JPS5946437A - Temperature and humidity control method for air conditioner - Google Patents

Temperature and humidity control method for air conditioner

Info

Publication number
JPS5946437A
JPS5946437A JP57158325A JP15832582A JPS5946437A JP S5946437 A JPS5946437 A JP S5946437A JP 57158325 A JP57158325 A JP 57158325A JP 15832582 A JP15832582 A JP 15832582A JP S5946437 A JPS5946437 A JP S5946437A
Authority
JP
Japan
Prior art keywords
point
room temperature
temperature
time
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57158325A
Other languages
Japanese (ja)
Inventor
Takashi Sugio
孝 杉尾
Takumi Sonoda
園田 卓美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57158325A priority Critical patent/JPS5946437A/en
Publication of JPS5946437A publication Critical patent/JPS5946437A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make it possible to control the temperature and humidity in a room to the levels pleasant to a human body by a simple structure by a method wherein the operating conditions of a blower and a compressor with respect to the room temperature are controlled sequentially. CONSTITUTION:An initial OFF point T1OFF is taken at a point lower than the room temperature by an allowable temperature width Tc for a forced compressor operation, a temperature DELTAT is taken at a point higher than the OFF point so as to make that point an initial ON point T1ON and a cooling operation is performed with the blow of the maximum air quantity by an indoor blower during the time in which the room temperature TR drops down to T1OFF. The above-mentioned temperature width Tc can be an index of load and therefore, when the room temperature TR after a lapse of a time ts is lower than T1ON, the next operation time is determined to be t1 and when higher, the next operation time is corrected to t1+ DELTAt. Then when the compressor has run into an ordinary operation condition and the room temperature TR has reached the T1OFF point before the time t1 lapses, the operation of the compressor is stopped and the next operation time t2 is determined to be t1-DELTAt but when the room temperature TR is still higher than T1OFF after a lapse of the time t1, the operation of the compressor is stopped and the next operation time t2 is determined to be t2=t1. Thus the same process is repeated and when the number of revolutions of the compressor comes to a predetermined value N, the above-mentioned ON point is made equal to the room temperature TR in the initial stage and the above-mentioned OFF point is taken at a point lower than the ON point by DELTAT so that the operation and stoppage of the compressor are performed in a repetitive fashion.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機における温湿度開側1方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling temperature and humidity in an air conditioner.

従来例の構成とその問題点 従来の空気調和機の温湿度制御g4+の基本的かつ代表
的ンクものを第2図に基いて説明する。同図において、
丑ず利用者が任意に設定できるサーモスタット設定i’
l’li’1度TTに基き、その上下に一定のディソア
レ/ノヤルΔTをもってON点TONおよびOFF点T
oyyが設定される。室温Tiが、TR>TOFFの状
態で運転スイッチが入った場合はTR= TOFFまで
冷房運転を行ない、その後停市して、TR=Ton ’
J、で室温が−4−昇すると再び運転を開始する。
The configuration of the conventional example and its problems The basic and typical mechanism of the temperature and humidity control g4+ of the conventional air conditioner will be explained with reference to FIG. In the same figure,
Thermostat settings i' that Ushizu users can set arbitrarily
Based on l'li'1 degree TT, the ON point TON and OFF point T are set with a constant disoare/noyal ΔT above and below it.
oyy is set. If the operation switch is turned on when the room temperature Ti is TR>TOFF, cooling operation is performed until TR=TOFF, then the air conditioner is stopped and TR=Ton'.
When the room temperature rises by -4- at J, operation starts again.

ところで真夏時のような高温多湿時には上記従来例のよ
うな制御により、快適な温度7丁近傍の温度が得られる
と同時に、冷房運転中に通常室内空気の露点温度以下に
低下する蒸発器1a1においで除湿が行なわれる結果、
相対湿度の低下が得られより快適性が増すことになる。
By the way, when the temperature is high and humid like in midsummer, the conventional control described above allows a comfortable temperature of around 7 cm to be obtained, and at the same time, the evaporator 1a1, which normally falls below the dew point temperature of the indoor air during cooling operation, As a result of dehumidification,
A reduction in relative humidity will result in greater comfort.

