JPH0257871A - Heat recovery type air conditioner - Google Patents

Heat recovery type air conditioner

Info

Publication number
JPH0257871A
JPH0257871A JP20669088A JP20669088A JPH0257871A JP H0257871 A JPH0257871 A JP H0257871A JP 20669088 A JP20669088 A JP 20669088A JP 20669088 A JP20669088 A JP 20669088A JP H0257871 A JPH0257871 A JP H0257871A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
auxiliary
exchanger
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20669088A
Other languages
Japanese (ja)
Inventor
Mari Sada
真理 佐田
Kazuo Yonemoto
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP20669088A priority Critical patent/JPH0257871A/en
Publication of JPH0257871A publication Critical patent/JPH0257871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To maintain the capacity balance of room cooling and heating in response to variation in an operating state by connecting an auxiliary heat exchanger in parallel with a heat source side heat exchanger, connecting its gas line side to a discharge line to operate the auxiliary exchanger as only a condenser. CONSTITUTION:Three indoor units A-C are connected in parallel with one outdoor unit X. One auxiliary heat exchanger 9 is connected in parallel with an outdoor heat exchanger 3 in the unit X, and an auxiliary motor-driven expansion vale 10 as a second flowrate control mechanism for controlling flowrate of refrigerant to an auxiliary heat exchanger 9 is interposed at the side of its liquid line 11a. The gas tube of the exchanger 9 is always connected to the position to become a discharge line 11c to operate always only as a condenser with the exchanger 9 irrespective of the cycle of the exchanger 3. An air conditioner is operated in respective operation modes by a controller 52.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数の室内ユニットを備え、各室内ユニット
個別に冷暖房運転可能に接続してなる熱回収形空気調和
装置に係り、特に製造コストの低減対策に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a heat recovery type air conditioner comprising a plurality of indoor units, each of which is individually connected to enable cooling/heating operation. Regarding reduction measures.

(従来の技術) 従来より、例えば特開昭62−252865号公報に開
示される如く、圧縮機、熱源側熱交換器および減圧機能
を有する流量制御弁を備えた室外ユニットに対して、利
用側熱交換器および減圧機構を備えた複数の室内ユニッ
トを並列に接続した冷媒回路を構成し、かつ各熱交換器
を蒸発サイクルと凝縮サイクルに切換える接続切換機構
とを備えたいわゆる熱回収形空気調和装置において、室
外ユニット側で熱源側熱交換器に対して2つの補助熱交
換器を並列に接続し、一方は常時蒸発器として他方は常
時凝縮器として機能させるとともに、運転状態に応じて
その能力を制御することにより、装置全体の冷暖房能力
のバランスを正確に維持しようとするものは知られてい
る。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Unexamined Patent Publication No. 62-252865, for an outdoor unit equipped with a compressor, a heat source side heat exchanger, and a flow control valve having a pressure reducing function, a user side A so-called heat recovery type air conditioner that consists of a refrigerant circuit in which multiple indoor units equipped with heat exchangers and pressure reduction mechanisms are connected in parallel, and is equipped with a connection switching mechanism that switches each heat exchanger between an evaporation cycle and a condensation cycle. In the device, two auxiliary heat exchangers are connected in parallel to the heat exchanger on the heat source side on the outdoor unit side, and one always functions as an evaporator and the other always functions as a condenser, and its capacity changes depending on the operating state. It is known to attempt to accurately maintain the balance of the heating and cooling capacity of the entire device by controlling the air conditioner.

(発明が解決しようとする課題) 上記従来のような三台の補助熱交換器を利用することに
より、装置が各種の運転モードにあるときに、冷房能力
と暖房能力とでアンバランスが生じて空調感を損ねるよ
うなことが有効に防止されうる。
(Problem to be Solved by the Invention) By using three auxiliary heat exchangers as in the above-mentioned conventional method, an imbalance occurs between the cooling capacity and the heating capacity when the device is in various operation modes. Impairing the feeling of air conditioning can be effectively prevented.

