JPH0256857A - Alkaline manganese battery - Google Patents

Alkaline manganese battery

Info

Publication number
JPH0256857A
JPH0256857A JP63208717A JP20871788A JPH0256857A JP H0256857 A JPH0256857 A JP H0256857A JP 63208717 A JP63208717 A JP 63208717A JP 20871788 A JP20871788 A JP 20871788A JP H0256857 A JPH0256857 A JP H0256857A
Authority
JP
Japan
Prior art keywords
manganese dioxide
carbon material
positive electrode
carbon
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208717A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nitta
芳明 新田
Akira Ota
璋 太田
Akira Miura
三浦 晃
Koji Yoshizawa
浩司 芳澤
Sachiko Suetsugu
末次 佐知子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63208717A priority Critical patent/JPH0256857A/en
Publication of JPH0256857A publication Critical patent/JPH0256857A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a battery with a high positive electrode utilization factor by fixing a specific carbon material on 1-2wt.% manganese dioxide grains for a whole manganese dioxide electrode and mixing and dispersing a carbon material satisfying the specific conditions for manganese dioxide. CONSTITUTION:Noncrystal carbon black 1B is heat-treated in advance into graphite with the average grain size of 0.03-0.05mum for used as a carbon material. This carbon material 1B is fixed on 1-2wt.% manganese dioxide grains 1A for a whole manganese dioxide electrode. A carbon material 1C satisfying the average grain size ratio of 10<-2>-10 for the manganese dioxide 1A is mixed and dispersed with the manganese dioxide 1A for use as the positive electrode black mix 1. A basic electron conducting network is formed, the arrangement that an electrolyte can be sufficiently absorbed via its distribution effect is established, the dispersibility of the manganese dioxide 1A and the carbon materials 1B and 1C is improved, and a battery with a high discharge utilization factor can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリマンガン電池の、特に正極合剤の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in alkaline manganese batteries, particularly in positive electrode mixtures.

従来の技術 従来よりアルカリマンガン電池は正極活物質として電解
二酸化マンガン粉末、導電材として炭素粉末を混合した
ものが正極合剤として用いられている。導電材が必要な
理由は、二酸化マンガン単独では比導電率が10〜10
  S/にHのオーダーで非常に低い値を示すからであ
る。従って個々の二酸化マンガン粒子に電子導電性を与
えて充分な還元反応を促進させるには1.正極合剤の非
導電率が10−2〜10S/cmのオーダーであること
が好ましく、このために導電材として二酸化マンガンと
ほぼ同じ平均粒径を持つ炭素粉末がしばしば用いられて
いる。
BACKGROUND OF THE INVENTION Traditionally, alkaline manganese batteries have used a mixture of electrolytic manganese dioxide powder as a positive electrode active material and carbon powder as a conductive material as a positive electrode mixture. The reason why a conductive material is necessary is that manganese dioxide alone has a specific conductivity of 10 to 10.
This is because S/ exhibits a very low value on the order of H. Therefore, in order to impart electronic conductivity to individual manganese dioxide particles and promote a sufficient reduction reaction, 1. It is preferable that the non-conductivity of the positive electrode mixture is on the order of 10-2 to 10 S/cm, and for this reason, carbon powder having approximately the same average particle size as manganese dioxide is often used as the conductive material.

従来では二酸化マンガン粉末と炭素粉末を単純に混合機
で混合攪拌して正極合剤とする方法が用いられていた。
Conventionally, a method has been used in which manganese dioxide powder and carbon powder are simply mixed and stirred in a mixer to form a positive electrode mixture.