ところが海山時のような低温多湿時には室温TRはTR
<TOFFなる場合が多く、このような場合、空気調和
機は高湿による不快感があるにもかかわらず運転をしな
い。−iだTR>TOFFの場合があってもその温度差
が小さいだめに運転時間が短かく十分な除湿が行なわれ
ない内に停市してし甘う。寸だザーモスタノト設定温度
TTの設定を低温に1・゛げだ場合は十分な運転時間が
確保され、除湿効果も十分前られるが、長時間の冷房運
転により室温が低下し過ぎて、別の不快感が増すことと
なる。
However, when the temperature is low and humid, such as at a seamount, the room temperature TR is
<TOFF> In such cases, the air conditioner does not operate despite the discomfort caused by high humidity. Even if there is a case where TR>TOFF, the operating time is short because the temperature difference is small, and the engine may be stopped before sufficient dehumidification is performed. If the setting temperature TT is lowered by 1 degree, sufficient operating time will be secured and the dehumidification effect will be sufficiently accelerated, but the room temperature will drop too much due to long-term cooling operation, and other problems may occur. This will increase the pleasure.

これらの欠点を除去し、室温の低下を伴なわず除湿を行
なえる空気調和機の従来例を第1図にもどづき説明する
。冷媒回路は圧縮機5.凝縮器6゜冷房用減圧器7.副
凝縮器1.除湿用減圧器2゜蒸発器8を連結して構成さ
れ、さらに山城圧器2゜7はそれぞれ二方弁3,4を途
中に持つバイパス回路を有する。高温時には第に方弁4
を閉じ、第2二方弁3を開くことに」:す、通常の冷房
用冷媒回路が形成される。低温時は第に方弁4を開き、
第2二方弁3を閉じることにより副凝縮器1内は高圧高
温冷媒が流れる。このとき蒸発器8を通過して除湿され
低温になった室内空気は次にこの副凝縮器1を通過する
際再加熱されて、はぼ冷却以前のI’!!度まで同復し
、部屋内に吹出される。
A conventional air conditioner that eliminates these drawbacks and can perform dehumidification without lowering the room temperature will be described with reference to FIG. The refrigerant circuit is a compressor5. Condenser 6° Cooling pressure reducer 7. Sub-condenser 1. It is constructed by connecting a dehumidifying pressure reducer 2° and an evaporator 8, and each of the Yamashiro pressure reducers 2° and 7 has a bypass circuit having two-way valves 3 and 4 in the middle. When the temperature is high, switch to the 4th direction valve.
By closing the second two-way valve 3 and opening the second two-way valve 3, a normal cooling refrigerant circuit is formed. When the temperature is low, first open valve 4,
By closing the second two-way valve 3, high-pressure and high-temperature refrigerant flows through the sub-condenser 1. At this time, the indoor air, which has been dehumidified and has a low temperature after passing through the evaporator 8, is reheated when it passes through the sub-condenser 1, and the I'! ! It comes back to normal and is blown out into the room.

ところがこの方法では減圧器2. 7が2個、二方弁3
,4が2個必要であるだめ構造が腹1イ1で、しかも冷
房のみの空気調和機に比べて高価になる欠点を有してい
た。
However, with this method, the pressure reducer 2. 7 is 2 pieces, 2-way valve 3
.

発明の目的 本発明は、上記従来の欠点を除去するもので、冷凍ザイ
クルの構成の簡素化をはかることを目的とするものであ
る。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned conventional drawbacks and aims to simplify the structure of a frozen cycle.