しかしながら、その場合、三台の補助熱交換器と熱源側
熱交換器とを適正に機能させるには複雑な制御を必要と
すると共に装置が大形化するので、スペースおよび製造
コストが増大するという問題があった。
However, in that case, complicated control is required to properly function the three auxiliary heat exchangers and the heat source side heat exchanger, and the equipment becomes larger, resulting in increased space and manufacturing costs. There was a problem.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、熱源側熱交換器に対し、単純な機能でもってその
能力を微細に調節しうる手段を講することにより、装置
の小形化と制御の簡素化を実現し、製造コストの低減を
図ることにある。
The present invention has been made in view of the above, and its purpose is to reduce the size of the device by providing a means for finely adjusting the capacity of the heat exchanger on the heat source side with a simple function. The goal is to realize simplified control and control, and to reduce manufacturing costs.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように、圧縮機(1)、熱源側熱交換器(3)およ
び該熱源側熱交換器(3)への冷媒流量調節機能と減圧
機能とを持った第1流量制御機構(4)を有する室外ユ
ニット(X)に対し、利用側熱交換器(7)および該利
用側熱交換器(7)用の減圧機構(6)を有する複数の
室内ユニット(A)〜(C)を並列に冷媒配管(11)
で接続してなる冷媒回路(12)を備えるとともに、上
記各熱交換器(3)、(7)〜(7)が蒸発器として機
能する蒸発サイクル又は凝縮器として機能する凝縮サイ
クルで冷媒が循環するように、各熱交換器(3)、  
(7)〜(7)の冷媒回路(12)のガスライン(11
b)との接続を吐出ライン(11c)側と吸入ライン(
lid)側とに個別に切換える接続切換機構(51)を
備えた熱回収形空気調和装置を前提とし、さらに、上記
熱源側熱交換器(3)に対して並列にかつガス管側が吐
出ライン(11c)に接続され、凝縮器としてのみ機能
する補助熱交換器(9)と、該補助熱交換器(9)への
冷媒流量を調節する第2流量制御機構(10)とを設け
る構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a compressor (1), a heat source side heat exchanger (3), and a heat source side heat exchanger, as shown in FIG. For an outdoor unit (X) having a first flow rate control mechanism (4) having a refrigerant flow rate adjustment function and a pressure reduction function to a refrigerant flow rate control mechanism (3), a user-side heat exchanger (7) and the user-side heat exchanger Refrigerant piping (11) connects multiple indoor units (A) to (C) in parallel with a pressure reducing mechanism (6) for (7).
The refrigerant circuit (12) is connected to the refrigerant circuit (12), and the refrigerant is circulated in an evaporation cycle in which each of the heat exchangers (3) and (7) to (7) functions as an evaporator or in a condensation cycle in which the heat exchangers (7) function as an evaporator. so that each heat exchanger (3),
(7) - The gas line (11) of the refrigerant circuit (12) of (7)
b) is connected to the discharge line (11c) side and the suction line (
It is assumed that the heat recovery type air conditioner is equipped with a connection switching mechanism (51) that individually switches between the gas pipe side and the gas pipe side in parallel to the heat source side heat exchanger (3). 11c) and functions only as a condenser, and a second flow rate control mechanism (10) that adjusts the flow rate of refrigerant to the auxiliary heat exchanger (9). It is something.

(作用) 以上の構成により、本発明では、各室内ユニット(A)
〜(C)がそれぞれ個別に冷暖房運転を行うことにより
、互いの熱の一部又は全部を室内側で回収しあう熱回収
運転が行われる。そして、室内側の暖房要求と冷房要求
の大小差の値に応じて、熱源側熱交換器(3)および補
助熱交換器(9)の使用モードが変更され、装置全体の
熱バランスの維持が図られる。
(Function) With the above configuration, in the present invention, each indoor unit (A)
- (C) perform cooling and heating operations individually, thereby performing a heat recovery operation in which a part or all of each other's heat is recovered indoors. Then, the usage mode of the heat source side heat exchanger (3) and the auxiliary heat exchanger (9) is changed according to the value of the difference in size between the heating request and the cooling request on the indoor side, so that the heat balance of the entire device can be maintained. It will be planned.

その場合、補助熱交換器(9)のガス管側が常時吐出ラ
イン(11c)に接続され、凝縮器としてのみ機能する
ので、別途切換弁、熱交換器等を要せず、第2流量制御
機構(10)の開度調節だけで運転状態の変化に応じて
能力のバランスが維持されることになり、装置のコンパ
クト化と共に制御が簡素化される。よって、製造コスト
が低減することになる。
In that case, the gas pipe side of the auxiliary heat exchanger (9) is always connected to the discharge line (11c) and functions only as a condenser, so there is no need for a separate switching valve, heat exchanger, etc., and the second flow rate control mechanism The capacity balance can be maintained in response to changes in operating conditions simply by adjusting the opening (10), making the device more compact and simplifying control. Therefore, manufacturing costs are reduced.

