JPH08167413A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH08167413A
JPH08167413A JP6307399A JP30739994A JPH08167413A JP H08167413 A JPH08167413 A JP H08167413A JP 6307399 A JP6307399 A JP 6307399A JP 30739994 A JP30739994 A JP 30739994A JP H08167413 A JPH08167413 A JP H08167413A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
expanded graphite
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6307399A
Other languages
Japanese (ja)
Other versions
JP3216451B2 (en
Inventor
Tatsuya Hashimoto
達也 橋本
Kenichi Oshima
健一 大嶋
Hidesuke Oguro
秀祐 小黒
Kunihide Miura
邦英 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30739994A priority Critical patent/JP3216451B2/en
Publication of JPH08167413A publication Critical patent/JPH08167413A/en
Application granted granted Critical
Publication of JP3216451B2 publication Critical patent/JP3216451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To improve liquid absorptivity and electric conductivity of a positive electrode pellet, and heighten a discharge characteristic by coating a positive electrode active material with expanded graphite. CONSTITUTION: Lithium 3 being a negative electrode active material is press- fitted to an inner wall of a sealing plate 2 also serving as a negative electrode terminal. An opening tip part of a battery case 1 also serving as a positive electrode terminal is calked inward and the peripheral edge of the sealing plate 2 is so fastened through a gasket 4 that a port is sealed. A positive electrode active material is coated with expanded graphite having an average particle diameter of 20μm to 80μm being a conductive material having binding performance, and is used as a positive electrode pellet 6 in which a binding agent such as a fluororesin does not substantially exist. So, a uniform mixed condition is held, and the positive electrode pellet can be molded without adding a binding agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液電池の、と
くにその正極活物質に関するものである。
FIELD OF THE INVENTION The present invention relates to a non-aqueous electrolyte battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】一般に、非水電解液電池の正極には、二
酸化マンガン、酸化銅、FeS、FeS2などの金属酸
化物や金属硫化物およびフッ化黒鉛等からなる活物質
に、アセチレンブラック、ケッチェンブラックや黒鉛な
どの導電材料とフッ素樹脂などの結着剤を練合した後、
乾燥粉砕した粉体を加圧成型した合剤成型体(以後これ
を正極ペレットと呼ぶ)が用いられている。
2. Description of the Related Art Generally, for a positive electrode of a non-aqueous electrolyte battery, an active material composed of manganese dioxide, copper oxide, metal oxides such as FeS and FeS 2 , metal sulfides and fluorinated graphite, acetylene black, After kneading a conductive material such as Ketjen black or graphite and a binder such as fluororesin,
A mixed material molded body (hereinafter referred to as a positive electrode pellet) obtained by pressure-molding a dry and pulverized powder is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、フッ素
樹脂などの結着剤は導電性や吸液能力が低いため、正極
自体の内部抵抗を低減できなかったり、正極ペレットへ
の電解液の迅速な含浸を阻害するために大電流が取り出
しにくいという問題があった。また、結着性の弱いアセ
チレンブラック、ケッチェンブラックや黒鉛と二酸化マ
ンガンだけでは正極ペレットの作成が困難である。
However, since the binder such as fluororesin has low conductivity and liquid absorbing ability, the internal resistance of the positive electrode itself cannot be reduced, or the positive electrode pellet is quickly impregnated with the electrolytic solution. However, there is a problem that it is difficult to take out a large current because the current is blocked. In addition, it is difficult to produce a positive electrode pellet only with acetylene black, Ketjen black or graphite and manganese dioxide, which have weak binding properties.

【0004】[0004]

【課題を解決するための手段】このような問題を解決す
るため本発明は、正極活物質を、結着性のある導電材料
である平均粒径20μm以上80μm以下の膨脹化黒鉛
で被覆することで、実質的にフッ素樹脂などの結合剤が
存在しない正極ペレットとして用いることを特徴として
いる。
In order to solve such a problem, the present invention is to coat a positive electrode active material with expanded graphite having an average particle size of 20 μm or more and 80 μm or less, which is a conductive material having a binding property. It is characterized by being used as a positive electrode pellet substantially free of a binder such as a fluororesin.