発明の構成 この目的を達成するために本発明は、運転開始時の室温
TRをサンプリングし、この室温TRから1〜3°Cに
定めた圧縮機強制運転i’l容温度[i) Tcだけ低
い温度位置を初期OFF点とし、この初JIJJ OF
F点からザーモディファレ/7ヤルΔTだけ高い温度位
置を初期ON点と設定して、運転開始から室温が前記初
期OFF点まで下がる捷で、室内送風機最大風量で冷房
運転を行ない、この間の運転11h間toを基に次回運
転時間t1を演貌して設定し、圧縮機停市とともに室内
送風機を停市して、同状態を2.6〜3.5分の間で定
めだ一定の停止時間ts間続け、この停市時間謔経過後
の室温が初期ON点を1伸j1つだ場合のみ先に設定し
た運6転時間t1を一定時間[IJΔtだけ伸ばした値
に設定を改め、次に室内送風機最大風量で冷房運転を再
開し、運転時間t1以内に室温が初期OFF点に下がれ
ば同時に圧縮機、室内送風機を停止して次回運転時間t
2をtl−Δtと設定し、1+経過後も室幅が初期OF
F点以ヒの揚台はその時点で圧縮機、室内送風機を停止
して次回運転時間t2をtz=t+と設定し、以後9回
L1の運転に関して、租以内に室温がOFF点に下がれ
ば同時に圧縮機、室内送風機を停止して次回運転時間ち
+1を切−Δtと設定し、加経過後も室温がOFFFF
上の場合はその時点で圧縮機、室内送風機を停市して次
回運転時間tn+1をtn+−+ = tnと設定し、
停止抜切経過した時点の室温がON点以上のときのみ、
前回運転で定めだ石ト1をΔtだけ伸ばしだ値に改めて
設定するという運転を繰り返し、圧縮機運転回数Nが6
〜1oの間で定められだ回数に達するとON点を初期O
N点から初期室温TRに、まだOFF点は初期OFF点
を初期室温からザーモティファ1/ンシャルΔTだケ低
い温度飴匿に設定を改めて、前述の運転−停止1−動作
を繰り返すようにしだものである。、 実施例の説明 以下、本発明の実施例を添イ・1図面の第3図〜第7図
を参考に説明する。
Structure of the Invention In order to achieve this object, the present invention samples the room temperature TR at the start of operation, and calculates the compressor forced operation temperature [i] by Tc, which is set at 1 to 3°C from this room temperature TR. By setting the low temperature position as the initial OFF point, this first JIJJ OF
The initial ON point was set at a temperature position higher than point F by 7 YAR ΔT, and when the room temperature fell to the initial OFF point from the start of operation, cooling operation was performed with the maximum air volume of the indoor blower for 11 hours of operation. The next operation time t1 is determined and set based on t, the indoor blower is stopped at the same time as the compressor is stopped, and the same state is set for a certain stop time ts between 2.6 and 3.5 minutes. Only if the room temperature after this stop time has elapsed exceeds the initial ON point by 1, change the setting of the previously set operation time t1 to a value that is extended by a certain period of time [IJΔt, and then turn the indoor The cooling operation is restarted at the maximum airflow of the blower, and if the room temperature falls to the initial OFF point within the operating time t1, the compressor and indoor blower are simultaneously stopped and the next operating time t is reached.
2 is set as tl - Δt, and the chamber width remains at the initial OF even after 1+ elapses.
At that point, the compressor and indoor blower of the platform after point F are stopped, and the next operation time t2 is set as tz=t+, and for the next 9 operations of L1, if the room temperature falls to the OFF point within 10 minutes, At the same time, the compressor and indoor blower are stopped, and the next operating time +1 is set to OFF -Δt, so that the room temperature remains OFF even after heating.
In the above case, the compressor and indoor blower are stopped at that point, and the next operating time tn+1 is set as tn+-+ = tn.
Only when the room temperature is above the ON point after the stop is removed,
By repeating the operation of setting the value 1 determined in the previous operation to a value extended by Δt, the number of compressor operations N is 6.
When a predetermined number of times between ~1o is reached, the ON point is set to the initial O
From the N point to the initial room temperature TR, the initial OFF point is set again from the initial room temperature to a temperature lower than 1/Ncial ΔT, and the above-mentioned operation-stop 1-operation is repeated. be. , Description of Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3 to 7 of the accompanying drawings.

寸ず、第3図により空気調オ11磯の冷媒回路について
説明する。ここで第1図と同一のものについては同一の
番号を利して説明を省略する1゜同図において9は室外
送風機、10は室内送風機を示す。この冷媒回路は従来
周知の冷房回路である。
In a moment, the refrigerant circuit of the air conditioner 11 will be explained with reference to FIG. Components that are the same as those in FIG. 1 will be designated by the same reference numerals and their explanations will be omitted.1 In the figure, 9 indicates an outdoor blower and 10 indicates an indoor blower. This refrigerant circuit is a conventionally well-known cooling circuit.

次に本発明の温湿度制御の一例を第4図〜第6図により
説明する。
Next, an example of temperature and humidity control according to the present invention will be explained with reference to FIGS. 4 to 6.