(実施例) 以下、本発明の実施例について、図面に基づき説明する
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本発明の実施例に係る空気調和装置の全体構成
を示し、−台の室外ユニット(X)に対し、王台の室内
ユニット(A)〜(C)が並列に接続されている。上記
室外ユニット(X)には、インバータ(図示せず)によ
り運転周波数可変に駆動される容量可変形圧縮機(1)
と、冷媒の流れ方向に応じて凝縮器又は蒸発器として機
能する熱源側熱交換器としての室外熱交換器(3)と、
該室外熱交換器(3)が凝縮器として機能する凝縮サイ
クル時には図中実線のごとく、蒸発器として機能する蒸
発サイクル時には図中破線のごとく、つまり室外熱交換
器(3)への冷媒の流れを蒸発サイクルと凝縮サイクル
とに切換える第1四路切換弁(2)と、上記室外熱交換
器(3)への冷媒流量を調節するとともに、室外熱交換
器(3)が蒸発器として機能するときに冷媒の減圧機構
として機能する第1流量制御機構としての第1電動膨張
弁(4)と、液冷媒を貯溜するためのレシーバ(5)と
、圧縮機(1)への吸入ガス中の液冷媒を分離するため
のアキュムレータ(8)とが配置されている。
FIG. 1 shows the overall configuration of an air conditioner according to an embodiment of the present invention, in which two indoor units (A) to (C) are connected in parallel to two outdoor units (X). . The outdoor unit (X) has a variable capacity compressor (1) that is driven by an inverter (not shown) to vary the operating frequency.
and an outdoor heat exchanger (3) as a heat source side heat exchanger that functions as a condenser or an evaporator depending on the flow direction of the refrigerant;
During the condensation cycle in which the outdoor heat exchanger (3) functions as a condenser, the flow of refrigerant to the outdoor heat exchanger (3) occurs as shown by the solid line in the figure, and during the evaporation cycle in which the outdoor heat exchanger (3) functions as an evaporator, as shown in the broken line in the figure. a first four-way switching valve (2) that switches between an evaporation cycle and a condensation cycle; and a first four-way switching valve (2) that adjusts the flow rate of refrigerant to the outdoor heat exchanger (3), and the outdoor heat exchanger (3) functions as an evaporator. A first electric expansion valve (4) as a first flow rate control mechanism that sometimes functions as a refrigerant pressure reduction mechanism, a receiver (5) for storing liquid refrigerant, and a An accumulator (8) for separating liquid refrigerant is arranged.

また、上記各室内ユニット(A)〜(C)はそれぞれ同
一構成であって、冷媒の流れに応じて蒸発器又は凝縮器
として機能する利用側熱交換器としての室内熱交換器(
7)と、該室内熱交換器(7)への冷媒の減圧機構とし
ての第2電動膨張弁(6)とが配置されている。
In addition, each of the above-mentioned indoor units (A) to (C) has the same configuration, and an indoor heat exchanger (
7) and a second electric expansion valve (6) as a mechanism for reducing the pressure of the refrigerant to the indoor heat exchanger (7).

そして、上記各ユニット(X)、  (A)〜(C)内
の各機器(1)〜(8)は、それぞれ冷媒配管(11)
により順次冷媒の流通゛可能に接続されていて、各ユニ
ット(X)、  (A)〜(C)の熱交換器(3)、(
7)〜(7)で付与された熱を冷媒を介して相互に熱交
換する冷媒回路(12)が構成されている。
Each of the devices (1) to (8) in each of the units (X) and (A) to (C) is connected to a refrigerant pipe (11), respectively.
The heat exchangers (3), (
A refrigerant circuit (12) is configured to mutually exchange the heat applied in steps 7) to (7) via a refrigerant.

また、上記冷媒回路(12)のガスライン(11b)に
は、各室内ユニット(A)〜(C)について、室内熱交
換器(7)〜(7)が蒸発器として機能する蒸発サイク
ル時には図中実線のごとく、凝縮器として機能する凝縮
サイクル時には図中破線のごとく切換わり、各熱交換器
(7)〜(7)の上記ガスライン(1l b)との接続
を圧縮機(1)の吐出ライン(11c)側と吸入ライン
(11d)側とにそれぞれ個別に切換える第2〜第4四
路切換弁(14)〜(16)が配置されている。上記第
1四路切換弁(2)および第2〜第4四路切換弁(14
)〜(16)により、各熱交換器(3)、(7)〜(7
)が蒸発器として機能する蒸発サイクル又は凝縮器とし
て機能する凝縮サイクルで冷媒が循環するように、各熱
交換器(3)、  (7)〜(7)のガスライン(11
b)との接続を吐出ライン(11c)側と吸入ライン(
11d)側とに個別に切換える接続切換機構(51)が
構成されている。
In addition, the gas line (11b) of the refrigerant circuit (12) is connected to the gas line (11b) for each of the indoor units (A) to (C) during the evaporation cycle in which the indoor heat exchangers (7) to (7) function as evaporators. As shown by the solid line, during the condensation cycle which functions as a condenser, the connection is switched as shown by the broken line in the figure, and the connection of each heat exchanger (7) to (7) with the gas line (1l b) is changed to that of the compressor (1). Second to fourth four-way switching valves (14) to (16) that are individually switched to the discharge line (11c) side and the suction line (11d) side are arranged. The first four-way switching valve (2) and the second to fourth four-way switching valves (14)
) to (16), each heat exchanger (3), (7) to (7
The gas lines (11
b) is connected to the discharge line (11c) side and the suction line (
A connection switching mechanism (51) is configured to individually switch to the 11d) side.