その他、二酸化マンガンと炭素材にそれぞれ相反する静
電荷を帯電させ、二酸化マンガン粒子上に静電吸着によ
る黒鉛層を形成し、正極合剤とする方法が提案されてい
た(例えば特開昭62−214362号公報)。また、
導電材として不定形の炭素材粒子を用いたり、直径0.
1〜1.0μm、長さ10〜100μmの繊維黒鉛を用
いたシして高速気流中での衝撃法によシ二酸化マンガン
粒子上に固定させた正極合剤を用いる方法も提案されて
いた。
In addition, a method has been proposed in which a manganese dioxide and a carbon material are charged with opposite static charges, and a graphite layer is formed by electrostatic adsorption on manganese dioxide particles to form a positive electrode mixture (e.g., 214362). Also,
Amorphous carbon material particles may be used as the conductive material, or particles with a diameter of 0.
A method has also been proposed in which a positive electrode mixture is fixed on manganese dioxide particles by an impact method in a high-speed air flow using fiber graphite having a length of 1 to 1.0 μm and a length of 10 to 100 μm.

発明が解決しようとする課題 しかしながら、このような従来の構成では、異なる二種
の粉体を単に混合しても両者を均一に分散させることは
困難であシ、この場合、二酸化マンガン粉末と炭素粉末
間で互いの接触が十分に得られない。これらの接触頻度
が低下すると、電子伝導のネットワーク形成が低下し、
電気化学的な還元反応に関与しない二酸化マンガンが多
く残存し、電極全体としての二酸化マンガンの利用率が
低下する問題があった。
Problems to be Solved by the Invention However, in such a conventional configuration, it is difficult to uniformly disperse two different types of powder by simply mixing them.In this case, manganese dioxide powder and carbon Powders do not have enough contact with each other. As the frequency of these contacts decreases, the network formation for electron conduction decreases,
There is a problem in that a large amount of manganese dioxide that does not participate in the electrochemical reduction reaction remains, resulting in a decrease in the utilization rate of manganese dioxide for the electrode as a whole.

多量の炭素粉末を用いる場合はこの様な問題はないが、
その反面、一定体積内の二酸化マンガン量が減少するた
め電池の放電容量密度は極端に減少することになる。
There is no problem like this when using a large amount of carbon powder, but
On the other hand, since the amount of manganese dioxide within a certain volume is reduced, the discharge capacity density of the battery is extremely reduced.

このような二酸化マンガン粒子と炭素材粒子との間で十
分な接触が得られない主な理由は、炭素材粒子同志が凝
集して二次粒子を形成することによる。これは、従来の
単に機械的な攪拌による混合法では、混合回転数が低い
ことから回転配向性の点から粒子間同志による衝突や接
触の頻度が少なくなり、接触摩擦による二種粉体間の帯
電吸着作用が損なわれ、分散性が低下することに起因し
ていた。
The main reason why sufficient contact cannot be obtained between such manganese dioxide particles and carbon material particles is that the carbon material particles aggregate to form secondary particles. This is due to the fact that in the conventional mixing method using simple mechanical stirring, the mixing rotation speed is low, which reduces the frequency of collisions and contact between particles due to rotational orientation, and the interaction between two types of powder due to contact friction. This was due to the fact that the charge adsorption effect was impaired and the dispersibility decreased.

一方、二酸化マンガン粒子上に黒鉛層を形成して得た正
極合剤は確かに良好な電子伝導のネットワークが形成さ
れて比導電率は向上するが、活物質と電解液の反応界面
で起こる種々の物質移動を黒鉛層が阻害するために十分
な放電特性が得られなかった。また、高速気流中での衝
撃法を用いて二酸化マンガン粒子上に不定形炭素材や繊
維黒鉛を固定化して得られる正極合剤は、良好な電子伝
導のネットワークを築くことができ、比導電率が向上す
る。さらに、導電炭素材は二酸化マンガン粒子上で固定
化することができ、活物質と電解液との反応界面を良好
に保持することが可能である。
On the other hand, a positive electrode mixture obtained by forming a graphite layer on manganese dioxide particles certainly forms a good electron conduction network and improves specific conductivity, but various problems occur at the reaction interface between the active material and the electrolyte. Because the graphite layer inhibited mass transfer, sufficient discharge characteristics could not be obtained. In addition, the positive electrode mixture obtained by immobilizing amorphous carbon material or fibrous graphite on manganese dioxide particles using the impact method in high-speed airflow can build a good electron conduction network, and has a specific electrical conductivity. will improve. Furthermore, the conductive carbon material can be immobilized on the manganese dioxide particles, and the reaction interface between the active material and the electrolyte can be maintained well.

