素剤1の間を通過することによって硫化水素が吸着されたのち排気管11から処理済ガスとして排出され、更に同時に、脱硫塔3は脱硫化水素剤の再生装置として使用されるようになっており、前記脱硫化水素剤1を浸漬するまで配管10から再生処理液8が導入され、所定の処理時間を経過するまでその状態に置かれて脱硫化水素剤1の再生処理を行うようになっている。
【0015】
前記脱硫塔3の作用について説明する。この場合、脱硫塔3は、前記のように休止状態とし内部に再生処理液8を導入して脱硫化水素剤の再生装置として使用されるものである。
前記脱硫塔3内に導入する再生処理液8としては、次亜塩素酸ナトリウム又は過酸化水素水に水酸化ナトリウム等アルカリを添加した溶液が好ましく、次亜塩素酸ナトリウム及び過酸化水素水の濃度は約2%以上の溶液に、さらに好ましくは陰イオン性界面活性剤、又は非イオン界面活性剤を50ppm〜1000ppm添加した方が良い。
【0016】
再生処理液8を室温又は加熱により、好ましくは加熱温度80℃において使用済み脱硫化水素剤を静止状態又は流動状態で30分乃至3時間、好ましくは2時間接触させた後処理液を抜き、ペレットの場合はその間約30分間真空又は減圧状態にした後、人工又は自然乾燥する。
この反応は以下のようになり、有毒ガスを発生することなく再生処理が行われる。