第4図は一般家屋の一般的室内に空気調和機を設置して
、高温多湿の初期条件下で、前述した従来冷房運転の温
湿度制御を行なった場合の温湿度の変化状況を示してい
る。同図において、A点までの連続1止転により温湿度
共に低下するが、以後の停止時間内における温湿度の復
帰の様子を注1」すると、圧縮機停止中室内送風機は運
転した場合を示す実線でI:]: 湿度の復帰が温度の
復帰より11・いが、圧縮機停止中室内送風機も停止し
た場合を示す破線では湿度の復帰は?lu’h度の復帰
より遅れる。
Figure 4 shows the changes in temperature and humidity when an air conditioner is installed in a general room of a general house and the temperature and humidity control described above in the conventional cooling operation is performed under the initial conditions of high temperature and humidity. . In the same figure, both the temperature and humidity decrease due to one continuous stop rotation up to point A, but how the temperature and humidity return during the subsequent stoppage is shown in Note 1. This shows the case where the indoor blower was operated while the compressor was stopped. The solid line indicates I: ]: The humidity return is 11 points higher than the temperature return, but the broken line indicates the case where the indoor blower also stops while the compressor is stopped, and the humidity returns? It will be later than the recovery of lu'h degree.

したがって図のように圧縮機の、運転停止を継続した結
果は、大きい湿度差が現われる19種々の実験結宋から
、通常の家屋構造および室外温湿度条注下でd:、常に
とのような結果が出ることが分っている。
Therefore, as shown in the figure, the result of continuous operation stoppage of the compressor is that a large humidity difference appears from 19 various experimental results. I know it will get results.

第5図は本発明の温湿度制御中、特に運転開始直後の状
態を説明している、。
FIG. 5 illustrates the state during temperature and humidity control of the present invention, particularly immediately after the start of operation.

まず室温TRに対して1〜3℃巾の圧縮機強制運転許容
温度1jTcだけ低いところに初期OFF点Trovy
 ヲ設ケ、−’cの」三方ニティファレンシャルΔTを
とってこの点を初期ON 、aTIONとする。Tc=
1〜3°Cは経験的に定められたもので、通常除湿運転
が行なわれるような温度条件下では、この範囲内の温度
低下はほとんど不快感をともなわない。
First, the initial OFF point Trovy is set at a location lower than the room temperature TR by the compressor forced operation allowable temperature 1jTc in the range of 1 to 3℃.
Then, take the three-way differential ΔT of -'c and set this point as the initial ON, aTION. Tc=
The range of 1 to 3°C has been determined empirically, and under temperature conditions under which dehumidifying operation is normally performed, a temperature drop within this range will hardly cause any discomfort.

室温TRからTroypまでは室内送風機最大風惜に」
;る冷房運転を行なう。
From room temperature TR to Troyp, the indoor blower is at its maximum."
;Perform cooling operation.

その後圧縮機、室内送風機とも停止すると、第4図で前
述のように温度は急速に、湿度はゆっくりと復帰する。
After that, when both the compressor and the indoor blower are stopped, the temperature returns quickly and the humidity returns slowly, as described above in FIG.

ところで初期運転時間toについて倹1;ζjを加える
と、一定の温度低ド11 Tcに対するtOは負荷が重
ければ長くなり、低けれはケ(iかくなるので、  t
oは負荷の指標とできる。そこでtoから次回運転11
.5間t1を設定する。
By the way, if we add 1;
o can be used as a load index. So next time driving from to 11
.. Set t1 for 5 minutes.

図に示しだ例では次回運転時間tl=o、らtoと設定
している。次に圧縮機停止時間切は湿度の復帰を少なく
押えるだめ、できるだけ短かくとる必要があり、吐出圧
、吸入圧差が十分小さくなり、圧縮機の再起動が可能な
2.5〜3.5分に定める。実線の」:うに時間ts経
過後の室温がTl0N以下の場合、次回運転は上記で定
めだ運転時間t1であり、破線のようにTxo*以上の
場合、負荷が重いのであるから次回運転時間t1は上記
の運転時間t1に一定時間[IJΔtを加えたものに設
定を改める。
In the example shown in the figure, the next operation time is set as tl=o, rato. Next, the compressor stop time must be kept as short as possible in order to minimize the return of humidity, and should be 2.5 to 3.5 minutes, at which time the difference between the discharge and suction pressures is sufficiently small and the compressor can be restarted. stipulated in Solid line: If the room temperature is below Tl0N after time ts has elapsed, the next operation will be at the operation time t1 specified above; if it is above Txo* as shown by the broken line, the load is heavy and the next operation time is t1. The setting is changed to the above operation time t1 plus a certain period of time [IJΔt.

次に第5図にしだがって定常運転に入った後の温湿度制
御について説明する。
Next, referring to FIG. 5, temperature and humidity control after entering steady operation will be explained.

破線のように設定運転時間t1iI!Y:過前にTlo
FF点に到達した場合、運転を停止するとともに負荷が
軽いのであるから次回運転時間t2はtl−Δtと定め
る。
The set operating time t1iI as shown by the broken line! Y: Previously Tlo
When the FF point is reached, the operation is stopped and the load is light, so the next operation time t2 is determined as tl-Δt.

まだ実線のようにt1経過後もTl0FF以−トの場合
はここで運転を停止してt2=t+と定める。以下同様
な操作を繰り返して、圧縮機運転回数が所定の回数Nに
なれば(Nは5〜1oの間で決める)、ON点を初期の
THに等しくL、OFF点はディファレンンヤルΔτ分
下方にとった点に設定を改め、さらに前述の如き運転−
停tl:、の操作を繰り返す。
As shown by the solid line, if T10FF is still exceeded even after t1 has elapsed, the operation is stopped here and t2=t+ is set. After repeating the same operation, when the number of compressor operations reaches a predetermined number N (N is determined between 5 and 1o), the ON point is set to L equal to the initial TH, and the OFF point is set to the differential Δτ. Change the settings to the point taken downwards, and then operate as described above.
Repeat the operations at stop tl:.

寸たt1以後のj[縮機運転に対しては室内送風機は最
低速運転として、顕熱比を低く押えだ運転を行なう。こ
れにより冷房能力も低下するが、そのだめ運転時間は長
く伸びるので、顕熱能力の積算量が変わらず、顕熱能力
積算量が一定ならば除湿量が増加する。
j [For compressor operation after t1, the indoor blower is operated at the lowest speed to keep the sensible heat ratio low. As a result, the cooling capacity also decreases, but as a result, the operating time becomes longer, so if the integrated amount of sensible heat capacity does not change and the integrated amount of sensible heat capacity is constant, the amount of dehumidification increases.

本実施例では、仮にザーモ設定値より室温が低く通常の
冷房運転のみの空気調和機の温湿度制御機構では圧縮機
が運転しない場合でも、室温がTloFF点まで低下す
るまでの間は圧縮機が運転するために、体感的に許容で
きる昌度低下1〕で相対湿度が低下する。しかもこの間
は室内送風機は最大風垣で運転し、該空気調和機の最大
冷房能力を発揮し、顕熱化は大きいが除湿能力の絶対値
は大きいだめ、湿度低下は速やかに行なわれる。
In this embodiment, even if the room temperature is lower than the thermo set value and the compressor does not operate with the temperature/humidity control mechanism of the air conditioner that only performs normal cooling operation, the compressor will not operate until the room temperature drops to the TloFF point. In order to operate, the relative humidity is reduced by a perceptually acceptable degree reduction 1]. Moreover, during this time, the indoor blower operates at maximum wind speed, and the maximum cooling capacity of the air conditioner is demonstrated, and although the sensible heat generation is large, the absolute value of the dehumidification capacity is large, so the humidity is quickly reduced.

以後の運転制御は、圧縮機起動用能な最低停止時間を保
ってしかもこの間室内送風機を停止して蒸発器表面の露
の再蒸発及びその室内への戻りを防いで湿度の上昇を最
小限に押え、以降は負荷の変動に応じて随時運転時間を
変えて行きながら、この間の運転時は室内送風機を最小
風h;°で運転して、清算除湿量を最大になるような運
転とする。
The subsequent operation control is to maintain the minimum stop time that allows the compressor to start, and also to stop the indoor fan during this time to prevent the re-evaporation of dew on the evaporator surface and its return to the room, thereby minimizing the increase in humidity. After pressing, the operating time is changed as needed according to the fluctuation of the load, and during operation during this period, the indoor blower is operated at the minimum airflow h;° to maximize the total amount of dehumidification.

このような除湿を5〜10回繰り返すことにより、部屋
の壁、床、天井等に含゛まれだ湿気が大iI#ls分除
去され、その後は圧縮機の運転率を下げても湿度の上昇
は少なくなるので、ON点、OFF点を初期の室温付近
に戻して温度低l:によるわずかな寒さもなくした状態
で以後定常運転を続けて湿度を保持する、。
By repeating this type of dehumidification 5 to 10 times, the rare moisture contained in the walls, floor, ceiling, etc. of the room will be removed by approximately iI#ls, and after that, even if the operating rate of the compressor is lowered, the humidity will not increase. Since the temperature decreases, the ON point and OFF point are returned to near the initial room temperature to eliminate the slight cold caused by the low temperature, and from then on, steady operation is continued to maintain humidity.

なお、第7図に示すように、冷媒回路にバイパス回路3
1を設けて能力可変構造とし、低〃18口1.5“に室
内送風機の制御と連動して能力を変えるようにしてもよ
い。才だ圧縮機を極数切換えなどの能力可変式とし、同
様に制御を行っても同様の作用効果が得られる。なお、
図中32は三方弁、33は暖房用キャピラリチューブ、
34は二方弁、35d:1七縮1幾5の能力11丁変(
二1である。
In addition, as shown in FIG. 7, a bypass circuit 3 is provided in the refrigerant circuit.
1 may be provided to have a variable capacity structure, and the capacity may be changed in conjunction with the control of the indoor blower to a low 18 ports 1.5''. Similar effects can be obtained by performing similar control.
In the figure, 32 is a three-way valve, 33 is a heating capillary tube,
34 is a two-way valve, 35d: 17 contractions 1 and 5 abilities 11 changes (
It is 21.

発明の効果 」−記実施例より明らかなように本発明は、従来の冷房
運転のみの空気調和機に比して、冷媒回路は何ら変わる
ところがないだめ、従来の丙熱器を有する除湿1幾能付
空気調和機に比べて、はるかに安価で単純な構造とでき
、しかも梅雨時などの低温多湿時に、従′A(の冷房運
転のみの空気調和機ではザーモ設定以下で運転しなかっ
たり、無理に運転すると冷え過ぎるような場合にも、運
転開始直後に体感的に許容できる程度温度が低下するの
みで、十分な相対湿度の低下が得られるという太き々利
点を有するものである。
"Effects of the Invention" - As is clear from the examples described, the present invention has no difference in the refrigerant circuit compared to a conventional air conditioner that operates only for cooling operation, and thus the present invention is a dehumidifier with a conventional heat exchanger. It is much cheaper and has a simpler structure than an air conditioner with a built-in function.In addition, during low and humid times such as during the rainy season, an air conditioner that only operates as a cooling unit will not operate below the thermosetting setting. This has the great advantage that even if the system becomes too cold if forced to operate, the relative humidity can be sufficiently reduced by only reducing the temperature to an acceptable level immediately after the start of operation.

【図面の簡単な説明】[Brief explanation of drawings]

第11ス1は従東例を示す空気調第11機の冷媒回路図
、第2図は従来の冷房運転制師方法を/」<ず運転制御
図、第3図は本発明の一実施例における空気調和機の冷
媒回路図、第4図は従来の温湿度制御運転による湿度変
化図、第5図および第6図(riそれぞれ本発明の温湿
度制御を示す運転制御図、第7図は本発明の他の実施例
を示す冷媒回路図である15・・・・・・圧縮機、6・
・・・・・凝縮器、γ・・・・・・減圧器、8・・・・
・・蒸発器、9・−・・・・室外送風機、10・・・・
・・室内送風機。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 II丹閘り 第3図 第4図 第 5 図 B手間し 第 6 図 第7図 □  1合方と−r傘云 憾−一−−一−;鮭力劃御筐転
11th 1 is a refrigerant circuit diagram of the 11th air conditioner showing a conventional example, Fig. 2 is an operation control diagram of the conventional cooling operation control method, and Fig. 3 is an embodiment of the present invention. FIG. 4 is a humidity change diagram due to conventional temperature and humidity control operation, FIGS. 15 is a refrigerant circuit diagram showing another embodiment of the present invention. Compressor, 6.
...Condenser, γ...Reducer, 8...
・・Evaporator, 9・・・・・Outdoor blower, 10・・・・
・Indoor blower. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure II Dan-kaku Figure 3 Figure 4 Figure 5 Figure B Hand-stitched Figure 6 Figure 7 □ 1 combination and -r umbrella transfer-1--1-;

Claims (1)

【特許請求の範囲】[Claims] 運転開始時の室温TRをサンプリングし、この室温TR
から1〜3℃に定めだ圧縮機強制運転許容温度中Tcだ
け低い温度位置を初期077点とし、この初期OF F
 点からサーモディファレンンヤルΔTだけ高い温度位
置を初期ON点と設定して、運転開始から室温が前記初
期077点まで下がるまで、室内送風機最大風量で冷房
運転を行ない、この間の運転時間切を基に次回運転時間
t1を演9して設定し、圧縮機停止とともに室内送風機
を停止して、回状、嘘を2.5〜3.5分の間で定めだ
一定の停止時間ts間続け、この停止時間切経過後の室
温が初期ON点をL回った場合のみ先に設定1〜だ運転
時間t1を一定時間巾Δtだけ伸ばした値に設定を改め
、次に室内送風機最小風量で冷房運転を内聞し、運転時
間t1以内に室温が初期077点にFがれば同  3時
に圧縮機、室内送風機を停止して次回運転時間t2をt
l−Δtと設定し、t1経過後も室〃、が初期OFFF
F上の鴨合はその時点で圧縮機、室内送風機を停止して
次回運転時間t2をt2=t+と設定し、以後n回目の
運転に関して、加以内に室温がOFF点に下がれば同時
に圧縮機、室内送風機を停止して次回運転時間tn+1
 を加−Δtと設定し、功経過後も室温がOFFFF上
の場合はその時点で圧縮(・豚室内送風機を停止して次
回運転時間tn++をtn4−1−拍と設定し、停d−
後坊経過した時点の室温がON点以上のときのみ、前回
運転で定めたtn−t−+をΔtだけ伸ばした値に改め
て設定するという運転を繰り返し、圧縮機運転回数Nが
5〜10の間で定められた回数に達するとON点を初期
ON点から初期室温THに、まだOFF点は初期077
点を、初期室温からザーモディファレンシャルΔTだけ
低い温度位置に設定を改めて、前述の運転−停止動作を
繰り返すようにした空気調和機の温湿度制御方法。
The room temperature TR at the start of operation is sampled, and this room temperature TR
The initial 077 point is the temperature position lower than Tc within the allowable compressor forced operation temperature, which is determined to be 1 to 3℃ from 1 to 3℃.
The initial ON point is set at a temperature higher than the temperature point by the thermometer ΔT, and cooling operation is performed at the indoor blower's maximum air volume from the start of operation until the room temperature drops to the initial 077 point, and the operation time is turned off during this time. Based on this, set the next operation time t1, stop the compressor and the indoor blower, and continue the circular and lie for a fixed stop time ts, which is set between 2.5 and 3.5 minutes. , only when the room temperature after this stop time has passed has passed L times around the initial ON point, first change the setting to a value that extends the operating time t1 by a certain time width Δt, and then cool the room with the minimum air volume of the indoor blower. If the room temperature reaches the initial 077 point F within operating time t1, the compressor and indoor blower will be stopped at 3 o'clock and the next operating time t2 will be set to t.
Set l-Δt, the chamber remains OFF initially even after t1 has elapsed.
At that point, the compressor and indoor blower are stopped, and the next operation time t2 is set to t2 = t+. From then on, for the n-th operation, if the room temperature falls to the OFF point within 30 seconds, the compressor and indoor blower are stopped at the same time. , the indoor blower is stopped and the next operation time is tn+1.
If the room temperature remains above OFF even after the successful completion, the compression is stopped at that point (stop the pig room fan, set the next operating time tn++ to tn4-1-beats, and stop
Only when the room temperature is equal to or higher than the ON point when the after-heating period has elapsed, repeat the operation of setting tn-t-+ set in the previous operation to a value extended by Δt. When the number of times determined between is reached, the ON point is changed from the initial ON point to the initial room temperature TH, and the OFF point is changed to the initial 077.
A temperature/humidity control method for an air conditioner in which the temperature point is set to a temperature position lower than the initial room temperature by a thermodifferential ΔT, and the above-described start-stop operation is repeated.
JP57158325A 1982-09-10 1982-09-10 Temperature and humidity control method for air conditioner Pending JPS5946437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158325A JPS5946437A (en) 1982-09-10 1982-09-10 Temperature and humidity control method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158325A JPS5946437A (en) 1982-09-10 1982-09-10 Temperature and humidity control method for air conditioner