しかしながら、不定形炭素材は比較的粒径が小さいため
に比表面積が大きくなる傾向があり、これによる電解液
との接触界面の増加が、混成電位を引き起こし、結果的
には高い開路電位が得られないという問題があった。ま
た、前述の繊維黒鉛は形が繊維状であるために、繊維−
本一本を完全にほぐすことは非常に困難であり、ミクロ
的には、微小な二次凝集が生じていることとあまシ変わ
らないことになる。
However, amorphous carbon materials tend to have a large specific surface area due to their relatively small particle size, and this increases the contact interface with the electrolyte, causing a hybrid potential, resulting in a high open circuit potential. The problem was that I couldn't do it. In addition, since the above-mentioned fiber graphite has a fibrous shape, the fiber graphite
It is extremely difficult to completely unravel a single book, and from a microscopic perspective, it is no different from the occurrence of minute secondary agglomerations.

本発明は、このような問題点を解決するもので、二酸化
マンガンと炭素材との分散性を向上させ、放電利用率の
高い電池を提供することを目的とするものである。
The present invention solves these problems, and aims to improve the dispersibility of manganese dioxide and carbon material and provide a battery with a high discharge utilization rate.

課題を解決するための手段 この発明は、上述した従来技術の問題を解決するもので
、二酸化マンガンと炭素材を主構成材料とする二酸化マ
ンガン電極を用いた電池であって、炭素材として非晶質
カーボンブラックを予め熱処理し、平均粒径o、03〜
0.05μmの黒鉛化したものを用い、この炭素材が全
二酸化マンガン電極に対して重量比で1〜2%二酸化マ
ンガン粒子上に固定化されており、さらえ二酸化マンガ
ンに対する炭素材の平均粒径比か10〜10を満足する
炭素材が二酸化マンガンに混合分散された正極合剤を用
いるものである。
Means for Solving the Problems The present invention solves the problems of the prior art described above, and is a battery using a manganese dioxide electrode whose main constituent materials are manganese dioxide and a carbon material. Quality carbon black is heat-treated in advance, and the average particle size is o, 03~
0.05 μm graphitized carbon material is used, and this carbon material is immobilized on manganese dioxide particles at a weight ratio of 1 to 2% with respect to the total manganese dioxide electrode, and the average particle size of the carbon material with respect to manganese dioxide is A positive electrode mixture in which a carbon material satisfying a ratio of 10 to 10 is mixed and dispersed in manganese dioxide is used.

作用 この構成により、二酸化マンガン粒子と、一部の炭素材
粒子とは良好に固定化されており、例えば不活性雰囲気
の乾燥状態で正極合剤の比導電率を測定すると10 S
 7cm以上の値を示した。
Effect With this configuration, the manganese dioxide particles and some of the carbon material particles are well fixed, and for example, when the specific conductivity of the positive electrode mixture is measured in a dry state in an inert atmosphere, it is 10 S.
It showed a value of 7 cm or more.

また、この正極合剤を用いて、例えば単3型のアルカリ
マンガン電池(LR6)を構成したところ、IKtlz
の交流インピーダンスの測定結果ならびに、開路電位の
測定では、従来例のものとほぼ同様であるという結果を
得た。
In addition, when an AA alkaline manganese battery (LR6) was constructed using this positive electrode mixture, IKtlz
The AC impedance measurement results and the open circuit potential measurement results were almost the same as those of the conventional example.

一方、1人の定電流連続放電試験を行うと、利用率は大
幅に改善され、従来の電池よりも約30チ向上した。
On the other hand, when one person conducted a constant current continuous discharge test, the utilization rate was significantly improved, about 30 inches higher than conventional batteries.

