JPH0256570B2 - - Google Patents
Info
- Publication number
- JPH0256570B2 JPH0256570B2 JP58251323A JP25132383A JPH0256570B2 JP H0256570 B2 JPH0256570 B2 JP H0256570B2 JP 58251323 A JP58251323 A JP 58251323A JP 25132383 A JP25132383 A JP 25132383A JP H0256570 B2 JPH0256570 B2 JP H0256570B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat exchanger
- indoor
- way valve
- operating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 15
- 238000005057 refrigeration Methods 0.000 claims description 11
- 239000003638 chemical reducing agent Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 8
- 238000007791 dehumidification Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は空気調和機の除湿運転制御方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dehumidifying operation control method for an air conditioner.
従来例の構成とその問題点
一般の空気調和機は、基本的には圧縮機、凝縮
器、減圧装置、蒸発器からなり、冷房運転時は蒸
発器が室内側にあつて冷房すると同時に除湿も行
う。ところが室内が低温多湿で不快な場合に冷房
運転を行なえば除湿もされるが同時に冷房もされ
るため、冷え過ぎによる不快感を招く。そこでこ
のような場合、部屋の温度をできるだけ下げない
ようにして、大幅に湿度を下げる冷凍サイクルが
必要となる。Conventional configuration and its problems A general air conditioner basically consists of a compressor, condenser, pressure reducing device, and evaporator. During cooling operation, the evaporator is located on the indoor side, cooling the room and dehumidifying it at the same time. conduct. However, if the room is cold and humid and uncomfortable, running the air conditioner will dehumidify the room, but at the same time it will also cool the room, causing discomfort due to excessive cooling. Therefore, in such cases, a refrigeration cycle is required to significantly lower the humidity while keeping the room temperature as low as possible.
従来、この種の除湿運転可能な冷凍サイクルの
一例として第1図に示すように圧縮機a、凝縮器
b、第1の減圧機c、第1の熱交換器d、第2の
減圧器e、第2の熱交換器fを順に直結するとと
もに、第1の減圧機cと並列に第1の2方弁gを
また第2の減圧機eと並列に第2の2方弁hを連
結した冷媒回路がある。 Conventionally, as an example of a refrigeration cycle capable of dehumidifying operation of this type, as shown in FIG. , the second heat exchanger f is directly connected in this order, and the first two-way valve g is connected in parallel with the first pressure reducer c, and the second two-way valve h is connected in parallel with the second pressure reducer e. There is a refrigerant circuit.
そして、通常の冷房運転時は、第1の2方弁g
が閉じ、第2の2方弁hが開き、冷媒は圧縮機a
から凝縮器b、第1の減圧器c、第1の熱交換器
d、第2の2方弁h、第2の熱交換器fの順に流
れ、第1の熱交換器d、第2の熱交換器fともに
蒸発器として働く冷凍サイクルが形成される。 During normal cooling operation, the first two-way valve g
is closed, the second two-way valve h is opened, and the refrigerant is transferred to the compressor a.
The flow flows from the condenser b, the first pressure reducer c, the first heat exchanger d, the second two-way valve h, and the second heat exchanger f in this order. A refrigeration cycle is formed together with the heat exchanger f, which functions as an evaporator.
また、除湿運転時は、第1の2方弁gが開き、
第2の2方弁hを閉じて、冷媒は圧縮器aから凝
縮器b、第1の2方弁g、第1の熱交換器d、第
2の減圧器fの順に流れ、第1の熱交換器dは副
凝縮器として、第2の熱交換器fは蒸発器として
働く冷凍サイクルが形成される。そして第2の熱
交換器fで冷房、除湿された室内側空気は、高温
高湿状態の冷媒が流れている第1の熱交換器dを
通過し、第2の熱交換器f通過以前の温度まで暖
められる。 Also, during dehumidification operation, the first two-way valve g opens,
The second two-way valve h is closed, and the refrigerant flows from the compressor a to the condenser b, the first two-way valve g, the first heat exchanger d, and the second pressure reducer f. A refrigeration cycle is formed in which the heat exchanger d functions as a sub-condenser and the second heat exchanger f functions as an evaporator. Then, the indoor air that has been cooled and dehumidified in the second heat exchanger f passes through the first heat exchanger d, where a high temperature and high humidity refrigerant flows, and then passes through the second heat exchanger f. warmed up to temperature.