ここで、本発明の特徴として、上記室外ユニット(X)
には、−台の補助熱交換器(9)が室外熱交換器(3)
に対して並列に接続されていて、さらに、その液ライン
(11a)側には補助熱交換器(9)への冷媒流量を制
御する第2流量制御機構としての補助電動膨張弁(10
)が介設されている。そして、上記補助熱交換器(9)
のガス管側は、常時吐出ライン(11c)となる部位に
接続されていて、室外熱交換器(3)のサイクルの如何
に拘らず、補助熱交換器(9)が常に凝縮器としてしか
機能しないようになされている。
Here, as a feature of the present invention, the outdoor unit (X)
, the - auxiliary heat exchanger (9) is the outdoor heat exchanger (3)
Further, on the liquid line (11a) side, there is an auxiliary electric expansion valve (10) as a second flow rate control mechanism that controls the flow rate of refrigerant to the auxiliary heat exchanger (9).
) is provided. And the auxiliary heat exchanger (9)
The gas pipe side of is always connected to the discharge line (11c), so that the auxiliary heat exchanger (9) always functions only as a condenser, regardless of the cycle of the outdoor heat exchanger (3). We are trying not to do that.

また、(52)は装置全体の運転を制御するためのコン
トローラであって、該コントローラ(52)により、空
気調和装置が各運転モードで運転されるようになされて
いる。
Further, (52) is a controller for controlling the operation of the entire apparatus, and the air conditioner is operated in each operation mode by the controller (52).

なお、第1図において、(17)〜(20)は、それぞ
れ第1〜第4四路切換弁(2)、  (14)〜(16
)の各熱交換器(3)、(7)〜(7)。
In FIG. 1, (17) to (20) are the first to fourth four-way switching valves (2) and (14) to (16), respectively.
) heat exchangers (3), (7) to (7).

への接続ポートに対向する一接続ボートと吸入ライン(
11d)との間に介設されたキャピラリー(21a) 
〜(21c)はそれぞれ液ライン(11a)、吸入ライ
ン(11d)および吐出ライン(11c)の室外ユニッ
ト(X)出口に介設された手動開閉弁である。
One connection port facing the connection port to the suction line (
11d) and the capillary (21a) interposed between
- (21c) are manual on-off valves installed at the outdoor unit (X) outlets of the liquid line (11a), suction line (11d), and discharge line (11c), respectively.

次に、上記空気調和装置の運転時における各運転モード
について、第2図〜第5図に基づき説明する。
Next, each operation mode during operation of the air conditioner will be explained based on FIGS. 2 to 5.

第2図は、3つの室内ユニット(A)〜(C)で冷暖房
運転を個別に行う複合運転モードにあるときで、室内ユ
ニット(A)、  (B)がいずれも暖房運転を行い室
内ユニット(C)が冷房運転を行っている場合を例にと
っている。そのとき、室内ユニツ)(A)、(B)の第
2電動膨張弁(6)(6)が開き気味の状態で、かつ第
1電動膨張弁(4)および室内ユニット(C)の第2電
動膨張弁(6)の開度を適度に調節しながら運転が行わ
れ、吐出冷媒が室内ユニット(A)、  (B)の室内
熱交換器(7)、(7)で凝縮された後、他の室内ユニ
ット(C)の室内熱交換器(7)と室外熱交換器(3)
とで蒸発するように循環する(図中矢印参照)。つまり
、室内ユニット(A)。
Figure 2 shows a case where the three indoor units (A) to (C) are in a combined operation mode in which heating and cooling operations are performed individually, and indoor units (A) and (B) are both performing heating operation and the indoor unit ( The case where C) is performing cooling operation is taken as an example. At that time, the second electric expansion valves (6) (6) of the indoor units (A) and (B) are slightly open, and the first electric expansion valve (4) and the second electric expansion valve (4) of the indoor unit (C) are slightly open. The operation is performed while appropriately adjusting the opening degree of the electric expansion valve (6), and after the discharged refrigerant is condensed in the indoor heat exchangers (7), (7) of the indoor units (A), (B), Indoor heat exchanger (7) and outdoor heat exchanger (3) of other indoor unit (C)
It circulates in such a way that it evaporates (see the arrow in the figure). In other words, the indoor unit (A).