Publications (1)

Publication Number Publication Date
JPS5946437A true JPS5946437A (en) 1984-03-15

Family

ID=15669168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158325A Pending JPS5946437A (en) 1982-09-10 1982-09-10 Temperature and humidity control method for air conditioner

Country Status (1)

Country Link
JP (1) JPS5946437A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149837A (en) * 1984-01-18 1985-08-07 Daikin Ind Ltd Operation control device of air conditioner
WO2010106001A3 (en) * 2009-03-19 2011-03-10 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device and method for cooling a refrigeration device
WO2018230925A1 (en) 2017-06-12 2018-12-20 Lg Electronics Inc. Refrigerator and method of controlling the same
WO2020087402A1 (en) * 2018-10-31 2020-05-07 华北电力大学扬中智能电气研究中心 Air conditioner control system, method and apparatus
CN111121240A (en) * 2018-10-31 2020-05-08 华北电力大学扬中智能电气研究中心 Air conditioner control system, method and device
EP3638967A4 (en) * 2017-06-12 2021-03-10 LG Electronics Inc. Refrigerator and method of controlling the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149837A (en) * 1984-01-18 1985-08-07 Daikin Ind Ltd Operation control device of air conditioner
JPH0120339B2 (en) * 1984-01-18 1989-04-17 Daikin Kogyo Co Ltd
WO2010106001A3 (en) * 2009-03-19 2011-03-10 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device and method for cooling a refrigeration device
CN102356293A (en) * 2009-03-19 2012-02-15 Bsh博世和西门子家用电器有限公司 Refrigeration device and method for cooling a refrigeration device
WO2018230925A1 (en) 2017-06-12 2018-12-20 Lg Electronics Inc. Refrigerator and method of controlling the same
EP3638967A4 (en) * 2017-06-12 2021-03-10 LG Electronics Inc. Refrigerator and method of controlling the same
US11150012B2 (en) 2017-06-12 2021-10-19 Lg Electronics Inc. Refrigerator and method of controlling the same
WO2020087402A1 (en) * 2018-10-31 2020-05-07 华北电力大学扬中智能电气研究中心 Air conditioner control system, method and apparatus
CN111121240A (en) * 2018-10-31 2020-05-08 华北电力大学扬中智能电气研究中心 Air conditioner control system, method and device

Similar Documents

Publication Publication Date Title
EP1091178B1 (en) Multiroom air conditioner and control method therefor
JPH0842938A (en) Dehumidifying device and method of air conditioner
JPS5946437A (en) Temperature and humidity control method for air conditioner
JP3756854B2 (en) Air conditioner operation control apparatus and method
KR20060128190A (en) A noise control method of air conditioner
JP3404968B2 (en) Air conditioner
JP2001208401A (en) Air conditioner
JPH0718933Y2 (en) Release controller for air conditioner
KR100522879B1 (en) The method operating against frosting of air-conditioner used both cooler and heater
JPS59195045A (en) Control method of defrosting operation of refrigeration cycle
JPH03122440A (en) Method for controlling operation of air conditioner
CN1144900A (en) Dehumidifying operation control method for air conditioner
JPH06337176A (en) Air-conditioner
JPH05340643A (en) Air conditioner
JPS62125244A (en) Air conditioner
JPH02140547A (en) Controlling method for defrosting of air conditioner
JP4572470B2 (en) Operation control method of air conditioner
JPS5981455A (en) Dehumidifying operating method for air conditioner
JPH0256570B2 (en)
JP2001235238A (en) Heat pump type air-conditioning system
JPS5977245A (en) Air conditioner
JPH0618074A (en) Controlling method for air conditioner
JPS59208340A (en) Method of defrosting air conditioner
KR20000037631A (en) Method for controlling sleeping mode of air conditioner
JPH09145196A (en) Operation control method of air conditioner