このように従来の冷凍サイクルでは、周的の構
造からなる冷房暖房兼用の空気調和機に対して減
圧器1個、2方弁2個を余分に必要とし、構造が
複雑になり、部品点数が増え製造コストも大幅に
増大する等の欠点を有していた。 In this way, the conventional refrigeration cycle requires an extra pressure reducer and two two-way valves for a cooling/heating air conditioner with a circumferential structure, making the structure complex and reducing the number of parts. However, it has disadvantages such as a significant increase in manufacturing costs.
発明の目的
本発明は、上記従来例の欠点に鑑み、部品点数
を減らし構造をより単純にし、除湿しながら部屋
の温度を下げないようにすることを目的とするも
のである。OBJECTS OF THE INVENTION In view of the drawbacks of the conventional example described above, the present invention aims to reduce the number of parts, simplify the structure, and prevent the temperature of the room from decreasing while dehumidifying.
発明の構成
上記目的を達成するために本発明は、圧縮機、
四方弁、室外熱交換器、減圧器、室内側熱交換器
を順次環状に連結してヒートポンプ式冷凍サイク
ルを構成し、室内側の空気を室外側へ排気する排
気装置を設けた一体型空気調和機に、前記室内側
熱交換器の温度を検出する温度検出装置と室内側
送風機の運転時間を制御するタイマーと前記温度
検出装置により検出された温度を設定温度と比較
する温度比較回路を設け冷房運転開始より前記タ
イマーにより所定時間ts運転後、室内送風機を停
止させ、その後前記温度検出装置による出力温度
Tが着霜温度よりも低い所定値T1になつたとき
前記四方弁を暖房側へ切換えるとともに、前記排
気装置を運転させ、その後前記出力温度Tが着霜
温度よりも高い第2の所定値T2になつたときに、
前記四方弁を冷房側へ切換えるとともに前記排気
装置を停止し、室内側送風機を運転する等の出力
手段を備えた構成とした。Configuration of the Invention In order to achieve the above object, the present invention provides a compressor,
A heat pump refrigeration cycle is constructed by sequentially connecting a four-way valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger in a ring, and an integrated air conditioner is equipped with an exhaust device that exhausts indoor air to the outdoor side. The cooling system is equipped with a temperature detection device that detects the temperature of the indoor heat exchanger, a timer that controls the operating time of the indoor fan, and a temperature comparison circuit that compares the temperature detected by the temperature detection device with a set temperature. After operating for a predetermined time ts by the timer from the start of operation, the indoor blower is stopped, and then when the output temperature T from the temperature detection device reaches a predetermined value T1 lower than the frosting temperature, the four-way valve is switched to the heating side. , when the exhaust device is operated and the output temperature T reaches a second predetermined value T2 higher than the frosting temperature,
The configuration includes output means for switching the four-way valve to the cooling side, stopping the exhaust device, and operating the indoor blower.
実施例の説明
以下、本発明をその一実施例を示す添付図面の
第2図〜第4図を参考に説明する。DESCRIPTION OF EMBODIMENTS The present invention will be described below with reference to FIGS. 2 to 4 of the accompanying drawings showing one embodiment thereof.
第2図は、冷凍サイクル図であり、圧縮機1、
四方弁2、室外側熱交換器3、減圧器4、室内側
熱交換器5を環状に連結している。そして6は室
外側送風機で、7は室内側送風機である。暖房運
転時は実線矢印の方向に冷媒が流れ冷房運転時は
破線矢印の方向に冷媒が流れる。 FIG. 2 is a refrigeration cycle diagram, in which the compressor 1,
A four-way valve 2, an outdoor heat exchanger 3, a pressure reducer 4, and an indoor heat exchanger 5 are connected in a ring. 6 is an outdoor fan, and 7 is an indoor fan. During heating operation, the refrigerant flows in the direction of the solid line arrow, and during cooling operation, the refrigerant flows in the direction of the broken line arrow.
第3図は、一体型空気調和機の構造図であり、
8は排気装置である。 Figure 3 is a structural diagram of an integrated air conditioner.
8 is an exhaust device.
排気する時は室外側送風機6が運転するととも
に、排気装置の排気扉が開き空気は矢印の方向に
流れ排気する。 When exhausting air, the outdoor side blower 6 is operated, and the exhaust door of the exhaust device is opened to allow air to flow in the direction of the arrow and be exhausted.
第4図は、冷房運転時に室内側送風機を停止後
の経過時間tと室内熱交換器温度T及び室内熱交
換器の着霜量Mの一般的特性を示したものであ
る。 FIG. 4 shows general characteristics of the elapsed time t after the indoor blower is stopped during cooling operation, the indoor heat exchanger temperature T, and the amount M of frost on the indoor heat exchanger.
冷房運転時に室内側送風機を停止すると室内側
熱交換器の蒸発圧力が低下し温度が下がり0℃を
下回ると熱交換器は着霜を開始する。そしてT1
の温度まで下がると熱交換器はほとんど着霜によ
り目づまりを生じてくる。その後さらに温度が下
がつても着霜量の増加はゆるやかになる。 When the indoor blower is stopped during cooling operation, the evaporation pressure of the indoor heat exchanger decreases and the temperature drops, and when it falls below 0°C, the heat exchanger starts to frost. and T 1
When the temperature drops to , most of the heat exchanger becomes clogged due to frost formation. After that, even if the temperature drops further, the amount of frost will increase gradually.
また第5図は、室内熱交換器に全面着霜させた
後に暖房運転した場合の時間経過と室内熱交換器
温度T及び室内熱交換器に付着している水分量L
の関係を示した図である。暖房運転を行なうと、
室内熱交換器は高温高圧の冷媒が流れ、着霜して
いた霜を溶かす。そして完全に溶かした後、急激
に熱交換器温度は上昇する。したがつて室内熱交
換器温度が0℃以上のT2の温度の時は完全に霜
は溶けており熱交換器に付着している水分量も極
めて少ない状態になつている。 Figure 5 also shows the elapsed time, the indoor heat exchanger temperature T, and the amount of moisture L attached to the indoor heat exchanger when heating is started after the indoor heat exchanger is completely frosted.
FIG. When performing heating operation,
A high-temperature, high-pressure refrigerant flows through the indoor heat exchanger to melt the frost that has formed. After completely melting, the heat exchanger temperature rises rapidly. Therefore, when the indoor heat exchanger temperature is T2, which is 0°C or higher, the frost has completely melted and the amount of moisture adhering to the heat exchanger is extremely small.
第6図は除湿運転の信号の流れを示したもので
ある。 FIG. 6 shows the signal flow for dehumidifying operation.
最初は冷房運転を行なう。そしてある設定時間
(ts)経過すると室内側送風機を停止し室内熱交
換器に着霜させると共に室内側熱交換器温度を検
出し、その検出温度を設定温度T1と比較回路で
比較し、着霜温度か否か判定する。ここで設定温
度T1以下になつた時、四方弁を切換え暖房サイ
クルにすると共に排気装置を運転し、室内の空気
が室内交換器を通つて室外に排気される。この
時、室内熱交換器に着霜していた霜は高温高圧の
冷媒によつて溶かされドレン水と蒸気になる。こ
の湿度の高い蒸気を排気装置によつて室外へ排気
する。そして霜が完全に溶け室内熱交換器の温度
が上昇し設定温度T2以上になると再び四方弁は
切り換えられ、排装置は停止(排気扉を閉じる)
し室内側送風機を運転し冷房運転を行ない、室内
側の空気の対流を図る。そして再び上記項目を繰
り返えす。 At first, cooling operation is performed. Then, after a certain set time (ts) has elapsed, the indoor fan is stopped, the indoor heat exchanger is frosted, the temperature of the indoor heat exchanger is detected, and the detected temperature is compared with the set temperature T1 by a comparison circuit. Determine whether the temperature is frost. When the temperature falls below the set temperature T1 , the four-way valve is switched to the heating cycle, and the exhaust system is operated to exhaust indoor air to the outside through the indoor exchanger. At this time, the frost that has formed on the indoor heat exchanger is melted by the high-temperature, high-pressure refrigerant and becomes drain water and steam. This high-humidity steam is exhausted to the outside by an exhaust device. Then, when the frost completely melts and the temperature of the indoor heat exchanger rises to above the set temperature T2 , the four-way valve is switched again and the exhaust system is stopped (the exhaust door is closed).
