JP3265589B2 - How to remove carbon disulfide - Google Patents

How to remove carbon disulfide

Info

Publication number
JP3265589B2
JP3265589B2 JP16901591A JP16901591A JP3265589B2 JP 3265589 B2 JP3265589 B2 JP 3265589B2 JP 16901591 A JP16901591 A JP 16901591A JP 16901591 A JP16901591 A JP 16901591A JP 3265589 B2 JP3265589 B2 JP 3265589B2
Authority
JP
Japan
Prior art keywords
carbon disulfide
gas
water
steam
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16901591A
Other languages
Japanese (ja)
Other versions
JPH04367711A (en
Inventor
隆司 諸岡
巧 香川
建治 続木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP16901591A priority Critical patent/JP3265589B2/en
Publication of JPH04367711A publication Critical patent/JPH04367711A/en
Application granted granted Critical
Publication of JP3265589B2 publication Critical patent/JP3265589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、二硫化炭素を除去する
方法に関する。
The present invention relates to a method for removing carbon disulfide.

【0002】二硫化炭素は、ビスコースレーヨン、セロ
ハン、四塩化炭素、ゴム加硫促進剤又は有機合成中間体
等の合成原料として工業的に有用である。
[0002] Carbon disulfide is industrially useful as a raw material for synthesizing viscose rayon, cellophane, carbon tetrachloride, a rubber vulcanization accelerator or an organic synthetic intermediate.

【0003】[0003]

【従来技術】二硫化炭素は沸点が低くまた蒸気圧も高い
ため、工業的規模で該化合物を製造または原料として使
用するプロセスでは、排ガス中に蒸気として混入してく
る。このため、従来の処理方法としては、燃焼分解法、
温度差を利用した凝縮除去法活性炭、ゼオライト等によ
る吸着除去法のいずれかの方法又はそれらの組合わせが
用いられている。
2. Description of the Related Art Since carbon disulfide has a low boiling point and a high vapor pressure, in a process for producing or using the compound as a raw material on an industrial scale, it is mixed as vapor into exhaust gas. For this reason, the conventional processing methods include the combustion decomposition method,
Condensation removal method using temperature difference Any method of adsorption removal method using activated carbon, zeolite or the like, or a combination thereof is used.

【0004】[0004]

【従来技術の課題】従来技術の燃焼分解法は、高濃度の
二硫化炭素ガスを除去する方法には適しているが低濃度
あるいは広範囲の濃度の二硫化炭素を含有したガスを処
理する場合安定した燃焼を維持するために多量の燃料を
使用し経済的ではなく、更に、燃焼によりイオウ化合物
が発生し、燃焼炉に腐蝕が発生する場合がある。
2. Description of the Prior Art The prior art combustion decomposition method is suitable for a method of removing a high concentration of carbon disulfide gas, but is stable when processing a gas containing a low concentration or a wide range of concentration of carbon disulfide. It is not economical to use a large amount of fuel to maintain the combustion, and furthermore, the combustion may generate sulfur compounds and cause corrosion in the combustion furnace.

【0005】凝縮分離法も同様に、高濃度の二硫化炭素
をある程度除去することが可能であるが、完全に除去す
るためには融点−112℃以下の冷却が必要となり工業
的とは言えない。
Similarly, the condensation separation method can remove high-concentration carbon disulfide to some extent, but it requires cooling at a melting point of −112 ° C. or less to completely remove carbon disulfide, and cannot be said to be industrial. .

【0006】活性炭、ゼライト等を用いた吸着除去法
は、高濃度の二硫化炭素を処理するのに適しているが低
濃度では、吸着効率が低下し完全に吸着除去するために
は大規模な装置が必要となり工業的とは言えない。
The adsorptive removal method using activated carbon, jellyite or the like is suitable for treating a high concentration of carbon disulfide, but at a low concentration, the adsorption efficiency is reduced and a large-scale method is required for complete adsorption and removal. It requires equipment and is not industrial.

【0007】[0007]

【課題を解決するための手段】本発明者らは、二硫化炭
素を除去する方法について鋭意検討した結果、固体触媒
存在下、水又は水蒸気と接触させることにより二硫化炭
素の濃度に関係なく効率良くほぼ完全な分解が可能で、
更に引き続き分解ガスをアルカリ性水溶液または水で吸
収することにより容易に分解物の除去が可能であること
を見出だし本発明を完成させるに至った。
Means for Solving the Problems As a result of intensive studies on the method of removing carbon disulfide, the present inventors have found that by contacting with water or steam in the presence of a solid catalyst, the efficiency can be improved irrespective of the concentration of carbon disulfide. Well, almost complete disassembly is possible,
Furthermore, it has been found that the decomposition products can be easily removed by absorbing the decomposition gas with an alkaline aqueous solution or water, and the present invention has been completed.