【0005】[0005]

【作用】本発明の非水電解液電池では正極活物質を膨脹
化黒鉛で被覆しているので、これらの均一な混合状態を
保持でき、膨脹化黒鉛の結着性によって結着剤を添加す
ることなしに正極ペレットの成型ができる。さらに結着
剤を用いないために正極ペレットの吸液性及び導電性を
改善して電池の性能向上を図ることもできる。
In the non-aqueous electrolyte battery of the present invention, the positive electrode active material is coated with expanded graphite, so that a uniform mixed state of these can be maintained, and a binder is added depending on the binding property of the expanded graphite. The positive electrode pellets can be molded without any problem. Further, since no binder is used, the liquid absorption and conductivity of the positive electrode pellet can be improved to improve the performance of the battery.

【0006】[0006]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1は、本発明のリチウム−二酸化マンガン
系のコイン形非水電解液電池の縦断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a lithium-manganese dioxide-based coin type non-aqueous electrolyte battery of the present invention.

【0007】図中、1はステンレス鋼からなる正極端子
を兼ねた電池ケース、2はステンレス鋼からなる負極端
子を兼ねた封口板でその内壁には負極活物質であるリチ
ウム3が圧着されている。4はポリプロピレンからなる
ガスケット、5は非水電解液を含浸したポリプロピレン
不織布からなるセパレータ、6は本発明の特徴とする正
極ペレット、7はシール剤層であり、正極端子を兼ねた
電池ケース1の開口先端部を内方へかしめ、ガスケット
4を介して封口板2の周縁を締めつけることにより密閉
封口をしている。
In the figure, 1 is a battery case made of stainless steel which also serves as a positive electrode terminal, 2 is a sealing plate which also serves as a negative electrode terminal made of stainless steel, and lithium 3 which is a negative electrode active material is pressure-bonded to its inner wall. . Reference numeral 4 is a gasket made of polypropylene, 5 is a separator made of polypropylene non-woven fabric impregnated with a non-aqueous electrolyte, 6 is a positive electrode pellet which is a feature of the present invention, 7 is a sealant layer of the battery case 1 also serving as a positive electrode terminal. The tip end of the opening is caulked inward, and the peripheral edge of the sealing plate 2 is tightened via the gasket 4, thereby forming a hermetic sealing.

【0008】次に本発明の正極合剤について説明する。
まず、膨脹化黒鉛を攪拌しながら蒸留水中に均一分散さ
せる。次に、正極活物質である二酸化マンガンが膨脹化
黒鉛と配合比100:7(重量比)となるようにこの液
中に投入し、攪拌混合させて膨脹化黒鉛で二酸化マンガ
ンを被覆した後150℃で熱風乾燥する。乾燥後塊状の
合剤もあるために250μm以下の大きさに粉砕調整
し、この粉末を2〜4トン/cm2で加圧成型し、再び
250℃で熱風乾燥して正極ペレットを得る。この時の
膨脹化黒鉛は平均粒径が10μm以上100μm以下の
ものを使用した。また比較の電池として導電剤にケッチ
ェンブラック、結着剤にフッ素樹脂をそれぞれ合剤に対
して6%添加した以外は本発明と同じである直径20m
m高さ16mmのコイン型リチウム電池を作成した。コ
イン型リチウム電池の性能を調べるために、環境温度2
0℃で負荷1kΩによる高負荷連続放電特性試験と、環
境温度20℃で負荷400Ω15秒間のパルス放電時の
電池電圧を測定した。高負荷連続放電特性試験の結果を
図2に、負荷400Ω15秒間放電時の電池電圧測定結
果を図3にそれぞれ示す。これらの図において実施例の
電池をA、比較例による電池をBとする。試験結果より
次のことが明らかとなった。
Next, the positive electrode mixture of the present invention will be described.
First, the expanded graphite is uniformly dispersed in distilled water while stirring. Next, manganese dioxide, which is a positive electrode active material, was added to the expanded graphite so that the compounding ratio was 100: 7 (weight ratio), and the mixture was stirred and mixed to cover the manganese dioxide with the expanded graphite. Dry with hot air at ℃. After drying, since there is a lumpy mixture, the mixture is pulverized and adjusted to a size of 250 μm or less, the powder is pressure-molded at 2 to 4 ton / cm 2 , and dried again at 250 ° C. with hot air to obtain a positive electrode pellet. The expanded graphite used at this time had an average particle size of 10 μm or more and 100 μm or less. Further, as a comparative battery, the same as the present invention except that Ketjen Black was added as a conductive agent and 6% by weight of a fluororesin was added as a binder to the mixture.
A coin-type lithium battery having a height of 16 mm was prepared. To investigate the performance of a coin-type lithium battery, the ambient temperature 2
A high-load continuous discharge characteristic test with a load of 1 kΩ at 0 ° C. and a battery voltage during pulse discharge with an environmental temperature of 20 ° C. and a load of 400Ω for 15 seconds were measured. The result of the high load continuous discharge characteristic test is shown in FIG. 2, and the result of the battery voltage measurement when the load is discharged for 400 Ω for 15 seconds is shown in FIG. In these figures, the battery of the example is A and the battery of the comparative example is B. The test results revealed the following.