(B)と室内ユニット(C)との間で空調負荷に応じて
冷暖戻道の運転を行う一方、全体としての暖房要求を室
外熱交換器(3)での熱交換でカバーするようになされ
ている。そのとき、暖房要求が冷房要求よりもある程度
以上大きいときには、室外熱交換器(3)における蒸発
能力が大きく要求されるので、補助電動膨張弁(10)
はほぼ全閉状態にあって、補助熱交換器(9)には冷媒
が流れない(以下、室外熱交換器単独蒸発サイクルとす
る)。
(B) and the indoor unit (C) perform cooling/heating return operation according to the air conditioning load, while the overall heating requirement is covered by heat exchange in the outdoor heat exchanger (3). ing. At that time, if the heating demand is greater than the cooling demand by a certain degree, a large evaporation capacity is required in the outdoor heat exchanger (3), so the auxiliary electric expansion valve (10)
is almost completely closed, and no refrigerant flows into the auxiliary heat exchanger (9) (hereinafter referred to as an outdoor heat exchanger independent evaporation cycle).

一方、暖房要求が冷房要求よりも大きいがその差が小さ
いような場合には、第3図に示すように、上記第2図と
同様の接続状態において、補助電動膨張弁(10)を開
き、吐出冷媒が室内ユニット(A)、(B)の室内熱交
換器(6)、(6)だけでなく、補助熱交換器(9)で
も凝縮した後、室内ユニット(C)の室内熱交換器(7
)と室外熱交換器(3)とで蒸発するように循環する(
図中矢印参照)。すなわち、暖房要求の減少に応じて室
外熱交換器(3)の蒸発能力を低下させるべく第1電動
膨張弁(4)の開度を絞り気味に制御し、圧縮機(1)
の運転容量を低下させる一方、補助熱交換器(9)側に
吐出冷媒の一部を逃して、適正な高圧値を保持するよう
になされている(以下、逆サイクルとする)。
On the other hand, if the heating request is greater than the cooling request but the difference is small, as shown in FIG. 3, the auxiliary electric expansion valve (10) is opened in the same connection state as in FIG. After the discharged refrigerant is condensed not only in the indoor heat exchangers (6) and (6) of the indoor units (A) and (B) but also in the auxiliary heat exchanger (9), it is condensed in the indoor heat exchanger of the indoor unit (C). (7
) and the outdoor heat exchanger (3) to evaporate and circulate (
(See arrow in figure). That is, in order to reduce the evaporation capacity of the outdoor heat exchanger (3) in response to a decrease in heating demand, the opening degree of the first electric expansion valve (4) is controlled to be a little narrower, and the compressor (1)
While reducing the operating capacity of the refrigerant, a portion of the discharged refrigerant is released to the auxiliary heat exchanger (9) side to maintain an appropriate high pressure value (hereinafter referred to as a reverse cycle).

そして、冷暖の要求能力が非常に近い場合、例えば各室
内ユニット(A)が暖房運転、室内ユニット(B)が冷
房運転を行い、室内ユニ・ット(C)が停止しているよ
うな場合には、第1電動膨張弁(4)を閉じて室外熱交
換器(3)を使用しないようになされている。すなわち
、第4図に示すように、各四路切換弁(2)、  (1
4)〜(16)が図中実線側に切換わり、第1電動膨張
弁(4)および室内ユニット(C)の第2電動膨張弁(
6)がほぼ全閉に、室内ユニット(A)の第2電動膨張
弁(6)および補助電動膨張弁(10)が開き気味の状
態で、室内ユニ・ソト(B)の第2電動膨張弁(6)の
開度を適度に調節しながら運転が行われ、吐出冷媒が室
内ユニ・ット(A)の室内熱交換器(7)および補助熱
交換器(9)で凝縮された後、室内ユニット(B)の室
内熱交換器(7)で蒸発するように循環する(図中矢印
参照)。つまり、各室内ユニット(A)、  (B)間
の空調負荷の差が極めてわずかの場合には、室内熱交換
器(3)の能力を使用することなく、補助熱交換器(9
)の凝縮能力だけで負荷に対する能力のバランスを取る
ようになされている(以下、補助熱交換器単独凝縮サイ
クルとする)。
When the required cooling and heating capacities are very similar, for example, when each indoor unit (A) performs heating operation, indoor unit (B) performs cooling operation, and indoor unit (C) is stopped. In this case, the first electric expansion valve (4) is closed so that the outdoor heat exchanger (3) is not used. That is, as shown in FIG. 4, each four-way switching valve (2), (1
4) to (16) are switched to the solid line side in the figure, and the first electric expansion valve (4) and the second electric expansion valve (C) of the indoor unit (C) are switched to the solid line side in the figure.
6) is almost fully closed, the second electric expansion valve (6) of the indoor unit (A) and the auxiliary electric expansion valve (10) are slightly open, and the second electric expansion valve of the indoor unit (B) is almost fully closed. (6) is operated while appropriately adjusting the opening degree, and after the discharged refrigerant is condensed in the indoor heat exchanger (7) and auxiliary heat exchanger (9) of the indoor unit (A), It circulates in the indoor heat exchanger (7) of the indoor unit (B) so as to evaporate (see the arrow in the figure). In other words, if the difference in air conditioning load between the indoor units (A) and (B) is extremely small, the capacity of the indoor heat exchanger (3) is not used and the capacity of the auxiliary heat exchanger (9) is not used.
) is used to balance the capacity against the load (hereinafter referred to as the auxiliary heat exchanger independent condensation cycle).