このような効果が得られるのは、合剤重量に対し1〜2
チの黒鉛化されたカーボンブラックが二酸化マンガン粒
子の表面に固定化され、基本的な電子伝導のネットワー
クが形成されたことと、その分散効果てより、電解液が
十分に吸収でき得る配置ができ上がったことによる。非
晶質カーボンブラックを用いると上述の電子伝導のネッ
トワークは形成されるが、表面が非常に疎水性であるた
めに電解液との接触が困難となる。このために表面を黒
鉛化し、アルカリ性電解液との親和性を高めたカーボン
ブラックを用いるべきである。また、黒鉛化処理により
、カーボン表面の微小部分で焼結がおこり、表面積はか
なり減少するため混成電位による開路電位の低下は軽減
される。これにより得られる、いわばカーボン付き二酸
化マンガンの比導電率は1oS/cmのオーダーであり
、電導性の点では電池特性上はとんど影響が出ない数値
である。しかし、正極ペレットの成形性を考慮にいれる
とさらに炭素材を充填する必要性がある。
Such an effect can be obtained by adding 1 to 2% of the weight of the mixture.
The graphitized carbon black of H is immobilized on the surface of the manganese dioxide particles, forming a basic electron conduction network and its dispersion effect, creating an arrangement that can sufficiently absorb the electrolyte. It depends on what happened. When amorphous carbon black is used, the above-mentioned electronic conduction network is formed, but its surface is very hydrophobic, making contact with the electrolyte difficult. For this purpose, carbon black whose surface is graphitized to improve its affinity with alkaline electrolytes should be used. Further, due to the graphitization treatment, sintering occurs in minute portions of the carbon surface, and the surface area is considerably reduced, so that the decrease in open circuit potential due to the mixed potential is reduced. The specific conductivity of manganese dioxide with carbon thus obtained is on the order of 1oS/cm, which is a value that hardly affects battery characteristics in terms of conductivity. However, when the moldability of the positive electrode pellet is taken into account, it is necessary to further fill the positive electrode pellet with carbon material.

そこで二酸化マンガンに対する炭素材の平均粒径比が1
0〜10を満足する比較的表面積が小さく、かつタップ
密度の大きい炭素材を加えて混合攪拌した。
Therefore, the average particle size ratio of carbon material to manganese dioxide is 1.
A carbon material having a relatively small surface area and a large tap density that satisfies the ratio of 0 to 10 was added and mixed and stirred.

これにより、炭素材による混成電位の影響が少なく、か
つ放電容量密度の大きい正極合剤を得ることが可能とな
る。
This makes it possible to obtain a positive electrode mixture that is less affected by the mixed potential due to the carbon material and has a high discharge capacity density.

本発明は、このような事実に基づいて提案されたもので
あシ、以下その実施例について説明する。
The present invention has been proposed based on such facts, and examples thereof will be described below.

実施例 本発明で用いた熱処理カーボンブラックは、非晶質カー
ボンブラック、例えばアセチレンブラックを昇温速度1
70’C/分で昇温し、2300℃で2時間焼成して得
たものである。これにより、カーボンブラックの構造表
面の微小部分で黒鉛化が進行する。
Example The heat-treated carbon black used in the present invention is amorphous carbon black, such as acetylene black, heated at a heating rate of 1.
It was obtained by heating at 70'C/min and firing at 2300°C for 2 hours. As a result, graphitization progresses in minute portions of the structural surface of carbon black.

なお、通常のカーボンブラックは平均粒径が数十ミリミ
クロンのものが多いが、黒鉛化のだめの熱処理を行って
も幾分の焼結は見られるものの、はとんど粒径には変化
がないことを確認している。
Note that most ordinary carbon blacks have an average particle size of several tens of millimeters, but even if heat treatment is performed for graphitization, some sintering is observed, but in most cases, the particle size does not change. We have confirmed that there are no.