【0008】即ち本発明は、二硫化炭素を活性炭の存在
下、水または水蒸気と接触させることを特徴とする二硫
化炭素の除去方法である。また本発明は、二硫化炭素
を、燐酸を担持した酸化アルミニウムの存在下、水また
は水蒸気と接触させることを特徴とする二硫化炭素の除
去方法である。さらに本発明は、二硫化炭素を、Pdを
担持した酸化珪素の存在下、水または水蒸気と接触させ
ることを特徴とする二硫化炭素の除去方法である。
That is, the present invention is a method for removing carbon disulfide, which comprises contacting carbon disulfide with water or steam in the presence of activated carbon. Further, the present invention is a method for removing carbon disulfide, which comprises contacting carbon disulfide with water or water vapor in the presence of aluminum oxide supporting phosphoric acid. Further, the present invention is a method for removing carbon disulfide, which comprises contacting carbon disulfide with water or water vapor in the presence of Pd-supported silicon oxide.

【0009】[0009]

【作用】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】本発明で除去できる二硫化炭素は、二硫化
炭素のみは言うまでもなく不活性ガスまたは空気に含有
された二硫化炭素でも何等支障はない。
The carbon disulfide that can be removed by the present invention is not limited to carbon disulfide, and there is no problem with carbon disulfide contained in an inert gas or air.

【0011】本発明は、触媒を充填した固定床・ガス流
通式気相連続分解装置とアルカリ性水溶液または水を用
いたスクラバーにより通常実施できる。
The present invention can be usually carried out by a fixed bed / gas flow type continuous gas phase decomposition apparatus filled with a catalyst and a scrubber using an alkaline aqueous solution or water.

【0012】気相反応装置には、上部より処理する二硫
化炭素含有ガスと所定量の水又は水蒸気を供給し分解を
行う。
The gas-phase reactor is supplied with a gas containing carbon disulfide and a predetermined amount of water or steam to be processed from the upper portion to perform decomposition.

【0013】気相反応装置で使用する水又は水蒸気の量
は、化学量論的には2倍モル量で充分であるが、安定し
た分解反応を行うためには、含有された二硫化炭素に対
して2.5倍モル量以上が好ましく、又、経済的には2
500倍モル以下である。
The amount of water or steam used in the gas-phase reactor is stoichiometrically twice as much as the molar amount, but in order to carry out a stable decomposition reaction, the amount of water or steam contained in More than 2.5 times the molar amount is preferable.
It is not more than 500 times mol.

【0014】接触温度は、通常、室温以上であれば問題
なく実施可能であるが、温度が低い場合分解速度が小さ
く多量の触媒を要するかまたは、接触時間を長くするこ
とが必要となり好ましくない。また200℃以上では、
強力な加熱源が必要となり経済的でない。従って、20
℃以上、200℃以下の温度範囲で実施することが好ま
しい。
The contact temperature can usually be carried out without any problem if the contact temperature is higher than room temperature. However, if the contact temperature is low, the decomposition rate is low and a large amount of catalyst is required, or the contact time is required to be prolonged, which is not preferable. At 200 ° C or higher,
It requires a powerful heating source and is not economical. Therefore, 20
It is preferable to carry out in a temperature range of not lower than 200 ° C. and not lower than 200 ° C.

【0015】気相反応装置での接触時間は、二硫化炭素
の濃度、接触温度並びに触媒の種類により異なるが、通
常60秒以内で充分である。
The contact time in the gas phase reactor varies depending on the concentration of carbon disulfide, the contact temperature and the type of the catalyst, but is usually sufficient within 60 seconds.

【0016】触媒固定床への通気速度は、0.1〜10
0cm/secの範囲であれば問題なく、使用する触媒
種類、形状、二硫化炭素の含有量並びに接触時間により
所定の通気速度に設定する。
The rate of aeration to the fixed catalyst bed is 0.1 to 10
If it is within the range of 0 cm / sec, there is no problem, and a predetermined ventilation rate is set according to the type and shape of the catalyst used, the content of carbon disulfide and the contact time.