【0009】図2より高負荷放電時での電池電圧は比較
例の電池と比べて本発明の電池は高くなっており、また
放電容量も向上している。図3より閉路電圧特性におい
ても比較例の電池に比べて本発明の電池は電圧降下が小
さくなっている。
From FIG. 2, the battery voltage at the time of high load discharge is higher in the battery of the present invention than in the battery of the comparative example, and the discharge capacity is also improved. As shown in FIG. 3, in the closed circuit voltage characteristic, the battery of the present invention has a smaller voltage drop than the battery of the comparative example.

【0010】これは、本発明の電池では合剤中に発電及
び導電に関与しない結着剤が存在していないために、合
剤内部での電気化学反応が比較例の電池と比較して進行
しやすいものと推定できる。
This is because, in the battery of the present invention, the binder which does not participate in power generation and conductivity does not exist in the mixture, so that the electrochemical reaction inside the mixture proceeds as compared with the battery of the comparative example. It can be estimated that it is easy to do.

【0011】次に本発明の正極合剤の成形性を調べるた
めに、二酸化マンガンを被覆する膨脹化黒鉛の粒径を変
化させたときの合剤の成形不良率を(表1)に示した。
Next, in order to investigate the moldability of the positive electrode mixture of the present invention, the defective molding rate of the mixture when changing the particle size of the expanded graphite coated with manganese dioxide is shown in (Table 1). .

【0012】[0012]

【表1】 [Table 1]

【0013】(表1)より明らかなように、平均粒径が
20μm未満及び80μmよりも大きな膨脹化黒鉛を二
酸化マンガンに被覆した時の成形性が著しく低下するこ
とがわかった。平均粒径が20μm未満の時は二酸化マ
ンガン表面に十分に被膜が形成できないために成型不良
が発生し、また平均粒径が80μmより大きな場合は膨
脹化黒鉛の凝集による偏析や二酸化マンガン表面への膨
脹化黒鉛の過剰な被覆が生じて均一な被膜が形成されな
いために成型不良が発生するものと考えられる。
As is clear from (Table 1), it was found that when manganese dioxide was coated with expanded graphite having an average particle size of less than 20 μm and greater than 80 μm, the formability was significantly reduced. When the average particle size is less than 20 μm, a coating film cannot be formed sufficiently on the surface of manganese dioxide, resulting in molding failure. When the average particle size is greater than 80 μm, segregation due to aggregation of expanded graphite and formation of manganese dioxide on the surface occur. It is considered that molding is defective because an excessive coating of expanded graphite is not formed and a uniform coating is not formed.

【0014】つまり二酸化マンガンを被覆する膨脹化黒
鉛の平均粒径は20μm以上80μm以下が好ましく、
特に膨脹化黒鉛の平均粒径が30μm以上60μm以下
のときにはより安定した正極ペレットが得られた。
That is, the average particle size of the expanded graphite coated with manganese dioxide is preferably 20 μm or more and 80 μm or less,
Particularly, when the average particle size of the expanded graphite was 30 μm or more and 60 μm or less, more stable positive electrode pellets were obtained.

【0015】次に平均粒径40μmの膨脹化黒鉛を使用
して粒径10μm以下及び100μm以上の割合を変化
させたときの合剤の成形不良率を(表2)に示した。
Next, the defective molding rate of the mixture is shown in Table 2 when the expanded graphite having an average particle size of 40 μm was used and the ratios of the particle size of 10 μm or less and 100 μm or more were changed.

【0016】[0016]

【表2】 [Table 2]

【0017】(表2)より明らかなように、粒径が10
μm以下および100μm以上の粒子が合計で10%以
上存在する膨脹化黒鉛で二酸化マンガンを被覆した時に
は成形性が著しく低下することがわかった。粒径が10
μm以下の粒子が10%以上存在すると、二酸化マンガ
ン表面への十分な被膜が形成されずに成形不良が生じ、
粒径が100μm以上の粒子が10%以上存在すると膨
脹化黒鉛の凝集や二酸化マンガン表面への過剰な被覆に
より成型不良が生じているものと考えられる。この点は
平均粒径が異なるものについても同様の結果が得られ
た。
As is clear from (Table 2), the particle size is 10
It was found that when manganese dioxide was coated with expanded graphite in which particles having a particle size of less than or equal to 100 μm and a total of 10% or more were coated with manganese dioxide, the formability was significantly reduced. Particle size is 10
If 10% or more of particles having a size of μm or less are present, a sufficient film cannot be formed on the surface of manganese dioxide, resulting in defective molding.
When 10% or more of particles having a particle diameter of 100 μm or more are present, it is considered that molding defects are caused by aggregation of expanded graphite and excessive coating on the surface of manganese dioxide. In this respect, similar results were obtained for those having different average particle sizes.

【0018】[0018]

【発明の効果】以上のように、本発明の非水電解液電池
は、正極活物質を膨脹化黒鉛で被覆することによりフッ
素樹脂などの結着剤を用いないで正極ペレットを成型す
ることができる。
As described above, in the non-aqueous electrolyte battery of the present invention, by coating the positive electrode active material with expanded graphite, positive electrode pellets can be molded without using a binder such as fluororesin. it can.

【0019】この結果、正極ペレットの吸液性及び導電
性を向上させることができ、放電特性に優れた非水電解
液電池を提供できる。
As a result, the liquid absorption and conductivity of the positive electrode pellets can be improved, and a non-aqueous electrolyte battery having excellent discharge characteristics can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコイン型非水電解液電池の縦断面図FIG. 1 is a vertical sectional view of a coin-type non-aqueous electrolyte battery of the present invention.

【図2】本発明の電池と比較例の電池の高負荷連続放電
特性試験の結果を示したグラフ
FIG. 2 is a graph showing the results of a high-load continuous discharge characteristic test of the battery of the present invention and the battery of the comparative example.

【図3】本発明の電池と比較例の電池の閉路電圧特性試
験結果を示したグラフ
FIG. 3 is a graph showing the results of a closed circuit voltage characteristic test of a battery of the present invention and a battery of a comparative example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 リチウム 4 ガスケット 5 セパレータ 6 正極ペレット 7 シール剤層 1 Battery Case 2 Sealing Plate 3 Lithium 4 Gasket 5 Separator 6 Positive Electrode Pellet 7 Sealant Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 邦英 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihide Miura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極活物質と負極活物質と非水電解液とか
らなり、正極活物質は結着性を有する導電材料で被覆さ
れていることを特徴とする非水電解液電池。
1. A non-aqueous electrolyte battery comprising a positive electrode active material, a negative electrode active material, and a non-aqueous electrolytic solution, wherein the positive electrode active material is coated with a conductive material having a binding property.
【請求項2】結着性を有する導電材料は、平均粒径が2
0μm以上80μm以下の膨脹化黒鉛である請求項1記
載の非水電解液電池。
2. The binding conductive material has an average particle size of 2
The non-aqueous electrolyte battery according to claim 1, which is expanded graphite having a size of 0 μm or more and 80 μm or less.
【請求項3】結着性を有する膨脹化黒鉛は、粒径10μ
m以下のものが総量の10%以下であり、かつ90μm
以上のものが総量の10%以下である請求項2記載の非
水電解液電池。
3. The expanded graphite having a binding property has a particle size of 10 μm.
m or less is 10% or less of the total amount and is 90 μm
The non-aqueous electrolyte battery according to claim 2, wherein the above amount is 10% or less of the total amount.
【請求項4】正極活物質は二酸化マンガンである請求項
1記載の非水電解液電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode active material is manganese dioxide.
JP30739994A 1994-12-12 1994-12-12 Non-aqueous electrolyte battery Expired - Lifetime JP3216451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30739994A JP3216451B2 (en) 1994-12-12 1994-12-12 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30739994A JP3216451B2 (en) 1994-12-12 1994-12-12 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH08167413A true JPH08167413A (en) 1996-06-25
JP3216451B2 JP3216451B2 (en) 2001-10-09

Family

ID=17968588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30739994A Expired - Lifetime JP3216451B2 (en) 1994-12-12 1994-12-12 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3216451B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034673A1 (en) * 1998-01-07 1999-07-15 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating expanded graphite
WO2000002280A1 (en) 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
JP2009224077A (en) * 2008-03-13 2009-10-01 Fdk Energy Co Ltd Cathode mixture for alkaline battery and alkaline battery
JP2009295307A (en) * 2008-06-02 2009-12-17 Fdk Energy Co Ltd Cathode mixture formed object for lithium cell and lithium cell
US20100308278A1 (en) * 2009-06-03 2010-12-09 Kepler Keith D Composite for li-ion cells and the preparation process thereof
US20110159372A1 (en) * 2009-12-24 2011-06-30 Aruna Zhamu Conductive graphene polymer binder for electrochemical cell electrodes
CN102738443A (en) * 2011-04-07 2012-10-17 刘天龙 Preparation technology for positive material of lithium ion secondary battery
JP2019197724A (en) * 2018-05-08 2019-11-14 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828064B1 (en) 1998-01-07 2004-12-07 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating enhanced graphite
WO1999034673A1 (en) * 1998-01-07 1999-07-15 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating expanded graphite
JP4529288B2 (en) * 1998-07-06 2010-08-25 Tdk株式会社 Nonaqueous electrolyte secondary battery electrode
WO2000002280A1 (en) 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
EP1098379A1 (en) * 1998-07-06 2001-05-09 TDK Corporation Electrode for nonaqueous electrolyte battery
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
KR100600632B1 (en) * 1998-07-06 2006-07-13 티디케이가부시기가이샤 Electrode for nonaqueous electrolyte battery
EP1098379A4 (en) * 1998-07-06 2007-05-30 Tdk Corp Electrode for nonaqueous electrolyte battery
JP2009224077A (en) * 2008-03-13 2009-10-01 Fdk Energy Co Ltd Cathode mixture for alkaline battery and alkaline battery
JP2009295307A (en) * 2008-06-02 2009-12-17 Fdk Energy Co Ltd Cathode mixture formed object for lithium cell and lithium cell
US20100308278A1 (en) * 2009-06-03 2010-12-09 Kepler Keith D Composite for li-ion cells and the preparation process thereof
US8585935B2 (en) * 2009-06-03 2013-11-19 Farasis Energy, Inc. Composite for Li-ion cells and the preparation process thereof
US20110159372A1 (en) * 2009-12-24 2011-06-30 Aruna Zhamu Conductive graphene polymer binder for electrochemical cell electrodes
US8652687B2 (en) * 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
CN102738443A (en) * 2011-04-07 2012-10-17 刘天龙 Preparation technology for positive material of lithium ion secondary battery
JP2019197724A (en) * 2018-05-08 2019-11-14 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP3216451B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
JP3450894B2 (en) Alkaline manganese battery
US4197366A (en) Non-aqueous electrolyte cells
CN101019268A (en) Square lithium secondary battery
JP4746278B2 (en) Nonaqueous electrolyte secondary battery
JPH11191432A (en) Lithium secondary battery
JP2004047462A (en) Binder for lithium sulfur battery, positive electrode active material composition containing the binder, and lithium sulfur battery manufactured by using the composition
JP3215448B2 (en) Zinc alkaline battery
JP3216451B2 (en) Non-aqueous electrolyte battery
JP6246682B2 (en) Lithium ion secondary battery
JP2007066826A (en) Lithium-iron disulfide primary battery
JP2001155729A (en) Positive electrode active material for use in non-aqueous secondary battery and non-aqueous electrolyte secondary battery using it
JP3552194B2 (en) Alkaline battery
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JPH09180736A (en) Alkaline manganese battery
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPS63187570A (en) Battery
JPH09180724A (en) Battery
JPH09129238A (en) Battery
JPS6130383B2 (en)
JP2004139909A (en) Sealed nickel-zinc primary battery
JP2003017081A (en) Alkaline dry battery
JPH02239572A (en) Polyaniline battery
JPS5832362A (en) Alkaline zinc secondary battery
JPH0512824B2 (en)
JPH07105940A (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

EXPY Cancellation because of completion of term