本発明による正極合剤は、高速気流中での衝撃法によシ
二酸化マンガン粒子上に上述の黒鉛化したカーボンブラ
ックを固定化させる。即ち、二酸化マンガンと黒鉛化し
たカーボンブラックを気相分散させ、互いの粒子間の衝
突や摩擦によシ生じる帯電、すなわち摩擦帯電の吸着作
用で二酸化マンガン粒子表面上に黒鉛化したカーボンブ
ラックを秩序よく吸着させる。次いで、再びこれを気相
中で分散させながら機械的に回転体をおよそ5ooor
、p、m、で高速回転させることにより、それぞれの粉
体は互いに強い衝突と接触摩擦を受けることになり、二
酸化マンガン粒子表面上に秩序良くならんでいた黒鉛化
したカーボンブラックはその表面に打ち込み固定化され
、強固な接着状態が実現できる。このようにして得られ
た炭素材付き二酸化マンガンは、例えばペレット成形時
のような外力が加わっても用意に剥離することはない。
In the positive electrode mixture according to the present invention, the graphitized carbon black described above is immobilized on manganese dioxide particles by an impact method in a high-speed air flow. That is, manganese dioxide and graphitized carbon black are dispersed in a gas phase, and the graphitized carbon black is ordered on the surface of manganese dioxide particles by the adsorption effect of triboelectric charging, which is caused by collisions and friction between particles. Let it absorb well. Next, while dispersing this in the gas phase again, the rotating body was mechanically heated to approximately 500°C.
By rotating at high speeds at speeds of , p, and m, the respective powders undergo strong collisions and contact friction with each other, and the graphitized carbon black, which was arranged in an orderly manner on the surface of the manganese dioxide particles, is implanted onto the surface. It is fixed and a strong adhesive state can be achieved. The carbon material-attached manganese dioxide obtained in this manner does not easily peel off even when an external force is applied, for example during pellet molding.

次いで、上記炭素材付き二酸化マンガン上に、二酸化マ
ンガンに対する炭素材の平均粒径比が10−2〜10を
満たす炭素材を上述と同様の方法により混合分散、ある
いは単に混合することだより正極合剤を得る。
Next, on the manganese dioxide with carbon material, a carbon material having an average particle size ratio of carbon material to manganese dioxide of 10-2 to 10 is mixed and dispersed in the same manner as described above, or a positive electrode is formed by simply mixing. get the agent.

具体的な正極合剤は、活物質として電解二酸化マンガン
、導電材としてアセチレンブラックを2300’Cで2
時間処理して黒鉛化した平均粒径0.045μmの黒鉛
化ブラック、および、平均粒径1oμmの人造黒鉛を用
いた。
A specific positive electrode mixture consists of electrolytic manganese dioxide as an active material and acetylene black as a conductive material at 2300'C.
Graphitized black with an average particle size of 0.045 μm, which was graphitized by time treatment, and artificial graphite with an average particle size of 1 μm were used.

まず、二酸化マンガンと黒鉛化ブラックを回転数150
Or、p、Inで回転する気相分散用混合機に投入して
3分間運転し、次いでこれを別の高速回転が可能な気相
分散用混合機に一定量投入し、回転数5ooor、p、
mで2分間運転し、カーボン付き二酸化マンガンを得た
。ついでこのいわば前処理二酸化マンガンと平均粒径1
0μmの人造黒鉛を初め1000 r、p、m後は、6
000 r、p、mでそれぞれ2分間ずつ処理を施し、
正極合剤を得た。
First, rotate manganese dioxide and graphitized black at 150 rpm.
It was put into a gas phase dispersion mixer rotating at Or, p, In and operated for 3 minutes, then a certain amount of this was put into another gas phase dispersion mixer capable of high speed rotation, and the rotation speed was 5ooor, p. ,
The reactor was operated at m for 2 minutes to obtain manganese dioxide with carbon. Next, this so-called pre-treatment manganese dioxide and average particle size 1
Starting with 0 μm artificial graphite, after 1000 r, p, m, 6
000 r, p, m for 2 minutes each,
A positive electrode mixture was obtained.