【0017】本発明に使用される触媒としては、活性
炭、シリカゲルなどの酸化珪素化合物にPdを担持した
もの、活性アルミナなどの酸化アルミニウム化合物に燐
酸を担持したものが挙げられる。また活性炭にPdを担
持したものも使用可能である。
Examples of the catalyst used in the present invention include a catalyst in which Pd is supported on a silicon oxide compound such as activated carbon and silica gel, and a catalyst in which phosphoric acid is supported on an aluminum oxide compound such as activated alumina. Further, activated carbon loaded with Pd can also be used.

【0018】[0018]

【0019】分解処理されたガスは、引き続き吸収塔へ
導かれる。
The decomposed gas is subsequently led to an absorption tower.

【0020】分解ガスの吸収に用いる装置としては、工
業的に一般に使用されるスプレー塔シープレイ塔、バブ
ルトレイ塔の如き塔形式、あるいは、ドイルスクラバ
ー、エヤタンブラー、ミノトール等の如きベッセル形式
のいずれの装置を用いてもよい。
The apparatus used to absorb the cracked gas may be any of a tower type such as a spray tower, a sea-prey tower and a bubble tray tower, or a vessel type such as a Doyle scrubber, an eye tumbler, a minotol, etc. May be used.

【0021】本発明において、分解ガス並びに分解ガス
の吸収は水酸化ナトリウム、水酸化カリウム等のアルカ
リ性水溶液または水を用い、塩酸等の除去が行なえる条
件でほぼ完全に除去可能である。
In the present invention, the decomposed gas and the decomposed gas can be almost completely removed by using an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide or water and under conditions capable of removing hydrochloric acid or the like.

【0022】[0022]

【発明の効果】本発明により、二硫化炭素は、濃度に関
係なく効率的かつほぼ完全に除去可能となった。
According to the present invention, carbon disulfide can be efficiently and almost completely removed regardless of its concentration.

【0023】[0023]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれら実施例のみに限定されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.

【0024】実施例1 図1において、Aはスチームジャケット付き分解塔(塔
径:50mm,充填高さ:260mm,触媒:粒状活性
炭,粒径:5〜7mm,触媒量:180.5g)、Bは
分解ガス吸収用スクラバー(塔径:50mm,充填高
さ:2m,充填物:1/2B磁製インターロックサド
ル,洗浄液循環速度:0.66l/min)、Cは分解
ガス溶解液並びにスクラバー用吸収液の中和槽(10%
−水酸化ナトリウム水溶液を仕込み、常時、撹拌しなが
らアルカリ濃度を一定に保っている)である。Eより濃
度約400ppm、流量7.9l/min(20℃)の
二硫化炭素含有ガスと、Fより流量0.061g/mi
n、温度100℃の蒸気を供給、混合させた後、この混
合ガスを内温100℃に保った分解塔Aに供給し、出口
ガスを分析したところ、二硫化炭素の含有量は検出限界
(0.03oom)以下であった。更に、分解ガスをコ
ンデンサーにより冷却した後、分解ガス溶解液は、中和
槽Cに移送し、分解ガスは、スクラバーBへ移送した結
果、廃ガスラインHより分解物由来の化合物のピークが
全く検出されなかった。
Example 1 In FIG. 1, A is a cracking tower equipped with a steam jacket (tower diameter: 50 mm, packing height: 260 mm, catalyst: granular activated carbon, particle size: 5 to 7 mm, catalyst amount: 180.5 g), B Is a scrubber for absorbing cracked gas (tower diameter: 50 mm, packing height: 2 m, packing material: 1 / 2B porcelain interlock saddle, washing liquid circulation speed: 0.66 l / min), and C is for cracked gas dissolved solution and scrubber Absorption liquid neutralization tank (10%
-An aqueous sodium hydroxide solution is charged, and the alkali concentration is kept constant while constantly stirring). A carbon disulfide-containing gas having a concentration of about 400 ppm from E and a flow rate of 7.9 l / min (20 ° C.), and a flow rate of 0.061 g / mi from F
n, a steam at a temperature of 100 ° C. was supplied and mixed, and then the mixed gas was supplied to a decomposition tower A maintained at an internal temperature of 100 ° C., and the outlet gas was analyzed. 0.03 oom). Further, after the decomposed gas is cooled by the condenser, the decomposed gas solution is transferred to the neutralization tank C, and the decomposed gas is transferred to the scrubber B. Not detected.