Then, operate the indoor blower to perform cooling operation and promote convection of air inside the room. Then repeat the above steps again.
以上の制御は、マイクロコンピユータを具備し
た回路により実現可能となる。 The above control can be realized by a circuit equipped with a microcomputer.
第7図は簡単な回路ブロツクを示す、温度セン
サSの信号を受け温度検出装置Pで温度を検出
し、マイクロコンピユータMで信号を受信し、温
度判定を行ない、リレーLに信号を出す。 FIG. 7 shows a simple circuit block, in which a signal from a temperature sensor S is received, a temperature detection device P detects the temperature, a microcomputer M receives the signal, determines the temperature, and sends a signal to a relay L.
発明の効果
上記実施例より明らかなように本発明は、設定
時間冷房運転を行ないその後、室内送風機を停止
し室内側熱交換器に着霜させた後暖房運転及び排
気により湿度をドレン水又は蒸気として室内から
取り除く除湿運転制御方法であるため、室温をほ
とんど下げずに除湿ができ、かつ従来の構成要素
を使用するため、除湿専用部品が必要でないた
め、構造が簡単であり安価にできる等優れた効果
を奏するものである。Effects of the Invention As is clear from the above embodiments, the present invention performs a cooling operation for a set time, then stops the indoor blower, frosts the indoor heat exchanger, and then performs a heating operation and exhausts the air to reduce humidity by draining water or steam. Since this is a dehumidification operation control method that removes moisture from the room, it can dehumidify without lowering the room temperature. Furthermore, since it uses conventional components, it does not require special parts for dehumidification, so it has advantages such as simple structure and low cost. It has the following effects.
第1図は従来例を示す除湿運転可能な冷凍サイ
クル図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイクル図、第3図は同空気調和機の
構造図、第4図、第5図それぞれ、熱交換器温度
と熱交換器の着霜量または付着している水分量の
関係を時間経過につれて示した特性図、第6図は
本発明の一実施例を示す除湿運転制御方法のフロ
ーチヤート、第7図は同除湿運転を行うための制
御ブロツク図である。
1……圧縮機、2……四方弁、3……室外側熱
交換器、4……減圧器、5……室内側熱交換器、
7……室内側送風機、8……排気装置。
Fig. 1 is a diagram of a refrigeration cycle capable of dehumidifying operation showing a conventional example, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, Fig. 3 is a structural diagram of the air conditioner, and Fig. 4 is a diagram of a refrigeration cycle capable of dehumidifying operation. Figure 5 is a characteristic diagram showing the relationship between the heat exchanger temperature and the amount of frost formed on the heat exchanger or the amount of moisture attached over time, respectively, and Figure 6 is a dehumidification diagram showing an embodiment of the present invention. FIG. 7, which is a flowchart of the operation control method, is a control block diagram for performing the same dehumidifying operation. 1... Compressor, 2... Four-way valve, 3... Outdoor heat exchanger, 4... Pressure reducer, 5... Indoor heat exchanger,
7... Indoor blower, 8... Exhaust device.
Claims (1)
内側熱交換器を順次環状に連結してヒートポンプ
式冷凍サイクルを構成し、室内側の空気を室外側
へ排気する排気装置を設けた一体型空気調和機
に、前記室内側熱交換器の温度を検出する温度検
出装置と、室内側送風機の運転時間を制御するタ
イマーと、前記温度検出装置により検出された温
度を設定温度と比較する温度比較回路を設け、冷
房運転開始より前記タイマーにより所定時間運転
後、室内送風機を停止させ、その後前記温度検出
装置による出力温度が着霜温度よりも低い第1の
所定値になつたとき前記四方弁を暖房側へ切換え
るとともに、前記排気装置を運転させ、その後前
記出力温度が着霜温度よりも高い第2の所定値に
なつたときに、前記四方弁を冷房側へ切換えると
ともに前記排気装置を停止し、室内側送風機を運
転する信号を出力するの出力手段を備えた空気調
和機の除湿運転制御方法。1. A compressor, four-way valve, outdoor heat exchanger, pressure reducer, and indoor heat exchanger are sequentially connected in a ring to form a heat pump refrigeration cycle, and an exhaust device is installed to exhaust air from the indoor side to the outdoor side. The integrated air conditioner includes a temperature detection device that detects the temperature of the indoor heat exchanger, a timer that controls the operating time of the indoor blower, and a temperature detected by the temperature detection device that is compared with a set temperature. A temperature comparison circuit is provided, and the indoor blower is stopped after operating for a predetermined time by the timer from the start of cooling operation, and then when the output temperature of the temperature detection device reaches a first predetermined value lower than the frosting temperature, Switching the valve to the heating side and operating the exhaust device, and then, when the output temperature reaches a second predetermined value higher than the frosting temperature, switching the four-way valve to the cooling side and operating the exhaust device. A dehumidifying operation control method for an air conditioner, comprising an output means for outputting a signal to stop and operate an indoor blower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58251323A JPS60144549A (en) | 1983-12-29 | 1983-12-29 | Method of controlling defrosting operation of air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58251323A JPS60144549A (en) | 1983-12-29 | 1983-12-29 | Method of controlling defrosting operation of air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60144549A JPS60144549A (en) | 1985-07-30 |
JPH0256570B2 true JPH0256570B2 (en) | 1990-11-30 |
Family
ID=17221104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58251323A Granted JPS60144549A (en) | 1983-12-29 | 1983-12-29 | Method of controlling defrosting operation of air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60144549A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10161306A1 (en) | 2001-12-13 | 2003-06-26 | Bsh Bosch Siemens Hausgeraete | Method for controlling the moisture content of the air in a domestic frost-free refrigerator/freezer has a selector switch to vary the switching of the fan and compressor |
JP2008062897A (en) * | 2006-09-11 | 2008-03-21 | Mitsubishi Motors Corp | Water-proof structure of weather strip for slide door |
CN114279045A (en) * | 2021-12-08 | 2022-04-05 | 珠海格力电器股份有限公司 | Air conditioner defrosting control method and device and air conditioner |
-
1983
- 1983-12-29 JP JP58251323A patent/JPS60144549A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60144549A (en) | 1985-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09310927A (en) | Device for controlling refrigerant of air conditioner | |
JPH0256570B2 (en) | ||
JP2000304326A (en) | Heat exchange ventilating apparatus | |
JPH0820149B2 (en) | Defrost control method during heating in an air conditioner | |
JPS5946437A (en) | Temperature and humidity control method for air conditioner | |
JPH0718933Y2 (en) | Release controller for air conditioner | |
JP3404968B2 (en) | Air conditioner | |
JP2002362359A (en) | Air conditioner for rolling stock | |
JPS613937A (en) | Defrosting control device | |
JPH0541909B2 (en) | ||
JP2001235238A (en) | Heat pump type air-conditioning system | |
JPS62125244A (en) | Air conditioner | |
JPH0113978Y2 (en) | ||
JPH04136669A (en) | Multi-room air conditioner | |
JPS62217038A (en) | Air conditioner | |
JPH0522757Y2 (en) | ||
JPS60165450A (en) | Heating operation control device for air conditioner | |
JPS6036809Y2 (en) | dehumidifier | |
JPS5885047A (en) | Ventilation control device for cold insulating type air conditioner | |
JPS6315021A (en) | Defrosting method of air conditioner | |
JPS631138Y2 (en) | ||
JPS5981455A (en) | Dehumidifying operating method for air conditioner | |
JPS6023648Y2 (en) | air conditioner | |
JPS59208340A (en) | Method of defrosting air conditioner | |
JPH05322291A (en) | Control device for air conditioner |