Figure 0004979160
尚、上記反応においては、微量のSが生成される。
反応によって生成される硫酸ソーダNa2SO4は、通称湯の花などと呼称して湯浴剤などに使用される無害なものである。
【0017】
図2はこの再生処理液8における次亜塩素酸ナトリウム濃度と再生率を示しており、使用前(バージン)の状態のものと比較すると次亜塩素酸ナトリウム濃度の差異に基づく差はほとんど無く概ね80%程度再生されることがわかる。
図3は、脱硫化水素剤のバージンと使用済み脱硫化水素剤及びその再生処理後のX線回折パターンを示している。
尚、本図において、処理前はX線強度目盛り上400、処理後は同800嵩上げして表示してある。
【0018】
以上説明してきたように、本実施の形態では、再生処理液8に脱硫化水素剤1を浸漬するから、全量均等に再生処理を行うことができる。
再生処理液8は、処理に際し有毒ガスを発生させることなく安全である。
本実施の形態では、図1において2基の脱硫塔2,3を設置したので、脱硫処理と再生処理を平行して行うことができ大変効率的であるし、再生に際し使用後の脱硫化水素剤を脱硫塔から外部に取り出すこともないからペレットの破損を防止できるし、安全作業、省力化を達成することもできるなどの利点がある。
【0019】
次に、図4に基づいて実施の形態2を説明する。
尚、本実施の形態2において、前記実施の形態1と同様の構成部分は同一の符号を付してその具体的な説明は省略する。
本実施の形態では、脱硫塔3の下面からエアレーション12を行い、再生反応の促進を図るようになっている。
図中13はエア配管であり、図外の空気源から清浄な空気14を圧送し、内部に万遍無く空気の泡を供給する。この空気は反応が最良に行われるように温度調整することもできる。
【0020】
以上、本発明の実施の形態を説明してきたが、本発明の具体的な構成は本実施の形態に限定されるものでなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
例えば、酸化剤として空気を使用しエアレーション、太陽光で酸化を行うこともできる。この場合、脱硫化水素剤をアルカリ金属またはアルカリ土類金属の水酸化物溶液に浸漬し、その状態でエアレーションを行って濾別後、人口乾燥または自然乾燥させることによって再生することもできる。
この反応は以下のようになり、有毒ガスを発生させることなく再生処理が行われる。
Figure 0004979160
【0021】
再生処理に脱硫塔を使用する場合において、再生処理液8の各成分の濃度は、脱硫塔の容積や脱硫化水素剤の量、外気温、処理時間など各種条件により、任意に設定することができる。
再生処理液8は脱硫化水素剤1を浸漬するだけで反応させるとしたが、図1の脱硫塔2、3の上部に一点鎖線で示す配管15、16を設け、配管9、10で供給する再生処理液8を循環させるようにしても良い。
脱硫化水素剤1は静止状態だけでなく、流動状態で再生処理液8に接触させるようにしても良い。
脱硫塔の設置数、配管状態は任意に設定することができる。
脱硫化水素剤1はペレットの状態で再生処理を行うとしたが、半砕するなど最適な状態で再生処理することができる。
【0022】
【発明の効果】
本発明にあたっては、硫化水素によって飽和された使用済み脱硫化水素剤から硫化水素や亜硫酸ガス等の有毒ガス発生させない安定した化合物に変成できる。
使用前の脱硫化水素剤と略同等の脱硫効果を有するように、かつ安全作業で効率的に再生することができる。
有効に再利用できるから、省資源に役立つ。
複数の脱硫塔の一方を脱硫作業に、残余を再生作業に使用することにより、脱硫作業を停止させることなく行うことができるなど効果が得られる。
【図面の簡単な説明】
【図1】本発明実施の形態1の脱硫反応と再生反応を同時に行うシステムを示す説明図である。
【図2】実施の形態1の次亜塩素酸ナトリウム濃度と再生率を示すグラフである。
【図3】実施の形態1の脱硫化水素剤の使用前、処理前、処理後のX線回折パターンを示すグラフである。
【図4】実施の形態2のエアレーションを行う脱硫化水素装置としての脱硫塔を示す説明図である。
【符号の説明】
1 脱硫化水素剤
2、3 脱硫塔
4 排ガス
5、6 排ガスを導入する配管
7 切替弁
8 再生処理液
9、10 再生処理液を導入する配管
12 エアレーション
13 エア配管
15、16 再生処理液を戻す配管[0001]
BACKGROUND OF THE INVENTION
The present invention is safe after using a desulfurization agent mainly composed of iron oxide used to remove hydrogen sulfide generated in sewage treatment plants, human waste treatment plants, food industry wastewater treatment plants, landfill disposal sites, and the like. The present invention relates to a regeneration treatment agent that treats waste or restores its hydrogen sulfide adsorption function, a regeneration treatment method that uses the regeneration treatment agent, and a regeneration treatment apparatus that uses the regeneration treatment method.
[0002]
[Prior art]
Conventionally, in sewage treatment plants etc., toxic hydrogen sulfide is generated during the treatment process. Therefore, a treatment filled with a pellet-shaped desulfurization agent mainly composed of iron oxide or iron hydroxide is provided. Hydrogen sulfide is removed by passing the gas through the inside of the dehydrosulfurizing agent in the treatment tower.
In this method, since the desulfurization agent in the tower gradually deteriorates, it is replaced with a new desulfurization agent approximately every six months to one year.
By the way, the main component of this used dehydrosulfurizing agent is iron sulfide, which is extremely reactive, and when left in the air, it reacts violently with oxygen in the air and burns, thereby producing sulfurous acid gas. appear.
For this reason, conventionally, after adding water to the spent desulfurization agent saturated with hydrogen sulfide, the waste is buried in a treatment place or the like in a wet state as industrial waste.
[0003]
[Problems to be solved by the invention]
However, since the main component of the used dehydrosulfurizing agent disposed of in landfill is iron sulfide, hydrogen sulfide or sulfurous acid gas is generated over a long period of time, resulting in a new disaster at the landfill site. There is a risk of doing.
Further, since the desulfurized agent after use is disposed of in the landfill as described above, newly produced desulfurized agent is consumed one after another, which is not preferable from the viewpoint of resource protection.
[0004]
The present invention has been made to solve the above-described problems in conventional processing, and generates toxic gases such as hydrogen sulfide and sulfite gas from a spent desulfurization agent saturated with hydrogen sulfide. It is an object of the present invention to provide a recycling method useful for resource saving, which can be converted into a stable compound that is not allowed to be used, and can be reused with a desulfurization effect equivalent to that of a dehydrosulfurizing agent before use.
Since the used dehydrosulfurizing agent is iron sulfide as described above, the present inventors use various oxidizing agents including hydrogen peroxide as means for converting this into iron oxide or iron hydroxide. As a result of earnest research, it was found that it can be converted to iron oxide or iron hydroxide without generating toxic gas by treating with sodium hypochlorite or a liquid sharing alkali with hydrogen peroxide.
[0005]
[Means for Solving the Problems]
In the method for regenerating a hydrodesulfurizing agent according to claim 1 of the present invention, an oxidizing agent selected from alkali metal or alkaline earth metal hydroxide, carbonate and aqueous ammonia, sodium hypochlorite or hydrogen peroxide. A desulfurization agent regeneration treatment method comprising contacting a regeneration treatment agent comprising a desulfurization agent with at least two desulfurization devices filled with a pellet-shaped desulfurization agent mainly composed of iron oxide. In the meantime, while the desulfurization treatment is being performed, the remaining apparatus is a method of regenerating the desulfurization agent, and the regeneration process is performed by introducing the regeneration treatment agent into the desulfurization apparatus. The way to do it.
[0006]
According to a second aspect of the present invention, there is provided a regeneration treatment method for a desulfurization agent according to claim 1, wherein when the regeneration treatment for the desulfurization agent is performed in a desulfurization apparatus, Aerate inside.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the present invention will be described below.
FIG. 1 shows a system for simultaneously performing a desulfurization reaction and a regeneration reaction according to this embodiment.
The hydrodesulfurizing agent 1 is formed in a pellet form with iron oxide as a main component. In the present embodiment, as shown in FIG. 1, the dehydrosulfurizing agent 1 is divided into two desulfurization towers 2, 3 is filled.
The desulfurization towers 2 and 3 introduce the exhaust gas 4 containing hydrogen sulfide in the process of the sewage treatment tower into the pipes 5 and 6, and the pipes 5 and 6 are only one of the switching valves 7. Distribution is possible. That is, only one of the desulfurization towers 2 and 3 is formed so as to perform a desulfurization action and the other is in a dormant state.
In addition, the desulfurization towers 2 and 3 are provided with pipes 9 and 10 for introducing the regeneration treatment liquid 8 of the desulfurized hydrogen agent 1, and only the one where the exhaust gas 4 is not introduced by the control is regenerated. The liquid 8 is introduced.
In this figure, the exhaust gas 4 is introduced into the desulfurization tower 2 from the pipe 5, and the exhaust gas 4 passes through a number of dehydrosulfurizing agents 1, so that hydrogen sulfide is adsorbed and then discharged as a treated gas from the exhaust pipe 11. At the same time, the desulfurization tower 3 is used as a desulfurization agent regenerator, and the regenerative treatment liquid 8 is introduced from the pipe 10 until the desulfurization agent 1 is immersed, and a predetermined treatment is performed. The desulfurization agent 1 is regenerated by being kept in that state until the time elapses.
[0015]
The operation of the desulfurization tower 3 will be described. In this case, the desulfurization tower 3 is put into a resting state as described above, and the regeneration treatment liquid 8 is introduced into the desulfurization tower 3 to be used as a desulfurization agent regeneration device.
The regeneration treatment liquid 8 introduced into the desulfurization tower 3 is preferably sodium hypochlorite or a solution obtained by adding an alkali such as sodium hydroxide to hydrogen peroxide solution, and the concentration of sodium hypochlorite and hydrogen peroxide solution. It is better to add 50 ppm to 1000 ppm of an anionic surfactant or a nonionic surfactant to a solution of about 2% or more.
[0016]
The regeneration treatment liquid 8 is brought into contact with a used dehydrosulfurizing agent at room temperature or by heating, preferably at a heating temperature of 80 ° C. for 30 minutes to 3 hours, preferably for 2 hours in a stationary state or in a fluid state, and then the treatment liquid is taken out and pellets In the case of, it is evacuated or decompressed for about 30 minutes, and then artificially or naturally dried.
This reaction is as follows, and the regeneration process is performed without generating toxic gas.
Figure 0004979160
In the above reaction, a trace amount of S is generated.
Sodium sulfate Na2SO4 produced by the reaction is called harmless hot water blossom or the like, and is harmless for use in hot water baths.
[0017]
FIG. 2 shows the sodium hypochlorite concentration and the regeneration rate in the regeneration treatment solution 8, and there is almost no difference based on the difference in the sodium hypochlorite concentration compared with the state before use (virgin). It can be seen that about 80% is reproduced.
FIG. 3 shows the virgin desulfurization agent, the used dehydrosulfurization agent, and the X-ray diffraction pattern after the regeneration treatment.
In this figure, the X-ray intensity scale 400 is displayed before the processing, and 800 is increased after the processing.
[0018]
As described above, in the present embodiment, since the desulfurization agent 1 is immersed in the regeneration treatment liquid 8, the regeneration treatment can be performed uniformly in the entire amount.
The regeneration processing liquid 8 is safe without generating toxic gas during processing.
In the present embodiment, since two desulfurization towers 2 and 3 are installed in FIG. 1, desulfurization treatment and regeneration treatment can be performed in parallel, which is very efficient. Since the agent is not taken out from the desulfurization tower, the pellets can be prevented from being damaged, and safety work and labor saving can be achieved.
[0019]
Next, Embodiment 2 will be described with reference to FIG.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
In the present embodiment, aeration 12 is performed from the lower surface of the desulfurization tower 3 to promote the regeneration reaction.
In the figure, reference numeral 13 denotes an air pipe, which cleanly feeds clean air 14 from an air source outside the figure, and uniformly supplies air bubbles inside. The temperature of the air can also be adjusted so that the reaction takes place optimally.
[0020]
Although the embodiment of the present invention has been described above, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the invention, Included in the invention.
For example, air can be used as an oxidizing agent, and oxidation can be performed by aeration or sunlight. In this case, it can be regenerated by immersing the desulfurizing agent in a hydroxide solution of an alkali metal or alkaline earth metal, performing aeration in that state, filtering, and then artificially drying or naturally drying.
This reaction is as follows, and the regeneration process is performed without generating toxic gas.
Figure 0004979160
[0021]
When a desulfurization tower is used for the regeneration treatment, the concentration of each component of the regeneration treatment liquid 8 can be arbitrarily set according to various conditions such as the volume of the desulfurization tower, the amount of the desulfurization agent, the outside air temperature, and the treatment time. it can.
The regeneration treatment liquid 8 is allowed to react by simply immersing the hydrodesulfurization agent 1. However, pipes 15 and 16 indicated by alternate long and short dash lines are provided on the upper parts of the desulfurization towers 2 and 3 in FIG. The regeneration processing solution 8 may be circulated.
The hydrodesulfurizing agent 1 may be brought into contact with the regeneration treatment liquid 8 not only in a stationary state but also in a fluid state.
The number of installed desulfurization towers and the piping state can be arbitrarily set.
The dehydrosulfurizing agent 1 is regenerated in the form of pellets, but can be regenerated in an optimal state such as half-crushed.
[0022]
【Effect of the invention】
In the present invention, a spent desulfurization agent saturated with hydrogen sulfide can be transformed into a stable compound that does not generate toxic gases such as hydrogen sulfide and sulfurous acid gas.
It can be efficiently regenerated in a safe operation so as to have a desulfurization effect substantially equivalent to that of the dehydrosulfurizing agent before use.
Since it can be reused effectively, it helps save resources.
By using one of the plurality of desulfurization towers for the desulfurization operation and the remainder for the regeneration operation, an effect can be obtained such that the desulfurization operation can be performed without stopping.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a system for simultaneously performing a desulfurization reaction and a regeneration reaction according to Embodiment 1 of the present invention.
FIG. 2 is a graph showing the sodium hypochlorite concentration and the regeneration rate in the first embodiment.
FIG. 3 is a graph showing X-ray diffraction patterns before, before and after use of the desulfurizing agent of Embodiment 1.
4 is an explanatory view showing a desulfurization tower as a desulfurization hydrogen apparatus for performing aeration according to Embodiment 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dehydrosulfurization agent 2, 3 Desulfurization tower 4 Exhaust gas 5, 6 Pipe | tube 7 which introduce | transduces exhaust gas Switching valve 8 Regeneration processing liquid 9, 10 Piping which introduce | generates regeneration processing liquid 12 Aeration 13 Air piping 15, 16 Return the regeneration processing liquid Piping

Claims (2)

アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩、及びアンモニア水と、次亜塩素酸ナトリウム又は過酸化水素から選ばれる酸化剤よりなる再生処理剤を脱硫化水素剤に接触させる脱硫化水素剤の再生処理方法であって、
酸化鉄を主成分とするペレット状の脱硫化水素剤を充填した脱硫化水素装置を少なくとも2基設置し、
その一方で脱硫化水素処理を行っている間、残余の装置では脱硫化水素剤の再生処理を行う方法とし、
前記再生処理は脱硫化水素装置中に再生処理剤を導入することによって行う方法とした脱硫化水素剤の再生処理方法。
Desulfurized hydrogen in which a regeneration treatment agent comprising an alkali metal or alkaline earth metal hydroxide, carbonate and aqueous ammonia and an oxidizing agent selected from sodium hypochlorite or hydrogen peroxide is brought into contact with the desulfurizing agent. A method for regenerating the agent,
Install at least two desulfurization devices filled with pellet-shaped desulfurization agent mainly composed of iron oxide,
On the other hand, while the desulfurization treatment is being performed, the remaining apparatus is a method for regenerating the desulfurization agent,
A regeneration treatment method for a desulfurization agent, wherein the regeneration treatment is performed by introducing a regeneration treatment agent into a desulfurization apparatus.
脱硫化水素剤の再生処理を脱硫化水素装置中で行う際、再生処理剤の中にエアレーションを行う請求項1に記載の脱硫化水素剤の再生処理方法。  The method for regenerating a dehydrosulfurizing agent according to claim 1, wherein when the regeneration treatment for the dehydrosulfurizing agent is performed in the dehydrosulfurizing apparatus, aeration is performed in the regenerating treating agent.
JP2001108012A 2000-12-28 2001-04-06 Reprocessing method of desulfurization agent Expired - Lifetime JP4979160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108012A JP4979160B2 (en) 2000-12-28 2001-04-06 Reprocessing method of desulfurization agent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-401201 2000-12-28
JP2000401201 2000-12-28
JP2000401201 2000-12-28
JP2001108012A JP4979160B2 (en) 2000-12-28 2001-04-06 Reprocessing method of desulfurization agent

Publications (2)

Publication Number Publication Date
JP2002253963A JP2002253963A (en) 2002-09-10
JP4979160B2 true JP4979160B2 (en) 2012-07-18

Family

ID=26607089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108012A Expired - Lifetime JP4979160B2 (en) 2000-12-28 2001-04-06 Reprocessing method of desulfurization agent

Country Status (1)

Country Link
JP (1) JP4979160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376615A (en) * 2017-07-12 2017-11-24 中国石油集团工程设计有限责任公司 A kind of highly efficiency compositional desulfurization and decarburization solvent and its application

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110553B1 (en) * 2004-12-22 2012-01-31 재단법인 포항산업과학연구원 Removal method of hydrogen sulfide in coke oven gas
JP5031244B2 (en) * 2006-02-23 2012-09-19 三菱重工メカトロシステムズ株式会社 How to regenerate the absorbent
KR101359193B1 (en) 2006-12-21 2014-02-05 주식회사 포스코 Regeneration of desulfurization agent in desulfurization of anaerobic digester gas
CN111545244A (en) * 2020-05-27 2020-08-18 翟常忠 Hydrogen sulfide removal catalyst, preparation method and application method
CN114146548B (en) * 2021-11-15 2023-12-29 南通山剑石墨设备有限公司 Exhaust gas desulfurization and denitrification system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435371A (en) * 1982-02-26 1984-03-06 The Goodyear Tire & Rubber Company Sulfur removal from a gas stream

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376615A (en) * 2017-07-12 2017-11-24 中国石油集团工程设计有限责任公司 A kind of highly efficiency compositional desulfurization and decarburization solvent and its application

Also Published As

Publication number Publication date
JP2002253963A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
KR19980702066A (en) Method for Purifying Flue Gas Containing Nitrogen Oxides
RU2009137010A (en) WASTE GAS PROCESSING METHOD
KR20110091676A (en) Process and device for simultaneously desulfurizing and denitrating the flue gas with the seawater
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
JP2011200848A (en) Treatment method of wastewater
JP4979160B2 (en) Reprocessing method of desulfurization agent
CN101791519B (en) Application process for treating acid gas containing H2S by active carbocoal method
JP5050447B2 (en) Treatment method for chemical cleaning waste liquid
CN106166438B (en) A kind of method and device of photodissociation chlorine aqueous solution induced radical removing hydrogen sulfide
JP2005161116A (en) Hydrogen sulfide removing material, hydrogen sulfide removing method and device
JPH0910713A (en) Method and device for wet treatment
CN105498509B (en) A kind of calcium-magnesium combined desulfurization and denitration method meeting flue gas pollutant deep removal
JP2005169370A (en) Dehydrosulfurization treatment agent of gas containing hydrogen sulfide, treatment method and treatment apparatus
CN106943864A (en) A kind of method that carbon material selective absorbing purifies acetylene
TW201412381A (en) System and method for reducing H2S contained in gas
JPH11290643A (en) Removal of acidic component of combustion gas by sea water
CN110787602A (en) Method for removing thiosulfate radicals by purifying amine liquid
JP4569884B2 (en) Method and apparatus for treating organic matter in water
JP2000294266A (en) Method and device for recovering energy
KR100733332B1 (en) Treatment method of waste water contaminated with fluoride and nitrate
TWM450422U (en) Advanced oxidation processing device for organic waste gas
JP2000262861A (en) Exhaust gas treatment method and apparatus
JP2015226888A (en) Treatment method for ammonia-containing drain water
JPS5778927A (en) Treatment of offensive odor
JP3085271B2 (en) Method and apparatus for treating wastewater containing hydrogen peroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4979160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term