そして、冷房要求が大きい場合、例えば全室内ユニット
(A)〜(C)が冷房運転を行う単一運転モード時にお
いては、第5図に示すように、各四路切換弁(2)、 
 (14)〜(16)が図中実線のごとく切換わり、第
1電動膨張弁(4)および補助電動膨張弁(10)が開
き気味の状態で、各第2電動膨張弁(6)〜(6)の開
度を適度に調節しながら運転が行われ、吐出冷媒が室外
熱交換器(3)および補助熱交換器(9)で凝縮された
後、各室内ユニット(A)〜(C)の室内熱交換器(7
)〜(7)で蒸発するように循環する(図中矢印参照)
。すなわち、空調負荷に対して室外熱交換器(3)の能
力が不足している場合等に、補助熱交換器(9)で能力
のバランスを取るようになされている(以下、同時凝縮
サイクルとする)。
When the cooling demand is large, for example in a single operation mode in which all indoor units (A) to (C) perform cooling operation, each four-way switching valve (2), as shown in FIG.
(14) to (16) are switched as shown by the solid lines in the figure, and each of the second electric expansion valves (6) to ( The operation is performed while appropriately adjusting the opening degree of 6), and after the discharged refrigerant is condensed in the outdoor heat exchanger (3) and the auxiliary heat exchanger (9), each indoor unit (A) to (C) indoor heat exchanger (7
) to (7) to circulate to evaporate (see arrows in the figure)
. In other words, when the capacity of the outdoor heat exchanger (3) is insufficient for the air conditioning load, the capacity is balanced with the auxiliary heat exchanger (9) (hereinafter referred to as the simultaneous condensation cycle). do).

したがって、上記実施例では、室内側の空調要求が暖房
要求の大きいときには、室外側で補助熱交換器(9)を
使用することなく、室外熱交換器(3)を単独蒸発サイ
クルにして室内側との能力バランスを取る一方、室内側
の暖房要求が小さくなり、冷房要求側に移行するに応じ
て、補助熱交換器(9)を使用することにより、能力バ
ランスが維持される。
Therefore, in the above embodiment, when the indoor air conditioning demand is large as the heating demand, the outdoor heat exchanger (3) is set to an independent evaporation cycle without using the auxiliary heat exchanger (9) on the indoor side. On the other hand, the capacity balance is maintained by using the auxiliary heat exchanger (9) as the indoor heating demand becomes smaller and shifts to the cooling demand side.

そして、室内ユニット(A)〜(B)側の暖房要求があ
る程度冷房要求よりも大きいような場合、通常暖房要求
の減少に応じて室外熱交換器(3)の蒸発能力を低下さ
せるべく第1電動膨張弁(4)の開度を絞り気味に、圧
縮機(1)の運転容量を低下させるように制御されるが
、そのとき、室外熱交換器(3)に対して補助熱交換器
(9)を逆サイクルにして、補助熱交換器(9)を凝縮
器として使用することにより、補助熱交換器(9)側に
吐出冷媒の一部を逃して、適正な高圧値を保持すること
ができるのである。
When the heating demand on the indoor units (A) to (B) side is larger than the cooling demand to some extent, the first The opening of the electric expansion valve (4) is controlled to reduce the operating capacity of the compressor (1), but at this time, the auxiliary heat exchanger ( By reversing 9) and using the auxiliary heat exchanger (9) as a condenser, a portion of the discharged refrigerant is released to the auxiliary heat exchanger (9) side to maintain an appropriate high pressure value. This is possible.

また、暖房要求と冷房要求との差が極めてわずかの場合
には、室外熱交換器(3)を使用することなく補助熱交
換器(9)を単独凝縮サイクルにして微細な能力調節を
行うので、室外熱交換器(3)の能力を微小にするため
に無理な圧縮機(1)の容量制御や第1電動膨張弁(4
)の開度制御を行う必要がないという利点がある。
In addition, when the difference between heating demand and cooling demand is extremely small, the auxiliary heat exchanger (9) is used as an independent condensing cycle to perform fine capacity adjustment without using the outdoor heat exchanger (3). In order to minimize the capacity of the outdoor heat exchanger (3), the capacity of the compressor (1) must be controlled unreasonably and the first electric expansion valve (4)
) has the advantage that there is no need to control the opening degree.