【0025】実施例2 実施例1と同じ装置を用い、Eより濃度約400pp
m、流量7.9l/min(20℃)の二硫化炭素含有
ガスと、Fより流量0.0061g/min、温度20
℃の水を供給、混合させた後、この混合ガスを内温30
℃に保った分解塔Aに供給し、出口ガスを分析したとこ
ろ、5.2ppmの二硫化炭素を検出した。更に、実施
例1と同様の操作を行ったところ廃ガスラインHより、
未処理の二硫化炭素0.6ppmが検出され、その他の
分解ガスは、ピークとして検出できなかった。
Example 2 Using the same apparatus as in Example 1, the concentration was about 400 pp
m, a gas containing carbon disulfide at a flow rate of 7.9 l / min (20 ° C.) and a flow rate of 0.0061 g / min from F at a temperature of 20
After supplying and mixing water at a temperature of 30 ° C., the mixed gas is cooled to an internal temperature of 30 ° C.
The solution was supplied to the decomposition tower A maintained at a temperature of ° C., and the outlet gas was analyzed. As a result, 5.2 ppm of carbon disulfide was detected. Further, the same operation as in Example 1 was performed.
0.6 ppm of untreated carbon disulfide was detected, and other decomposition gases could not be detected as peaks.

【0026】実施例3 (削除)Embodiment 3 (Deleted)

【0027】実施例4 図1において、分解塔A(塔径:50mm,充填高さ:
260mm,触媒:1%−Pd/活性炭,粒径:5〜7
mm,触媒量:121.2g)、以外は、実施例1と同
じ装置を用い、Eより濃度約40000ppm、流量
7.9l〜min(20℃)の二硫化炭素含有ガスと、
Fより流量0.921g/min、温度100℃の蒸気
を供給混合させた後、この混合ガスを内温120℃に保
った分解塔Aに供給し、出口ガスを分析したところ、二
硫化炭素の含有量は検出限界(0.03ppm)以下で
あった。更に、分解ガスをコンデンサーにより冷却した
後、分解ガス溶解液は、中和槽Cに移送し、分解ガス
は、スクラバーBへ移送した結果、廃ガスラインHより
分解物由来の化合物のピークが全く検出されなかった。
Example 4 In FIG. 1, cracking column A (column diameter: 50 mm, packing height:
260 mm, catalyst: 1% -Pd / activated carbon, particle size: 5-7
mm, the amount of catalyst: 121.2 g), and using the same apparatus as in Example 1, a carbon disulfide-containing gas having a concentration of about 40,000 ppm from E and a flow rate of 7.9 l to min (20 ° C.)
After supplying and mixing steam at a flow rate of 0.921 g / min and a temperature of 100 ° C. from F, the mixed gas was supplied to a cracking column A maintained at an internal temperature of 120 ° C., and the outlet gas was analyzed. The content was below the detection limit (0.03 ppm). Further, after the decomposed gas is cooled by the condenser, the decomposed gas solution is transferred to the neutralization tank C, and the decomposed gas is transferred to the scrubber B. Not detected.

【0028】実施例5 図1において、分解塔A(塔径:50mm,充填高さ:
260mm,触媒:2%−燐酸/Al2 3 ,粒径:2
〜8mm,触媒量:121.8g)、以外は、実施例1
と同じ装置を用い、Eより濃度約400ppm、流量
7.9l/min(20℃)の二硫化炭素含有ガスと、
Fより流量0.061g/min、温度100℃の蒸気
を供給、混合させた後、この混合ガスを内温120℃に
保った分解塔Aに供給し、出口ガスを分析したところ、
二硫化炭素の含有量は検出限界(0.03ppm)以下
であった。更に、分解ガスをコンデンサーにより冷却し
た後、分解ガス溶解液は中和槽Cに移送し、分解ガス
は、スクラバーBへ移送した結果、廃ガスラインHより
分解物由来の化合物のピークが全く検出されなかった。
Example 5 In FIG. 1, cracking column A (column diameter: 50 mm, packing height:
260 mm, catalyst: 2% -phosphoric acid / Al 2 O 3 , particle size: 2
-8 mm, catalyst amount: 121.8 g).
Using the same apparatus as above, a carbon disulfide-containing gas having a concentration of about 400 ppm from E and a flow rate of 7.9 l / min (20 ° C.)
After supplying and mixing a steam having a flow rate of 0.061 g / min and a temperature of 100 ° C. from F, the mixed gas was supplied to a decomposition tower A maintained at an internal temperature of 120 ° C., and the outlet gas was analyzed.
The content of carbon disulfide was below the detection limit (0.03 ppm). Further, after the decomposed gas is cooled by the condenser, the decomposed gas solution is transferred to the neutralization tank C, and the decomposed gas is transferred to the scrubber B. Was not done.