この正極合剤の二酸化マンガン粒子の概念を明確化する
ため、その断面モデル図を第1図に示す。
In order to clarify the concept of the manganese dioxide particles of this positive electrode mixture, a cross-sectional model diagram thereof is shown in FIG.

第1図において、1人は二酸化マンガン、1Bは黒鉛化
ブラック、1Cは人造黒鉛である。
In FIG. 1, 1 is manganese dioxide, 1B is graphitized black, and 1C is artificial graphite.

次に得られた正極合剤を用いて、第2図に示すLR6型
電池を構成し、1人の定電流連続放電試験を検討した。
Next, an LR6 type battery shown in FIG. 2 was constructed using the obtained positive electrode mixture, and a constant current continuous discharge test was conducted by one person.

第2図において1は本発明による正極合剤、即ち、二酸
化マンガン粒子上に黒鉛化ブラックを固走化させる前処
理を施した後、人造黒鉛を混合して得た正極合剤である
。2はゲル化された亜鉛粉末の負極、3はセパレータ、
4はゲル負極の集電子である、5は正極キャップ、6は
金属ケース、7は電池の外装缶、8は合成樹脂封口体、
9は底板である。
In FIG. 2, reference numeral 1 denotes a positive electrode mixture according to the present invention, that is, a positive electrode mixture obtained by mixing artificial graphite after subjecting manganese dioxide particles to a pretreatment of causing graphitized black to run on them. 2 is a gelled zinc powder negative electrode, 3 is a separator,
4 is a current collector for the gel negative electrode, 5 is a positive electrode cap, 6 is a metal case, 7 is a battery case, 8 is a synthetic resin sealing body,
9 is a bottom plate.

表1には、正極合剤に対する全炭素含有率を10%に固
定し、前処理に充填する黒鉛化ブラックの重量分率を0
.6〜3.0%に変化させ、人造黒鉛を残余量加えたと
きの開路電位ならびにIKHzの交流でのインピーダン
ス測定結果を示す。
Table 1 shows that the total carbon content in the positive electrode mixture is fixed at 10%, and the weight fraction of graphitized black filled in the pretreatment is 0%.
.. 6 to 3.0% and the remaining amount of artificial graphite is added, the open circuit potential and IKHz AC impedance measurement results are shown.

(以下余白) 表 (測定20℃) 表1かられかるように黒鉛化ブラックの重量分率が1.
0〜2.0%の正極合剤を用いれば、開路電位、インピ
ーダンス特性の優れた電池を提供し得る。ちなみに導電
材として10%のすべてて黒鉛化ブラックを用いた場合
よりも開路電位は約10mV高くなっており、混成電位
による電位の低下が改善できている。なお、従来の混合
法で人造黒鉛を重量比で10%混合して得た正極合剤を
用いた場合、開路電位は1.59Vでインピーダンスは
o、13Ωであった。
(The following is a blank space) Table (Measurement at 20°C) As can be seen from Table 1, the weight fraction of graphitized black is 1.
If 0 to 2.0% of the positive electrode mixture is used, a battery with excellent open circuit potential and impedance characteristics can be provided. Incidentally, the open circuit potential is about 10 mV higher than when all 10% graphitized black is used as the conductive material, and the drop in potential due to the mixed potential can be improved. Note that when a positive electrode mixture obtained by mixing 10% by weight of artificial graphite by the conventional mixing method was used, the open circuit potential was 1.59V and the impedance was 0.0 and 13Ω.

次に、例えば前処理用黒鉛化ブラックの重量分率を2.
0%、後処理用人造黒鉛の重量分率8.0%とした時の
正極合剤を用いて1人定電流連続放電試験を行った。そ
の結果、利用率は34%以上保持することができ、従来
の混合法で得られる正極合剤を用いる場合(人造黒鉛1
0重量%)の利用率は26%であることから、本発明の
正極合剤は約30%も利用率を向上させ得る可能性を示
している。
Next, for example, the weight fraction of graphitized black for pretreatment is set to 2.
A one-person constant current continuous discharge test was conducted using the positive electrode mixture when the weight fraction of artificial graphite for post-treatment was 8.0%. As a result, the utilization rate can be maintained at 34% or more, and when using the positive electrode mixture obtained by the conventional mixing method (artificial graphite 1
Since the utilization rate of (0% by weight) is 26%, the positive electrode mixture of the present invention shows the possibility of improving the utilization rate by about 30%.

なお、ここで使用した前処理用の黒鉛化ブラックは平均
粒径が0.045μmのものであったが、アセチレンブ
ラックを焼結させたこともあって平均粒径がQ、030
μm以下のものは実験的に得られなかった。一方、平均
粒径が0.050μm以上になると、二酸化マンガンと
の気相混合分散効果が著しく低下する傾向があるため、
上記正極利用率改善には寄与しない。これは炭素材と二
酸化マンガンの表面チャージに不均衡が生じたものと考
えられる。
The graphitized black for pretreatment used here had an average particle size of 0.045 μm, but because the acetylene black was sintered, the average particle size was Q, 030 μm.
A size smaller than μm could not be experimentally obtained. On the other hand, when the average particle size is 0.050 μm or more, the vapor phase mixing and dispersion effect with manganese dioxide tends to decrease significantly.
It does not contribute to the above-mentioned improvement in the positive electrode utilization rate. This is thought to be due to an imbalance in the surface charges between the carbon material and manganese dioxide.

まだ、後処理に加えるべき炭素材は平均粒径が大きく、
密度も比較的大きい材料を選択することが望ましい。本
実施例で示したアルカリマンガン電池用正極合剤には、
平均粒径が1Cμmの人造黒鉛を用いると極めて良好な
成形性、並びに電池特性を得ることができたが、黒鉛材
の二次粒子が存在することも考えられるので、−船釣に
は二酸化マンガン粒子に対する炭素材の平均粒径は、1
o〜10とすべきである。
However, the average particle size of the carbon material that should be added to post-treatment is large;
It is desirable to select a material that also has a relatively high density. The positive electrode mixture for alkaline manganese batteries shown in this example includes:
By using artificial graphite with an average particle size of 1 Cμm, we were able to obtain extremely good formability and battery characteristics, but since secondary particles of graphite material may be present, manganese dioxide is not recommended for boat fishing. The average particle size of the carbon material with respect to the particles is 1
It should be between o and 10.

発明の効果 以上、説明したように本発明による正極合剤を用いれば
、正極利用率の高い電池が提供できるという効果が得ら
れる。
Effects of the Invention As described above, by using the positive electrode mixture according to the present invention, it is possible to provide a battery with a high positive electrode utilization rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二酸化マンガン粒子表面に黒鉛化ブラックを固
定化した後、人造黒鉛を混合分散させて得た粒子の断面
を模式的に示したモデル図、第2図は本発明の実施例に
おける電池の断面図である。 1人・・・・・・二酸化マンガン、1B・・・・・・黒
鉛化ブラック、1C・・・・・・人造黒鉛、1・・・・
・・正極合剤、2・・・・・・ゲル負極、 3・・・・・・セパレータ。
Figure 1 is a model diagram schematically showing the cross section of particles obtained by fixing graphitized black on the surface of manganese dioxide particles and then mixing and dispersing artificial graphite, and Figure 2 is a battery in an example of the present invention. FIG. 1 person...manganese dioxide, 1B...graphitized black, 1C...artificial graphite, 1...
... Positive electrode mixture, 2 ... Gel negative electrode, 3 ... Separator.

Claims (1)

【特許請求の範囲】[Claims] 二酸化マンガンと導電炭素材を主構成材料とする二酸化
マンガン電極を用いた電池であって、前記導電炭素材は
、非晶質カーボンブラックを予め熱処理し、平均粒径0
.03〜0.05μmの黒鉛化したものであり、この炭
素材が、全二酸化マンガン電極に対して重量比で1〜2
%二酸化マンガン粒子上に固定化されており、さらに二
酸化マンガンに対する炭素材の平均粒径比が10^−^
2〜10を満足する炭素材が混合分散されていることを
特徴とするアルカリマンガン電池。
A battery using a manganese dioxide electrode mainly composed of manganese dioxide and a conductive carbon material, wherein the conductive carbon material is amorphous carbon black that has been heat-treated in advance and has an average particle size of 0.
.. This carbon material has a weight ratio of 1 to 2 to the total manganese dioxide electrode.
% manganese dioxide particles, and the average particle size ratio of the carbon material to manganese dioxide is 10^-^
An alkaline manganese battery characterized in that a carbon material satisfying 2 to 10 is mixed and dispersed.
JP63208717A 1988-08-23 1988-08-23 Alkaline manganese battery Pending JPH0256857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208717A JPH0256857A (en) 1988-08-23 1988-08-23 Alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208717A JPH0256857A (en) 1988-08-23 1988-08-23 Alkaline manganese battery

Publications (1)

Publication Number Publication Date
JPH0256857A true JPH0256857A (en) 1990-02-26

Family

ID=16560919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208717A Pending JPH0256857A (en) 1988-08-23 1988-08-23 Alkaline manganese battery

Country Status (1)

Country Link
JP (1) JPH0256857A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011739A1 (en) * 1998-05-01 2000-03-02 Eveready Battery Company, Inc. Heat treated fine carbon for alkaline manganese cathodes
JP2006054084A (en) * 2004-08-10 2006-02-23 Osaka Gas Co Ltd Positive electrode composition and conductive material for alkaline secondary battery and alkaline secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011739A1 (en) * 1998-05-01 2000-03-02 Eveready Battery Company, Inc. Heat treated fine carbon for alkaline manganese cathodes
JP2006054084A (en) * 2004-08-10 2006-02-23 Osaka Gas Co Ltd Positive electrode composition and conductive material for alkaline secondary battery and alkaline secondary battery

Similar Documents

Publication Publication Date Title
KR20120051549A (en) Cathode active material for metal-sulfur battery and process for preparing the same
US6143448A (en) Electrode materials having carbon particles with nano-sized inclusions therewithin and an associated electrolytic and fabrication process
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP2000208147A (en) Lithium ion secondary battery
JP2003308845A (en) Electrode for lithium secondary battery and lithium secondary battery using it
EP4057388A1 (en) Electrode for secondary battery and secondary battery including same
JPH10321219A (en) Manufacture of negative electrode for battery
JP3541090B2 (en) Positive active material for alkaline storage battery and method for producing the same
JPH07211320A (en) Positive mix and battery using the same
JP4452595B2 (en) Composite material containing sulfur and / or sulfur compound and method for producing the same
JPH0256857A (en) Alkaline manganese battery
JPS63187570A (en) Battery
JP4456449B2 (en) Battery positive electrode material containing sulfur and / or sulfur compound having S—S bond and method for producing the same
JPH08167413A (en) Nonaqueous electrolyte battery
KR101506364B1 (en) Method for preparing electrode active agent, Electrode active agent mixer for the same, Secondary battery comprising the same
JPH01143146A (en) Cell using manganese dioxide as active material
JP3543601B2 (en) Alkaline storage battery
JPH0636767A (en) Nonaqueous electrolyte battery and manufacture of its active material
JP2004362777A (en) Coin form nonaqueous secondary cell and its manufacturing method
CN117457848A (en) Composite positive electrode with high power characteristic and preparation method and application thereof
JPS5935360A (en) Zinc electrode
JPH0256858A (en) Lead-acid battery
WO2023147173A1 (en) Electrode for energy storage device
KR20230159931A (en) Electrode plate manufacturing method of lead acid battery containing non woven fabric with MoS2 added
JPH10334887A (en) Negative electrode for lithium ion secondary battery