さらに、各室内ユニット(A)〜(C)の複合モードに
よる運転時、運転状態の変化によって暖房要求と冷房要
求の大小関係が頻繁に反転するような場合にも、上記第
3図および第4図のように、接続切換機構(51)の接
続状態を切換えることなく、第1電動膨張弁(4)の開
度だけでその変化に応じて能力バランスを維持すること
ができるので、切換弁の頻繁な切換えに起因する信頼性
の低下を有効に防止することができる。
Furthermore, when the indoor units (A) to (C) are operated in the combined mode, even if the magnitude relationship between the heating request and the cooling request is frequently reversed due to changes in the operating state, the above-mentioned figures 3 and 4 As shown in the figure, the capacity balance can be maintained according to changes in the opening degree of the first electric expansion valve (4) without changing the connection state of the connection switching mechanism (51). Deterioration in reliability due to frequent switching can be effectively prevented.

その場合、補助熱交換器(9)のガス管側が常時吐出ラ
イン(11c)に接続され、凝縮器としてのみ機能する
ので、別途切換弁や、従来のような2つの熱交換器等を
要せず、第2流量制御機構(10)の開度調節だけで運
転状態の変化に応じて能力のバランスが維持されること
になり、装置のコンパクト化と共に制御が簡素化される
。よって、製造コストの低減を図ることができるのであ
る。
In that case, the gas pipe side of the auxiliary heat exchanger (9) is always connected to the discharge line (11c) and functions only as a condenser, so there is no need for a separate switching valve or two heat exchangers like in the past. First, the balance of capacity can be maintained in response to changes in operating conditions simply by adjusting the opening degree of the second flow rate control mechanism (10), making the device more compact and simplifying control. Therefore, it is possible to reduce manufacturing costs.

(発明の効果) 以上説明したように、本発明によれば、熱回収形空気調
和装置において、熱源側熱交換器に対して補助熱交換器
を並列に接続するとともに、そのガスライン側を吐出ラ
インに接続して、補助熱交換器を凝縮器としてのみ機能
するようにしたので、コンパクトな装置と簡素な制御で
もって運転状態の変化に応じて冷暖房の能力バランスを
維持することができ、よって、製造コストの低減を図る
ことができる。
(Effects of the Invention) As explained above, according to the present invention, in a heat recovery type air conditioner, the auxiliary heat exchanger is connected in parallel to the heat exchanger on the heat source side, and the gas line side thereof is connected in parallel to the heat exchanger on the heat source side. Since the auxiliary heat exchanger is connected to the line and functions only as a condenser, it is possible to maintain the balance of heating and cooling capacity in response to changes in operating conditions with a compact device and simple control. , it is possible to reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図はその冷媒系統図
、第2図〜第5図は装置の各運転モードにおける運転状
態を示し、それぞれ第2図は冷暖同時運転時で室外熱交
換器が単独蒸発サイクル時、第3図は冷暖同時運転時で
室外熱交換器および補助熱交換器が逆サイクル時、第4
図は冷暖同時運転時で補助熱交換器が単独凝縮サイクル
時、第5図は冷房単一運転時で室゛外熱交換器および補
助熱交換器が同一サイクル時の冷媒の循環を示す図であ
る。 (1)・・・圧縮機、(3)・・・室外熱交換器(熱源
側熱交換器)、(4)・・・第1電動膨張弁(第1流量
制御機構)、(6)・・・第2電動膨張弁(減圧機構)
、(7)・・・室内熱交換器(利用側熱交換器)、(9
)・・・補助熱交換器、(10)・・・補助電動膨張弁
(第2流量制御機構)、(11)・・・冷媒配管、(1
l b)・・・ガスライン、(11c)・・・吐出ライ
ン、(11d)・・・吸入ライン、(12)・・・冷媒
回路、(51)・・・接続切換機構、(X)・・・室外
ユニット、(A)〜(C)・・・室内ユニット。 第 図 第 図
The drawings show an embodiment of the present invention, and Fig. 1 shows its refrigerant system diagram, Figs. 2 to 5 show the operating status of the device in each operation mode, and Fig. 2 shows the outdoor heat during simultaneous cooling and heating operation. When the exchanger is in a single evaporation cycle, Fig. 3 shows when the outdoor heat exchanger and auxiliary heat exchanger are in a reverse cycle when cooling and heating are simultaneously operated, and when the 4th
The figure shows the refrigerant circulation when the auxiliary heat exchanger is in the single condensing cycle during simultaneous cooling and heating operation, and Figure 5 shows the refrigerant circulation when the outdoor heat exchanger and the auxiliary heat exchanger are in the same cycle during single cooling operation. be. (1) Compressor, (3) Outdoor heat exchanger (heat source side heat exchanger), (4) First electric expansion valve (first flow rate control mechanism), (6)・・Second electric expansion valve (pressure reducing mechanism)
, (7)...Indoor heat exchanger (user side heat exchanger), (9
)... Auxiliary heat exchanger, (10)... Auxiliary electric expansion valve (second flow rate control mechanism), (11)... Refrigerant piping, (1
l b)...Gas line, (11c)...Discharge line, (11d)...Suction line, (12)...Refrigerant circuit, (51)...Connection switching mechanism, (X)... ...Outdoor unit, (A) to (C)...Indoor unit. Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機(1)、熱源側熱交換器(3)および該熱
源側熱交換器(3)への冷媒流量調節機能と減圧機能と
を持った第1流量制御機構(4)を有する室外ユニット
(X)に対し、利用側熱交換器(7)および該利用側熱
交換器(7)用の減圧機構(6)を有する複数の室内ユ
ニット(A)〜(C)を並列に冷媒配管(11)で接続
してなる冷媒回路(12)を備えるとともに、上記各熱
交換器(3)、(7)〜(7)が蒸発器として機能する
蒸発サイクル又は凝縮器として機能する凝縮サイクルで
冷媒が循環するように、各熱交換器(3)、(7)〜(
7)の冷媒回路(12)のガスライン(11b)との接
続を吐出ライン(11c)側と吸入ライン(11d)側
とに個別に切換える接続切換機構(51)を備えた熱回
収形空気調和装置において、上記熱源側熱交換器(3)
に対して並列にかつガス管側が吐出ライン(11c)に
接続され、凝縮器としてのみ機能する補助熱交換器(9
)と、該補助熱交換器(9)への冷媒流量を調節する第
2流量制御機構(10)とを備えたことを特徴とする熱
回収形空気調和装置。
(1) It has a compressor (1), a heat source side heat exchanger (3), and a first flow rate control mechanism (4) having a refrigerant flow rate adjustment function and a pressure reduction function to the heat source side heat exchanger (3). A plurality of indoor units (A) to (C) each having a user-side heat exchanger (7) and a pressure reduction mechanism (6) for the user-side heat exchanger (7) are connected to the outdoor unit (X) in parallel with the refrigerant. An evaporation cycle in which the heat exchangers (3) and (7) to (7) function as evaporators or a condensation cycle in which the heat exchangers (3) and (7) function as condensers, and each heat exchanger (3), (7) to (7) functions as an evaporator. Each heat exchanger (3), (7) to (
7) A heat recovery type air conditioner equipped with a connection switching mechanism (51) that individually switches the connection of the refrigerant circuit (12) to the gas line (11b) to the discharge line (11c) side and the suction line (11d) side. In the device, the heat source side heat exchanger (3)
An auxiliary heat exchanger (9) is connected in parallel to the discharge line (11c) on the gas pipe side and functions only as a condenser
) and a second flow rate control mechanism (10) that adjusts the flow rate of refrigerant to the auxiliary heat exchanger (9).
JP20669088A 1988-08-19 1988-08-19 Heat recovery type air conditioner Pending JPH0257871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20669088A JPH0257871A (en) 1988-08-19 1988-08-19 Heat recovery type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20669088A JPH0257871A (en) 1988-08-19 1988-08-19 Heat recovery type air conditioner

Publications (1)

Publication Number Publication Date
JPH0257871A true JPH0257871A (en) 1990-02-27

Family

ID=16527501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20669088A Pending JPH0257871A (en) 1988-08-19 1988-08-19 Heat recovery type air conditioner

Country Status (1)

Country Link
JP (1) JPH0257871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210719A (en) * 1995-02-06 1996-08-20 Daikin Ind Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210719A (en) * 1995-02-06 1996-08-20 Daikin Ind Ltd Air conditioner

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
JP3816860B2 (en) Heat pump air conditioner
KR100989460B1 (en) Heat source unit for refrigerating apparatus, and refrigerating apparatus
JP2974179B2 (en) Multi-room air conditioner
EP1455150A1 (en) Refrigeration equipment
EP1473526B1 (en) Air conditioner and outdoor unit therefor
KR920007811B1 (en) Air conditioner
JP2716248B2 (en) Heat pump type air conditioner
JP4449139B2 (en) Refrigeration equipment
JP2000346478A (en) Refrigerator
JPH0268467A (en) Heat recovery type air conditioner
JP4277354B2 (en) Air conditioner
JPH0257871A (en) Heat recovery type air conditioner
JP2002286273A (en) Air conditioner
JP3138031B2 (en) Refrigeration equipment
JP2810422B2 (en) Refrigeration equipment
JP2698175B2 (en) Air conditioner
KR100337921B1 (en) Multi type refrigerating cycle and air conditioner having multi type refrigerating
JPH0960994A (en) Multi type heat pump system air conditioner
JPH10281578A (en) Multizone type air conditioner
JP3268967B2 (en) Air conditioner
JP2503701B2 (en) Air conditioner
KR100389555B1 (en) Cooling circuit of multi-air conditioner using capillary tube
JP2003042505A (en) Air conditioner and method of controlling its operation
JP3301828B2 (en) Air conditioner