【0029】実施例6 図1において、分解塔A(塔径:50mm、充填高さ:
260mm,触媒:1%−Pd/SiO2 ,粒径:5〜
7mm,触媒量:121.8g)、以外は実施例1と同
じ装置を用い、Eより濃度約400ppm、流量7.9
l/min(20℃)の二硫化炭素含有ガスと、Fより
流量0.061g/min、温度100℃の蒸気を供
給、混合させた後、この混合ガスを内温120℃に保っ
た分解塔Aに供給し、出口ガスを分析したところ、二硫
化炭素の含有量は検出限界(0.03ppm)以下であ
った。更に、分解ガスをコンデンサーにより冷却した
後、分解ガス溶解液は中和槽Cに移送し、分解ガスは、
スクラバーBへ移送した結果、廃ガスラインHより分解
物由来の化合物のピークが全く検出されなかった。
Example 6 In FIG. 1, cracking column A (column diameter: 50 mm, packing height:
260mm, catalyst: 1% -Pd / SiO 2, particle size: 5
7 mm, amount of catalyst: 121.8 g), except that the concentration was about 400 ppm from E and the flow rate was 7.9 from E.
1 / min (20 ° C.) a gas containing carbon disulfide and steam having a flow rate of 0.061 g / min and a temperature of 100 ° C. were supplied and mixed from F, and then the mixed gas was maintained at an internal temperature of 120 ° C. When the gas was supplied to A and the outlet gas was analyzed, the content of carbon disulfide was below the detection limit (0.03 ppm). Further, after the decomposition gas is cooled by the condenser, the decomposition gas solution is transferred to the neutralization tank C, and the decomposition gas is
As a result of transferring to the scrubber B, no peak of the compound derived from the decomposition product was detected from the waste gas line H at all.

【0030】比較例1 実施例1で使用した分解装置に活性炭180.5gを仕
込み、室温下、二硫化炭素40000ppmを含有する
ガスのみを流量7.9l/minで供給し、吸着を行っ
たところ供給開始時より排気ガス中に二硫化炭素が8.
2ppmが含有されており、4min経過後破過した。
Comparative Example 1 180.5 g of activated carbon was charged into the decomposition apparatus used in Example 1, and only gas containing 40,000 ppm of carbon disulfide was supplied at a flow rate of 7.9 l / min at room temperature to perform adsorption. 7. Carbon disulfide in the exhaust gas from the start of supply
It contained 2 ppm and broke through after 4 minutes.

【0031】比較例2 実施例1で使用したスクラバーに、二硫化炭素1000
0ppmを含有したガスを流量7.9l/minで供給
し吸収を行ったところ排気ガス中に二硫化炭素が300
0ppm含有されていた。
Comparative Example 2 The scrubber used in Example 1 was mixed with carbon disulfide 1000
When a gas containing 0 ppm was supplied at a flow rate of 7.9 l / min and absorbed, carbon disulfide was found to be 300 in the exhaust gas.
It was contained at 0 ppm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施態様の一例を示す図であ
る。
FIG. 1 is a diagram showing an example of an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭47−6254(JP,A) 特開 昭61−46244(JP,A) 特開 昭63−240945(JP,A) 特開 平3−4937(JP,A) 特公 昭53−45311(JP,B1) 特表 昭62−500999(JP,A) 特表 昭63−501562(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/86 B01J 21/00 - 38/74 C01B 31/26 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-47-6254 (JP, A) JP-A-61-46244 (JP, A) JP-A-63-240945 (JP, A) 4937 (JP, A) JP 53-45311 (JP, B1) JP 62-500999 (JP, A) JP 63-501562 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/86 B01J 21/00-38/74 C01B 31/26

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二硫化炭素を活性炭の存在下、水または水
蒸気と接触させることを特徴とする二硫化炭素の除去方
法。
1. A method for removing carbon disulfide, comprising contacting carbon disulfide with water or steam in the presence of activated carbon .
【請求項2】Pdを担持した活性炭であることを特徴と
する請求項1に記載の方法。
2. An activated carbon carrying Pd.
The method of claim 1, wherein
【請求項3】二硫化炭素を、燐酸を担持した酸化アルミ
ニウムの存在下、水または水蒸気と接触させることを特
徴とする二硫化炭素の除去方法。
3. An aluminum oxide having carbon disulfide as phosphoric acid.
It comes into contact with water or steam in the presence of
Method of removing carbon disulfide.
【請求項4】二硫化炭素を、Pdを担持した酸化珪素の
存在下、水または水蒸気と接触させることを特徴とする
二硫化炭素の除去方法。
4. The method according to claim 1, wherein carbon disulfide is converted to silicon oxide carrying Pd.
Characterized by contact with water or steam in the presence
How to remove carbon disulfide.
【請求項5】水または水蒸気と接触後、水またはアルカ
リ性水溶液で処理することを特徴とする請求項1〜4い
ずれかに記載の方法。
5. After contact with water or steam, water or alkali
5. The method according to claim 1, wherein the treatment is carried out with an aqueous solution.
The method described in any of them.
JP16901591A 1991-06-14 1991-06-14 How to remove carbon disulfide Expired - Fee Related JP3265589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16901591A JP3265589B2 (en) 1991-06-14 1991-06-14 How to remove carbon disulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16901591A JP3265589B2 (en) 1991-06-14 1991-06-14 How to remove carbon disulfide

Publications (2)

Publication Number Publication Date
JPH04367711A JPH04367711A (en) 1992-12-21
JP3265589B2 true JP3265589B2 (en) 2002-03-11

Family

ID=15878754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16901591A Expired - Fee Related JP3265589B2 (en) 1991-06-14 1991-06-14 How to remove carbon disulfide

Country Status (1)

Country Link
JP (1) JP3265589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105194974A (en) * 2015-09-25 2015-12-30 杭州奥通环保科技有限公司 Carbon disulfide waste gas vacuum desorption treatment device and treatment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046741A1 (en) 2008-11-18 2010-05-27 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Selective oxidation and removal of carbon disulfide and/or other volatile organic sulfur compounds from contaminated oxygen-containing gas or gas mixture comprises contacting gas or gas mixture with a surface containing metallic copper
CN109133059B (en) * 2017-11-01 2020-01-21 濮阳天泓实业有限公司 Reaction furnace for producing carbon disulfide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105194974A (en) * 2015-09-25 2015-12-30 杭州奥通环保科技有限公司 Carbon disulfide waste gas vacuum desorption treatment device and treatment method

Also Published As

Publication number Publication date
JPH04367711A (en) 1992-12-21

Similar Documents

Publication Publication Date Title
US4209496A (en) Treatment of offgas from aluminum chloride production
KR20090098831A (en) Process for the production of chlorine dioxide
JPS6348568B2 (en)
JP3265589B2 (en) How to remove carbon disulfide
US3699209A (en) Hf removal system
US4301126A (en) Process for destroying phosgene
US3789580A (en) Removal of phosgene from an essentially anhydrous gas stream
US5766565A (en) Purification of hydrochloric acid
US3331873A (en) Removal of chlorine from liquid phosgene with activated carbon
JPH026318A (en) Method of removing n type doping impurity from liquefied or gaseous substance generated by vapor phase precipitation of silicon
US4828810A (en) Removal of low level ethylene oxide contaminants by treatment of contaminated gases with cationic exchange resins at gas-solid interface reaction conditions
US4102981A (en) Removal of acidic impurity from chlorofluoromethanes
US4157374A (en) Disposal of waste gases from production of aluminum chloride
US5082645A (en) Waste acid recovery process
US5961695A (en) Method for treating silane-containing gas
JP2531249B2 (en) Purification method of hydrogen chloride gas
JP2003001048A (en) Method of drying wet gas, method of removing sulfuric acid mist, and method of producing chlorine using these methods
JP3861497B2 (en) Method for purifying vinyl chloride
JP3265588B2 (en) How to remove thiophosgene
US4453020A (en) Process for purifying the methanol employed in the preparation of formaldehyde
JP3912157B2 (en) Ammonium fluoride-containing wastewater treatment method
JPS588377B2 (en) Method for removing phosgene from exhaust gas during benzoyl chloride production
JPS5945654B2 (en) Vinyl chloride purification method
US3655342A (en) Drying chlorine
CA1103901A (en) Disposal of waste gases from production of aluminum chloride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees